
A Subspace Decomposition Method for Point Source Localization 

in Blurred Images 
Metin Gunsav and Brian D Jefls 

Brigham Young Universitv. Department of Electrical and Computer Engineenng 
459 Clcde Building, Provo Utah 84602 (801) 378-3062 email metin, bjeffsmee bvu edu 

Abstract-In this paper we address the problem of redving 
blurred point sources in intensity images. A new approach to 
image restoration is introduced which is a 2-D generalization 
uf techniques originating from the field of direction of arrival 
estimation (DOA). I n  the 2-D frequency domain. algorithms, 
such as MUSIC. may be adapted to search for these point 
sources. A generalization of array smoothing bused on a 
regularization operator is introduced for 2-11 arrays in order 
to achieve rank enhanrmient in the signal space of the 
covariance mutrir. 

1. Introduction 
Point source localization (PSL) is the problem of resolving 

individual points in an image that have been corrupted by 
convolution with some finite support blurring function. It has 
been addressed in various forms [ 11-[3]. PSL is pertinent to the 
fields of astronomical image restoration, biomedical imaging 
and echo resolution. Deblurring of star fields is one of the 
major applications of PSI, in images. Atmospheric turbulence 
can cause closely spaced stars to become blurred beyond 
resolution so as to appear as a single star. We will address the 
2-D case; but the algorithm may be extended to 1-D and higher 
dimensional data. 

The PSL problem for a blurred ,if1 x hf2 image can be 
formulated in the following linear model for a single “snap 
shot” at time t : 

uhere g is the colexigraphically ordered (Tom -scanned) 
observation vector of length .U, s lif2=2af, D is an .if x A/ 
circulant convolution matrix whose columns are fomied from 
spatially shifted copies of the point spread function (PSF), f is 
the desired uncorrupted deterministic image vector of length 
.if, and n is the additive observation noise vector. It is assumed 
that the noise is uncorrelated among the elements. We may 
make the assumption that the columns of D are circularly 
shifted copies of one another if we assume that points that we 
are tr?;ing to locate are away from boundaries of our image. 

The new algorithm casts the PSL problem into a new- form 
which can be viewed as a coherent source direction of arrival 
estimation problem. Because our algorithm is based on 
eigenvector techniques it naturally inherits the propert). of 
super-resolution or inter-pixel resolution of points. We do not 
assume that the source amplitudes are time varying in order to 
build up rank in the signal space of our covariance matris as 

g( t )  = Of + w ( 1 )  
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other authors have assumed [2][3], but introduce a new method 
of 2-D rank enhancement which is a generalization of the array 
smoothing technique [6]. Our method has an added benefit of 
allowing regularization of the spatial smoothing. 

2. Theoretical Development 
In this section we transform the problem expressed by ( 1 )  

into a problem which can be solved with traditional DOA 
estimation techniques. For a background in DOA, [5]  is an 
excellent tutorial. 

2.1. Frequency Domain Signal Model 
Since f is sparse we may replace Df with .4u. where U 

contains the intensity coellicients of all the non-zero elements 
of/, and A contains only those columns of D which correspond 
to the non-zero elements of U :  

g(t)  = Au + n ( t ) .  (2) 
This differs from the usual DOA problem in two way :  1) U 

which contains the magnitudes of the sources is not time 
varying, and 2) the columns of A are not cisoids but are shifted 
versions of the blur function which is of finite support. In order 
to map spatial shifts in source position to phase shifts, (2) can 
be transformed into the frequency domain by multiplying g(t)  
by y, a truncated version of the 2-D DFT matris. The 
observed image is real and its 2-D DFT has conjugate 
ymmetv,  thus half of the elements contain redundant 
information, and the order of the system can be reduced by half 
without loss of resolution. The truncated 2-D DFT matrix is 
formed from the upper .V= M 2  rows of the unitay DFT matrix 
yr which is defined as 
yr = ~ r 0 ~ ’  8 ~ ~ 0 1 ,  

\vhere 8 is a Kronecker product, and FroW and FCol are the 

I-D DFT matrices whose elements are qrr = e-.””n’A‘l , 

M, 12 2 i , k  I M, 2 - 1 and fiYCo1 = e-J3mk ”‘2, 

M3 I 2 I i, k I A.4’ I 2 - 1, respectfully. Thus y is A /  x 
.V and is defined as: 

1.L- 

3 , k  = . K k  ( 3 )  
for 0 I i I N and 0 I k I M .  Multiplying a vector 
containing a row scanned image by y results in a frequency 
unwrapped image, a condition which is necessav for fractional 
pisel resolution. The frequency domain version of (2) non 
becomes 
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= TAU + 3 7 ( t )  
g( t )  = Au + ;'i(t), (4 1 
where - designates the 2-D DFT of the row scanned images 
contained in &I),  n ( t )  and each of the columns of the 
matrix A .  The vector g ( t )  has complex elements and length 
3'. Since U is independent of the time index, equation (4) is in 
the form of a coherent DOA problem. All the columns of A 
have the same magnitude, but are phase shifted versions of one 
another because the columns of A are spatially shifted versions 

of the blurring function. We can express A as the product of a 
diagonal matrix H whose elements correspond to the frequency 
domain PSF, and a matrix C' which contains the phase 

information for each of the coluinns of A : 

I 

- 

I 

( 5 )  

The column vectors V x p , y p  of I'correspond to images with a 

single unblurred point at location 

transformed into the frequency domain, and are expressed as 

e +z[!2c*+%] -'* M . , . . . , e  ~,+5:;.-.:-l]i 
( 6 )  

(7) 
Substituting (5) into (4): 

yielding an autocovariance matrix of 
g( t )  = m u  + *(f) 

Rg = HVR,VHHH +IO:, (8) 
which is clearly of the same form as the DOA problem. The 
above formulation assumes that each of the blurred point 
sources in the observed image have integer pixel shifts in 
relation to the PSF. 

2.2. Generalized 2-D Array Smoothing 

The signal space of Ri is of rank one because the 

magnitudes of the point sources are not time varying, resulting 
in a coherent problem. In addition, the elements in the data 
array are non-uniformly weighted by H .  The rank of the signal 
space must be increased to P for eigenvector based methods to 
work and this can be accomplished by a new technique which is 
a generalization of spatial smoothing [6] .  Rank enhancement is 
accomplished by averaging in the frequency domain over the 
autocovariance matrices of subimages. If we average vertically 
across an image by L ,  shifts and horizontally by L, shifts, then 
a total of L=L L subimages may be averaged together to build 
the sample covariance matrix. 1 2  
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0 

0 
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Figure 1. Row scanned subimage at (m,n). 

Figure 1 shows how the subimages are extracted from a 
larger image and how they are arranged into a vector. We will 
now introduce some notation that will aid us in annotating the 
colexigraphically ordered subimages. Note that in (7) each of 
the columns of t', the diagonal of H ,  and the column vectors g 
and n are colexigraphically ordered images. The subscript 
[m,n] will be applied to these variables to refer to the subimage 
whose upper left corner is at the position (mp) in the 
corresponding 2-D images. The subimages are of size O1x 0, 
where 0,= Iv-LI+I and 0,= :\f2-L2+l. 
For example, in the case of the image contained in g( t )  of 
(7) the subimage vectors are then defined as: - 
g [ m , n I ( t )  = [ g m , n l  Z m . n + l l .  ' - 3  gm,e2y - - - 

g"1-I.n 7 l!7m+I,n+l7 ... 7 g m + l . e 2  1 - - 7  . 

Using this notation we can express any subimage as 

1 -  is not Vandennonde as it is in the formulation of array 
smoothing, but fortunately there exists a simple relationship 
between the all of the qm,.;. We can express the v . in 

terms of the product of v and the diagonal matrices Cm'" 
whose elements are 

[m, ,>  

['.I1 

Thus qm,flj = v c"'". Equation (9) becomes 
11.11 

i F m , n j ( t )  = H[m.njl/il,ljCm3n~ + G I m , n ] ( t )  (10) 
and assuming the noise is uncorrelated from pixel to pixel its 
autocovariance matrix is 
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Figure 2. Synthetic star example. a) unblurred image. b) blurred image with 4OdB SNR. c) MUSIC spectrum. d) peaks of spectrum. 

2.3. Restoration Algorithm 

Q is selected depending upon the type of regularization 
desired, and the appropriate weighting m a t "  s[nj,nl are 

computed. The sample Covariance matrix 1s computed as an 
estimate OfR 

( 1  1) 

Before these subimages can be averaged, the modulation 
introduced by H must be removed. A single arbitrary diagonal 

lo; 

regularization matrix, Q, may be chosen and corresponding , -  

The weighting matrices s allow the corresponding 

H to be pulled out of the summation. As in the traditional 

DOA problem it can be shown that the rank Ru will increase 
to a maximum of P for every additional subamay which is 
averaged in, if subimages from the diagonal (i.e. L,=L,) are 
used in the averaging. We shall refer to Q as the smoothing 
regularization matrix. 

[m,nI 

[ m 3 1  

(13) 
\vhere T is the sample interval between snapshots. The 
algorithm is suitable for the single or multiple snapshot cases. 
If multiple snapshots are available, then a more accurate 
estimate of R is obtained. If only one is available and the 
image is of sufficient size so that the number of subimages is 
greater than the number of sources, then (19) will provide a 
estimate of R with necessary rank to render a signal subspace 
of full rank. 

Estimates of the signal and noise subspaces, E, and E,,  
are found by solving the generalized eigenvector problem: 

and the MUSIC swctrum is defined as: 

n-here is the position vector corresponding to a point at 

location @>U). The peaks of P(.Y,v) are the estimated locations 
of the stars. P(n,v) may be scanned at any desired resolution 
scale. Once source locations are found, a simple least squares 
fit can be made for the amplitudes of the peaks, because 
solving for the location and amplitude are separable problems 
[31. 

2.4. Smoothing Regularization Matrix Selection 
Noise amplification and reduced effective aperture are two 

conflicting problems that reduce resolution in P(X$) and must 
be traded otT against each other in the design of the smoothmg 
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regularization matrix Q. If maximum aperture is desired, then 
it is best to weight Q equally among its diagonal elements, 
Q=Z. This selection of Q produces corresponding weighting 
matrices qm,fll that inverse filter each of the subimages 

&m,fll(t) and introdwe noise amplification. This may be 

reduced if we sacrifice aperture by weighting more lightly or 
setting to zero elemqts of Q which correspond to small values 
in the Hr,.,] mkrices. However, this introduces 
regularization error due to reduction in aperture. 

With these trade-offs in mind, there are a number ways in 
which Q may selected. One heuristic method of accomplishing 
this is to let 

(16 1 Q = E-]’? 
which causes (12) to become. 

Since Q has caused the noise covariance matrix to have equal 
energy, it is easy to see how it has de-emphasized those 
elements of the signal covariance matrix which correspond to 
small values in the PSF and therefore reduced the noise 
amplification. 

Values of Q can be found which optimize various metrics. 
For example, a reasonable criterion based on a constrained 
maximization of signal to noise ratio is 

where Q,,, 2 0, and a = vEuyH. Letting 

4 = diag(Q), (18) can be expressed as a minimization 
problem of the form 

because = Rk,k. This equality constrained minimization 
problem has no known closed form solution, but may be solved 
for a given value 5 of using a standard constrained 
minimization routine. 

The positive power 5 determines the degree of 
regularization performed. As ( tends toward zero, Q has 
maximum aperture and weights the elements of R equally. This 
corresponds to the inverse filter which has no regularization 
error, but has error due to noise amplification. As 5 tends to 2 
and beyond, a Q is formed such that the aperture is reduced to a 
single element which introduces large regularization error but  
small error due to noise amplification. 

3. Results 
Figure 1 demonstrates the caSe of debluning a synthetic star 
cluster using eigenvector based methods. The star image is 
blurred by a Gaussian shaped PSF and i i d .  Gaussian noise is 
added for a SNR of 40 dR. The upper-left cluster contains two 

stars which are separated by only one half of a pixel. Figure 
1.c is the processed image showing the MUSIC spectrum at a 
resolution of 4 times the original image. Figure 1.d shows the 
locations of the peaks of the MUSIC sped”. Note that the 
on@ source positions are located correctly and that high 
resolution is obtained. Equation (16) was selected to generate 
Q. In addition, the values of Q corresponding to certain high 
frequency regions of the H which have large modeling error 
were set to zero. 

4. Conclusions 
We have shokn that there exists a duality between the PSL 

and the coherent DOA problems. Indeed, if the point sources 
are not blurred the two problems are frequency domain duals of 
one another. In the coherent DOA problem the aim is to 
determine the linear combination of cisoids that are 
superimposed on the linear array, while in PSL it is to 
determine the linear combination of shifts of a particular finite 
support function. 

Since the resulting frequency domain problem is coherent, a 
means of rank enhancement of the covariance function was 
introduced. This technique is a generalization of smoothing 
because it introduces a regularization operator Q with its 
associated weighting matrices S. These weighting matrices 
compensate for the affects of the modulation introduced by the 
blurring function. and allow regularization to reduce noise 
amplification in the system which is caused by the division of 
small values of the frequenc! domain blurring function. 

Our algorithm could also be particularly useful in the I-D 
case of finding the location of overlapping echoes. There is no 
requirement that the sources be time varying, and the case of 
data consisting o fa  single time sample is easily dealt with. 
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