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int-Source Localization in 
uency-Domain Eigenvector-B ase 

Metin Gunsay and Brian D. Jeffs, Member, ZEEE 

Abstract-In this paper, we address the problem of resolving 
and localizing blurred point sources in intensity images. Tele- 
scopic star-field images blurred by atmospheric turbulence or 
optical aberrations are typical examples of this class of images. 
A new approach to image restoration is introduced, which i s  a 
generalization of 2-D sensor array processing techniques originat- 
ing from the field of direction of arrival estimation (DOA). It is 
shown that in the frequency domain, blurred point source images 
can be modeled with a structure analogous to the response of 
linear sensor arrays to coherent signal sources. Thus, the problem 
may be cast into the form of DOA estimation, and eigenvector 
based subspace decomposition algorithms, such as MUSIC, may 
be adapted to search for these point sources. For deterministic 
point images the signal subspace is degenerate, with rank one, 
S I )  rank enhancement techniques are required before MUSIC or 
related algorithms may be used. The presence of blur prohibits 
use of existing rank enhancement methods. A generalized array 
smoothing method is introduced for rank enhancement in the 
presence of blur, and to regularize the ill posed nature of the 
image restoration. The new algorithm achieves inter pixel super- 
resolution and is computationally efficient. Examples of star 
image deblurring using the algorithm are presented. 

I. INTRODUCTION 
OINT source image restoration as defined in this work is 
the problem of resolving individual points, or impulses, in 

an image that has been corrupted by noise and by convolution 
with some blurring function. The point spread function (PSF) 
of the imaging system can merge closely located points to 
the extent that they can not be resolved in the presence of 
noise without some form of super-resolution provided by the 
restoration algorithm. 

The point source image problem is a special case of image 
restoration where it is known or assumed a priori that the 
true image is sparse or point-like. Judicious use of this 
prior image model in developing the restoration algorithm 
will yield greatly superior results over what can be obtained 
from more conventional general purpose methods [I]. The 
eigenvector based approach presented here depends on this 
underlying point-like structure of the true image, and is closely 
related to methods used for source localization in sensor array 
processing. 

Point source images are encountered in the fields of as- 
tronomical image restoration, biomedical imaging, and echo 
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resolution, to mention a few examples. Deblurring of star fields 
is one of the major applications, and will be the emphasis of 
the discussion to follow. Blur in long exposure astronomical 
star images may be due to atmospheric turbulence, misfocus, 
poor telescope tracking, finite aperture size, or other optical 
distortion effects. Atmospheric turbulence can cause nearby 
stars to become blurred beyond resolution so as to appear as 
a single star. 

A. Problem Formulation 
Since we wish to localize point sources in images to 

arbitrarily fine resolution, we begin with a common continuous 
space model for an observed image, corrupted by noise and a 
2-D convolutional blur 

(1) 

where q(z, y) is the additive observation noise and h(z ,  y) is 
the blurring PSF. Because the desired true image, f(x,y),  is 
point-like, and sparse, the convolutional blur yields a finite 
number of shifted and scaled copies of the PSF, thus, (1) has 
the equivalent representation 

g(z: Y) = h(x, Y) * f ( z ,  Y) + v(z,  w) 

P 

d x ,  Y) = c%Nn: - z p ,  1J - 9x3) + v(2, Y) (2) 
p=l 

where up is the amplitude of the pth image point and P is the 
total number of point sources seen in the image. 

We will assume that we have access to g(x, y) only through 
a discrete-space sampling process, i.e., we observe the sampled 
image g[i, k] = g(iQ,, kAy), wkere A, and Ay are the spatial 
sample intervals. It will be convenient to adopt a row scanned 
vector notation for an MI x M2 pixel window of g [ i ,  k] 

g = [Sl,. . . AMIT 

= [9[0,01, . . . 9  [O, n/r, - 11,g [I, 01 , . . .9[1 > M2 - 11, 
. . . g[M1 - 1, M2 - l]]? (3)  

g has length MI x M2 = M .  In order to accommodate image 
sequence data (e.g. video or multiframe exposures) as well 
as a single frame images, a time index may be added to 
image vectors, e.g. g(t).  It will be assumed in the following 
development that f(x, y) does not change with time, but that 
only noise fluctuations contribute to the time dependence of 
g( t ) .  This model is consistent, for example, with a series of 
long exposure telescopic star images, where true star intensities 
do not fluctuate, atmospheric turbulence is averaged over the 
exposure time to give a repeatable blur PSF, and noise is 
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independent from frame to frame. In the remainder of this 
paper we will ignore the time index for convenience, and 
indicate later how to incorporate multiple frames into the 
algorithm. 

The problem addressed by this paper is to recover f ( ~ ,  9) 
from the observation g, or equivalently to estimate image 
parameters ( x p , y p )  and up. Though the observed image is 
discrete, position parameters x p  and y p  are continuous and 
separation between points may be less than the pixel spacing. 
This will require an algorithm capable of super resolution. 

B. Related Work 

Eigenvector techniques applied to image processing are 
quite new. Aghajan et al. use an eigenvector based approach to 
model the problem of finding the orientation of crisscrossed 
lines in an image, and they solve it with a variation of the 
traditional MUSIC algorithm which originates from the DOA 
problem [2]. Also, Mosher et al. perform 3-D localization of 
independently fluctuating current dipoles within the brain from 
magnetoencephalogram (MEG) data using eigenvector based 
techniques [3]. Tewfik and Deriche have used a frequency do- 
main eigenstructure approach for edge detection, but perform 
their processing in 1-D row or column strips rather than the 
true 2-D approach presented here [4]. Bruckstein addresses the 
1-D case of this problem using eigenvector based techniques 
in the time domain but makes the assumption that point 
magnitudes are randomly fluctuating and thus, a covariance 
matrix formed from the observed sequence has a rank equal 
to the number of sources in the sequence [5].  

In our problem of interest, this common assumption of 
source independence will not hold. For example, in the case 
of astronomical imaging, the unblurred intensity of stars 
does not fluctuate over a sequence of several snapshots; 
rather, the observed time variations are due to noise or time 
variations of the blur. More importantly, if we are to succeed 
in restoring single frame images, we cannot rely on random 
source fluctuations over time to build up covariance matrix 
rank. 

We have assumed in our formulation that though g(t)  is 
time dependent, f(z,y) is not. This deterministic model for 
f ( z , y )  is analogous to the fully coherent scene case found 
in the DOA literature, and requires special techniques to build 
up the degenerate rank of the associated autocovariance matrix 
before eigendecomposition methods may be applied. Shan et 
al. introduced a widely used method based on smoothing 
(averaging) over subarrays for rank enhancement in the case 
of coherent scene processing of uniform line array data [6]. 
Yeh et al. showed how array smoothing could be use for 2-D 
arrival angle estimation with uniform 2-D sensor arrays [15]. 
We introduce a new 2-D rank enhancement method which 
extends array smoothing to the case of nonuniform weighting 
of sensor responses, which, for image restoration problems, 
is due to the blur PSF. By transforming the image into the 
frequency domain, we exploit the fact that shifts in the spatial 
domain of a blurring function result in phase shifts across all of 
the elements of the image in the frequency domain. This yields 
a signal structure similar to 2-D array DOA problems, but 

where there is a nonuniform weighting across sensor (pixel) 
elements due to blur. 

Other techniques have been designed explicitly for point 
source image restoration. One of the earliest applied to as- 
tronomical star images is CLEAN [7]. While this algorithm is 
computationally efficient and well suited to point images, it can 
produce extraneous stars and other artifacts. The &-simplex 
search algorithm [ l ]  is a nonlinear optimization theoretic 
technique which maximizes a sparseness objective function 
over a constraint set. Because sparseness objective functions 
are typically concave, the solutions given by the algorithm 
may be local minima only. 

The remainder of this paper is organized as follows: For 
background information, a tutorial discussion on subspace 
methods as applied to DOA estimation with sensor arrays is 
presented in Section 11. The new algorithm is developed in 
Section 111. Section IV gives examples of the algorithm as 
applied to synthetic star fields and actual astronomical image 
data. Section V presents conclusions and observations. 

11. SUBSPACE METHODS AND SPATIAL 
SMOOTHING IN SENSOR ARRAY PROCESSING 

Since the new image restoration algorithm relies heavily on 
a theoretical foundation borrowed from sensor array process- 
ing, this brief tutorial introduction is presented to motivate 
the discussion and introduce notation. DOA estimation in the 
context of sensor array processing often involves determining 
the angular position with respect to the array of narrowband 
point source emitters in the far field. Subspace methods exploit 
the special structure of the array data covariance matrix 
by computing an eigenvector decomposition into orthogonal 
subspaces. 

Given an array of N elements with wavefronts from P 
narrowband sources impinging upon it, the output from the 
array at time t may be described as 

(4) 

where x( t )  is the observed array data vector, ~ ( t )  is the 
vector of complex random amplitudes for the P sources, the 
columns of A are the complex array response vectors corre- 
sponding to each of the P sources, A = [a(&)la(&)l. . . I 
a(Op)], 0, is the direction of arrival of the pth source, 
and q(t)  is the additive observation noise. For the case 
of a uniform line array, A is Vandermonde, with columns .(ep) = [I, e - ~ d g ~ ) ,  e-jZiP(@~), . . . , ~ - ~ ( N - I ) ' + ' ( @ P ) ] ~  where 
p(0) is a function mapping source direction to inter-element 
electrical phase at the array. This particular structure for A 
is required for the spatial smoothing method described below. 
The autocovariance of x(t)  (assuming zero mean data) is given 

x( t )  = Au(t) + ~ ( t )  

by 

R = q X ( t ) x H ( t ) }  = A R , A ~  + c ( 5 )  

where represents the complex conjugate transpose, R, is 
the autocovariance of U, and C is the noise autocovariance. 
If the noise is uncorrelated element to element and of equal 
variance, CT:, then C = c:I. If the P sources are mutually 
incoherent, the matrix AR,AH will be of rank P. 
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Eigenvector algorithms decompose R into two orthogonal 
subspaces: E, and E,, the signal and noise subspaces, re- 
spectively, by solving the partitioned generalized eigenvector 
problem 

R[E, 1 E,] = C[E, I E,]A (6) 

where A is the diagonal eigenvalue matrix. E, contains the 
eigenvectors corresponding to AR,AH, and E, contains 
the remaining eigenvectors. Partitioning the eigenvectors into 
E, and E, is particularly easy if C = 10: and 0: is 
less than the power in the smallest signal component. In 
this case, eigenvalues are ordered in descending magnitude, 
and the eigenvectors corresponding to the P largest elements 
of A are then selected for E,. If P is unknown, it may 
be estimated by any of several different methods (e.g., the 
minimum description length [ 121). 

The signal subspace spans the same space as A,  and since 
E, is orthogonal to E,, the noise space is orthogonal to the 
array responses of the P sources. The algorithm searches for 
the a(0) which are most orthogonal to the noise space, and 
these vectors correspond to the directions of arrival of the 
sources. 

A number of eigenstructure based methods exist that exploit 
this orthogonality property in order to estimate 0,. We will 
focus our attention on the well known MUSIC algorithm 
[l 11 for illustrative purposes, but others, like the minimum 
norm method [8] would be suitable for the image restoration 
formulation developed in the following section. The MUSIC 
spectrum is defined as 

(7) 

where a(Q) is a proposed steering vector at angle 0. The 
0 values which correspond to the peaks of the spectrum, 
PMU(Q) ,  are the estimated direction of arrival angles. 

Eigenvector based methods fail if the sources are coherent 
because R, does not have full column rank. However, this 
may be overcome in uniformly spaced line arrays using spatial 
smoothing [6]. This method increases the rank of the signal 
sub-space of R by averaging together the autocovariance 
matrices of shorter subarrays, and takes advantage of the 
fact that the data in each subarray is just a phase shifted 
copy of the other subarrays. L distinct (though overlapping) 
subarrays may be defined for an N element line array as 

L. Due to the Vandermonde structure of A for uniform line 
arrays, the relationship between subarrays may be expressed 
as xZ(t) = AC"'u(t) + n,(t), where C is a diagonal matrix 
given by C = diag{[e-Jp('l), e--3v('2), . . . , e - J ~ ( ' p ) ] } .  Spa- 
tial smoothing consists of averaging across the autocovariance 
matrices of each subarray, which yields 

follows, xz(t) = [Lz(t),LC,+l(t), . . . ,ZN-L+z( t ) IT ,  1 L i L 

l L  
R = - E { X i ( t ) X F ( t ) }  

i=l 

r ,  L 1 a L  

i=l 

= A[R,]AH + C 

It can be shown that if L > P,R ,  has rank equal to P 
and retains the desired phase information for each source [6]. 
Thus eigenvector based methods may be applied directly to 
the smoothed autocovariance matrix R. 

In. ALGORJTHM THEORETICAL DEVELOPMENT 
In this section we transform the imaging model expressed 

by (2) into a form which can be solved with traditional DOA 
estimation techniques. 

A. Frequency-Domain Signal Model 

In order to map spatial shifts of source position into the 
phase shifts needed by the eigenstructure decomposition algo- 
rithm, g is first transformed into the frequency domain. The 
2-D spatial DFT of g may be computed in row-scanned vector 
form by multiplying g by 3, a truncated version of the 2-D 
DIT matrix, 

g = 3 g .  (9) 

The observed image is real, so its 2-D DFT has conjugate 
symmetry, half of the elements contain redundant information, 
and the order of the system can be reduced by half without loss 
of resolution. To do so, F is formed from the last N = M / 2  
rows (assuming MI and Mz are even, the odd case is handled 
similarly) of a frequency unwrapped version of the standard 
2-D DFT transform matrix [I41 

F = F r O W  @ F C O l  

where 8 is the Kronecker product, and matrices Fro" and 
Fcol have elements1 

 row - e - j 2 ~ i k / M i  0 < 
z,k - , - i I M i u , M i ~  I I Miu, 

where 

Thus, F has size N x M .  Multiplying a row scanned image 
vector by F yields a frequency domain representation of 
the image which is "unwrapped" (dc term in the center), a 
condition necessary for fractional pixel resolution [ 191. 

In order to identify the point position information con- 
tained in g, we will compare (9) to a sampled version of 
the continuous-space Fourier transform of (2). The Fourier 
transform of g(z,y) is 

P 

G ( q ,  w 2 )  = ~ p e - 3 ( W l z ~ + w z Y * ) H  ( W l l W Z )  + 7 7 ( W l , W Z ) .  

p = l  

(10) 

'Note that we have allowed the matrix indexes to range over both negative 
and and positive integers to simplify notation, e.g., z = M ~ L  is the first row 
of Fcol. 
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Since g is created by a windowed sampling of g(z,y), if we 
assume g(z, y) is zero outside the window of interest, then the 
gth element, g4,  of g is related to G(wl,w2) as follows 

9 -- 1 O o o 0  G(&+-- 

where q = iM2+k- M 2 ~ + 1  for 0 5 i 5 M I U ,  M 2 ~  5 k 5 
M2u. Substituting (10) into this result yields the approximate 
relationship 

l=-m r=-w - A,Ay 

x H - 2ni  -) 2nk +q(---,-). 2ni 2nk (11) 
(MIA, MAy MlA, M2Ay 

The approximating assumption has been made that 
H ( w l ,  w2) is band limited so no aliasing occurs and 
the summations over 1 and T may be dropped. Though 
requiring our observation to be zero outside the sampling 
window conflicts with this approximation, (1 1) holds with 
negligible error for most blurs of interest, which typically 
have a finite region of support and are low pass. A detailed 
analysis of the estimation error due to aliasing H ( w l , w 2 )  
when these assumptions are violated is presented in [19]. It is 
shown that these effects are typically very minor. 

Equation (1 1) has an equivalent vector-matrix representation 
which emphasizes the similarity between this point image 
model and the sensor array data model of (4) 

g=HVu+i j  (12) 

where we have the equation at the bottom of the page. 

v = [VX,,Yl I V~Z,YZl~~~IVZ,,YPl~ 
VXP>YP = vxp @ VY, 

1 T 

Some interpretation of (12) will be helpful here. Source 
position information is contained in the phase structure of V, 
which plays the same role as A in (4). Both matrices consist 
of columns of incremental, exponential phase vectors, with 
the pth column corresponding to the pth point source. Note 
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that xp and yp are continuous variables which permit sub- 
pixel position information to be represented. Though V is not 
Vandermonde, it will be shown to have sufficient structural 
regularity to enable a form of smoothing. As in (4), U contains 
source amplitude information. The autocovariance matrix of g 
is now seen to be of the form 

(13) RB = HVR,VHHH + C 

which is clearly similar to (5).  
There are, however, some significant differences between 

the DOA estimation and point image restoration problems. 
Diagonal matrix H is the sampled Fourier transform of the 
blurring PSF, and imposes a nonuniform weighting on pixels 
of g not found in (4). In (12), U is not time-varying or random, 
so sources are seen as correlated, and some form of smoothing 
is always required to build system rank. Also, the nonuniform 
weighting of H in (12) prohibits using known array smoothing 
methods. 

B. Generalized 2 - 0  Smoothing 
This section introduces a new technique which is a gen- 

eralization of spatial smoothing involving averaging in the 
frequency domain over the autocovariance matrices of subim- 
ages. This is analogous to the sub-array smoothing introduced 
by Yeh et a1 for 2-D sensor arrays [15], but an additional 
operation is required to deal with the nonuniform weighting 
caused by the image blur. 

Fig. 1 shows how a 01 x 0 2  pixel sub-image is extracted 
from a larger image, and how elements are arranged into an 
ordered vector. Note that in (12) g, i j ,  each of the columns of 
V, and the diagonal of H, are all colexigraphically ordered 
frequency domain image vectors. The subscript [m, n] will be 
applied to these variables to refer to the subimages whose 
upper left corners are at position (m, n) in the corresponding 
2-D images. For example, subimages of g( t )  are defined as 

x -  

2[m,nI = [Sm,,, Qm,n+l,. . . > gm,n+Oz-l,Sm+l,n, Sm+l,n+l, 
. . . ,9m+l,n+02-1,. . . ,Qm+Ol-l,n,gn+Ol-l,n+l, 
. . . ,gm+01-l,n+~2-llT 

and (12) has the corresponding subimage representation 

We will use L to indicate the total number of subimages used 
in generalized smoothing. When all possible subimages of size 
0 1 x @ ~ a r e u s e d ,  L =  ( M l ~ - 0 1 + 2 ) ( M ~ - 0 2 + l ) , t h o u g h  
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0 0  

0 0  0 0  

0 0  0 0  

0 0  0 0  

1) 

Fig. 1. Row scanned subimage at (m,n).  

as is shown in Appendix A, we may be better served by not 
using all possible subimages. 

With this formulation we are prepared to develop a gener- 
alization of 2-D array smoothing. V is not Vandermonde as in 
the uniform line array case, but fortunately, there is a simple 
relationship between all of the Vi,,,], which may be exploited 
for smoothing. We can express VI,,,] in terms of the product 
of V[ l , l~  and diagonal matrices Ci,,,] defined as 

The H[,,,I blur terms in (16) are dependent on subimage in- 
dexes and prohibit achieving the simple smoothing summation 
form found in (8). To overcome this difficulty and to introduce 
a regularization operator to control noise amplification, we 
define a “smoothing regularization matrix”, Q. Q is chosen to 
be an arbitrary, constant, diagonal matrix. Given a choice for 
Q, weighting matrices, S[,,,I, are computed as solutions to 

Clearly one restriction on Q is that solutions to (17) must exist 
for all subimages H[,,,]. Simple procedures for satisfying 
this constraint and for controlling the regularization effects of 
Q are discussed in a later section. The generalized smoothed 
covariance matrix is now defined as 

where B is the set of sub-images included in smoothing. B 
need not include all possible sub-images. When (16) and (17) 

are substituted into (18), the subimage dependent Hl,,,] are 
replaced by the constant matrix Q, and the expression may be 
factored into a form similar to (8) 

R = Q V ~ ~ , ~ ~ R . , V ~ ; ~ , , ~ Q ~  + S (19) 
where 

and 

R is of size T x T ,  where T = 0 1 0 2 .  As in the traditional 
DOA problem, it can be shown that with the proper choice 
of subimages, the rank of R, will increase to P for each 
additional sub-image which is included in the average. How- 
ever, unlike the l-D case, not every distinct subimage will add 
to system rank, depending on the point image configuration. 
It is shown though in Appendix A that if B contains only 
subimages which are shifted diagonally with respect to each 
other (i.e., m = R for each [m,n] E B), then R, will have 
rank equal to P for L 2 P. Thus with proper averaging and 
choice of Q, the first term in (19), which corresponds to the 
signal subspace, will be of the desired rank P. V is of full 
column rank, which implies that with an appropriate choice of 
scanning vectors, eigenvector methods can be directly applied 
to the smoothed autocovariance matrix R. 

C. Restoration Algorithm 

Given this theoretical basis, we may develop a practical 
restoration algorithm. Though other eigenstructure techniques 
are applicable, we will present an algorithm based on MUSIC 
since it performs well and demonstrates all the important 
properties. The algorithm consists of the following steps: 

1) Design the smoothing regularization matrix, Q. 
2) Pre-compute weighting matrices, S[,,.7;1. 
3) Compute a sample covariance matrix, R, as an estimate 

of R. 
4) Compute the generalized eigenvector decomposition of 

R and partition the eigenvectors into signal and noise 
subspaces. 

5 )  Compute the 2-D MUSIC spectrum. 
6) Perform peak detection and estimate the point ampli- 

The design of Q will have a significant effect on algorithm 
performance and is dependent upon a number of factors, 
including the shape of the blurring function, the locations of 
its zeros, and the desired level of regularization. Weighting 
matrices, Sk,,,], are pre-computed as solutions to (17) given 
knowledge of Q and HL,,,]. Guidelines for designing Q 
which avoid any difficulties in solving (17) for S[,,,] are 
presented in the following section. 

The smoothed sample covariance matrix is computed as an 
estimate of R 

mdes. 

1 
R = (S[m,n]E[,,n]) (s[m,n]g[m,n])H (20) 

im,nIEB 
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If multiple time observation9 of the same blurred image are 
available, then &,,,I is replaied with g[,,,](t) in (20), and 
an additional averaging operation is performed across the 
available time samples. This yields a lower variance estimate 
of R. However, more commonly, only one frame is available 
and if this image is of sufficient size so that the number of 
subimages is greater than the number of sources, then (20) will 
provide an estimate of R with the necessary rank to render a 
signal subspace of full rank. 

Estimates of the signal and noise subspaces, Es and E,, 
are found by using any of the readily available mathematical 
analysis software libraries to solve the generalized eigenvector 
problem, 

R[Es 1 E,] = S[ES I E,]A 

where the eigenvalues in 6 and their corresponding eigen- 
vectors are ordered according to descending eigenvalue mag- 
nitudes. If the number of sources in the scene is known to 
be P, then Es corresponds to the P largest eigenvalues. 
Alternately, a number of model order estimation methods have 
been proposed in the literature for finding P and partitioning 
the signal and noise subspaces. A modified version of the 
minimum description length (MDL) method was used to 
generate results shown in Section IV [19]. 

The MUSIC spectrum is defined as 

where v , , ~  is the position vector of (12), but truncated to 
length T .  f ( z ,  U) is a continuous function of (x, y), and may 
be computed at any desired sample spacing by scanning with 
test position vectors v,,,. If a given v , , ~  corresponds to an 
actual point source, then it is identical to one of the columns 
of V[l, ,~.  As a result, Qv, ,~  lies completely in the signal 
subspace spanned by the columns of QVI1,,] and Es. Since 
Es is orthogonal to E,, Qv,,,, is also orthogonal to 2, and 
causes a peak in the spectrum corresponding to an estimated 
point position. Once source locations are found, a simple least 
squares fit can be computed to estimate the amplitudes of the 
points. 

D. Selection of the Smoothing Regularization Matrix 

In (17), Q must be specified by the user and serves several 
important purposes. Without it (and the associated S[,,,,) it 
would not be possible to perform smoothing in the presence of 
a blurring function. Noise amplification and reduced aperture 
are two conflicting effects that must be balanced in the 
design of Q. Aperture in this context refers to the region 
of support for pixels in tj which are effectively used in 
computing f (x ,y) .  If maximum aperture is desired, then it 
is best to weight Q equally among its diagonal elements, i.e., 
Q = I. However, this selectkm of Q produces corresponding 
weighting matrices Sl,,,] that inverse filter each of the sub- 
images gf,,,]. It is well known that the inverse filter suffers 
from noise amplification, due to division by very small values 
of the frequency domain PSF. 

With these considerations in mind, there are a number ways 
in which Q may be selected. We present two simple examples 
of practical solutions. 

1) Let 

and 

where the subscript i i indicates the ith element on 
the matrix diagonal. In practice, (H[,,,l);,i in (23) 
is assumed to be zero if it is small enough to cause 
numerical difficulties in computing the ratio in (24). 
Note that 0 5 ( S g , , , ] ) , i  5 1, so this solution yields a 
stable regularization with no inversion problems. It also 
controls noise amplification and permits smoothing even 
if elements in Hi,,,] are zero-valued. The weighting 
matrices are formed with minimal computational burden 
because the matrices in (17) are diagonal, but some 
elements of Q may be zero, so effective aperture can 
be lost. 

2) Another approach is to let 

I ’  0 otherwise 
(25) 

The corresponding S[,,,] are computed as in (24). It is 
easily shown that 0 5  SI,,,])^,; 5 a, again produc- 
ing a stable regularization with no inversion problems. 

For this second design choice for Q ,  if the original noise is 
white (E = o:I), Q may be substituted into (17) to solve for 
Sg,,] which is then used in (19) to yield 

(26) 

where Io is the identity matrix with zeros in the same locations 
as zero valued elements of Q. This choice of Q has some 
particularly desirable properties in addition to controlling 
noise amplification. Since S = I,, problems of coloring 
the noise while smoothing are eliminated, and the eigenvec- 
tor subspace partitioning problem is simplified. In addition, 
rather than solving for generalized eigenvectors, a simple 
conventional eigenvector decomposition may be used which 
is more efficient and computationally stable. However, Eq. 
(26) must first be pruned by eliminating rows and columns of 
R corresponding to zeros on the diagonal of IO. R,Q, and 
v,,, in (20) and (22) are similarly pruned. 

Fig. 2 illustrates graphically the effect Q, as designed 
according to (25), has on array smoothing. Fig. 2(a) is the 
2-D frequency domain PSF corresponding to H. In each 
of Fig. 2(a)-(f), the 2-D image may be row scanned to 
form the diagonal elements of the corresponding matrix (i.e., 
H, HI,,,],  SI^,,], or Q). In this example, a Gaussian blur 
is used for H. Fig. 2(b) and (c) show, respectively, H[1,11 
and Hp3] which are two of the nine possible 10 x 10 pixel 

R = QV[,,,jRuVr,11QH +  IO 
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Fig. 2. Illustrations of the effect of weighting matrices on PSF suhimages. (a) 2-D representation of the diagonal elements of H. (h) Subimage PSF H L , , ~ ] .  
(c) Subimage PSF H L ~ , ~ ] .  (d) Smoothing regularization matrix, Q. (e) Weighting matrix S [ , , , ] .  (f) Weighting matrix S ~ 3 , 3 ~ .  Note that S [ l , l ~ H ~ l , l ~  = Q 
and S[3,3~H[3,3~ = Q. This yields a constant sub-image blur function allowing smoothing to take place. 

subimages of H. In order to perform array smoothing, each 
subimage PSF must be weighted by a corresponding S[m,n~ 
so that the resulting weighted PSF is constant with respect to 
[m,n]. Fig. 2(e) and (f) shows S [ l , ~ ]  and SP,~ ] ,  respectively, 
which are used to scale H[l,l~ and H[3,31 of Fig. 2(b) and (c). 
The resulting subimage, Q = S[m,n]H~m,nl is independent 
of the PSF, and is shown in Fig. 2(d). Note that Q contains 
small values wherever any of the HI,,,] have a corresponding 
small value. This insures that no noise amplification occurs in 
the pixels during the restoration process, but does limit the 
effective aperture. 

Iv. RJ3SULTS 

Algorithm performance is demonstrated in this section by 
applying the method to several blurred single frame star 
cluster images. In the first example, an actual telescopic image 
of a star cluster is processed. Fig. 3(a) shows the original 
image with blur due to atmospheric turbulence and an optical 
aberration in the telescope which produces a “donut” shaped 
PSF. The PSF was estimated from a nearby isolated star in the 
same image [outside the field of view of Fig. 3(a)]. Fig. 3(c) 
presents the resulting music spectrum, which shows peaks 
at locations corresponding to estimated star positions, while 
Fig. 3(d) is a least squares amplitude fit at the detected peaks 
from 3(c). The algorithm determines that there are four stars 
present and estimates their locations. It is difficult to tell if the 
reconstructions of actual star images are correct, because we 
usually have no access to the true image, and can only compare 
the results against other algorithms. In this example there is an 
elongated diagonal feature of unknown structure. The restored 
image identifies this as consisting of two stars, locates these 

(c) (d) 

Fig. 3. Reconstruction of an actual star cluster with an unusual blurring 
function. Black corresponds to highest intensity. (a) Blurred image. (b) PSF. 
(c) MUSIC spectrum. (d) Least-square fit of peaks. Figures (c) and (d) are 
at four times the resolution of Figs. (a) and (b). The image is from the 
CWRU/NOAO observatory with a 36/24 Burrel Schmidt telescope having 
2.1 arc seconds/pixel resolution. The star group is in selected area 110 as 
cited in [17]. 

sources plausibly, and is consistent with the solutions obtained 
with maximally sparse restoration [ 11. 

Figs. 4 and 5 present two examples of restoration of syn- 
thetic star images which are useful in evaluating performance 
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(C) (dl (C) (d) 

Fig. 4. Synthetic star case demonstrating super-resolution. Black corre- 
sponds to highest intensity. (a) Unblurred image. (b) Observed blurred image. 
(c) MUSIC spectrum. (d) Least-square fit of peaks. Fig. (a), (c), and (d) are 
at four time the resolution of Fig. (b). 

Fig. 5. Restoration of a synthetic case with five stars. Black corresponds 
to highest intensity. (a) Unblurred image. (b) Observed blurred image. (c) 
MUSIC spectrum. (d) Least-square fit of peaks. Fig. (a), (c), and (d) are at 
four time the resolution of Fig. (b). 

because the underlying true image is known. The first syn- 
thetic case demonstrates the super-resolution capability of the 
algorithm. Fig. 4(a) is a cluster where two stars are separated 
by only half of a pixel (at the sample spacing of the observed 
image). The stars are blurred with a Gaussian shaped PSF with 
standard deviation of one observation pixel, and i.i.d. Gaussian 
noise is added for an SNR of 40 dB. We define the signal to 
noise ratio as 

where ai is the sample variance of g averaged over all pixels. 
Fig. 4(c) shows the MUSIC spectrum. 

Fig. 4(d) shows the least squares fit to the peaks and demon- 
strates that super-resolution is possible with the algorithm. The 
observed image used as input to the algorithm, Fig. 4(b), was 
subsampled at one fourth the resolution (in each direction) of 
the original image of Fig. 4(a), while Fig. 4(c) was scanned 
at the original resolution. Though a single pixel in Fig. 4(b) 
is wider than the separation between stars, the algorithm 
recovered each star and correctly located them. The example of 
Fig. 5 is also a synthetic case demonstrating performance with 
a larger five star cluster and an SNR of 30 dB. The minimum- 
norm method [SI was also applied to the above examples with 
comparable results (not shown). 

The eigenvector based restoration algorithm is compared 
against a regularized 12 norm minimization solution and the 
CLEAN algorithm [7] in Fig. 6. The three point image of 
Fig. 6(b) is blurred by a Gaussian PSF with unit pixel standard 

deviation, and noise is added for an SNR of 40 dB to generate 
the observed image in Fig. 6(a). Note that blurring is severe 
enough that distinct peaks are not present in the observed 
image. The 12 norm minimization solution of Fig. 6(c) was 
found using an iterative gradient descent routine where reg- 
ularization is introduced by truncating the iterations before 
noise amplification occurs [ 161. Though this technique works 
quite well with many image classes, it clearly fails with this 
point source image example. Notice the ringing effect, and the 
smooth, underresolved solution, both due to the lowpass nature 
of the minimum 12 objective function. This and other related 
techniques fail because they do not take into account the prior 
knowledge that the true image is point-like and sparse. 

On the other hand, the simple iterative beam subtraction 
approach of the CLEAN algorithm was designed for restoring 
star images and explicitly assumes the image is point-like 
171, 1181. As can be seen in Fig. 6(d), it performs better than 
the minimum norm approach, but it introduces an extraneous 
star artifact and locates the existing stars too far apart. This 
behavior will always occur with CLEAN when blurring is 
so severe that distinct peaks (or at least inflection points 
in the skirt of a blur function) cannot be found for each 
separate source point. The eigenvector-based restoration, seen 
in Fig. 6(e) and (0, detects and correctly locates the original 
three stars, and clearly outperforms the other two algorithms 
for this example. The maximally sparse restoration method 
introduced by the authors [1] also incorporates a point image 
prior model, but it is computationally more demanding than 
the eigenvector approach. 
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Fig. 6. Performance comparison between iterative Z2 norm minimization, CLEAN, and eigenvector based image reconstructions. Black represents highest 
intensity. (a) Observed blurred image with 40 dB SNR. @) Original unblurred image. (c) Iterative minimum Z2 norm restoration with iterations truncated before 
onset of noise amplification. The medium gray surround near frame edges corresponds to zero, the image has some negative values. (d) CLEAN reconstruction 
with error threshold set at 10% of the maximum source amplitude. Lower threshold settings lead to additional extraneous stars, while higher settings eliminate 
stars closest to the original three. (e) MUSIC spectrum. (f) Least squares amplitude fit to all peaks in the MUSIC spectrum. This matches the original image (b). 

The minimum description length method (MDL) [12] was 
used to solve for the number of sources in the eigenvector 
based image reconstructions presented above. It was necessary 
to modify MDL slightly from its standard form when only a 
single image frame (as opposed to a series of time samples) 
is processed. The modified MDL expression may be found 
in [19]. In all of the synthetic star image examples presented 
above, the MDL estimate of P exactly agrees with the true 
number of points in the image. 

V. CONCLUSION 

We have shown that a close relationship exists between 
point image restoration and the coherent scene DOA problem 
from m a y  Processing. Indeed, if point images are not blurred, 
the two problems are domain duals of one another. 
The Proposed algorithm Can thus exploit the advantages of 
these DOA methods which have won them wide acceptance. 
Eigenstructure methods have been shown to approximate the 
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maximum likelihood (ML) solution under the prior constraint 
that the signal consists of point sources only, and they are com- 
putationally more efficient than the exhaustive search required 
by ML methods [9]. Another advantage of the algorithm is that 
of super-resolution, or subpixel localization and separation of 
points. 

Since the source image data is coherent, a means of rank 
enhancement of the covariance matrix is needed. The pro- 
posed enhancement is a generalization of array smoothing 
which incorporates a regularization operator, Q, and associated 
weighting matrices S[,,,]. These weighting matrices compen- 
sate for the effects of modulation introduced by the blurring 
function, and simultaneously provide regularization to reduce 
the noise amplification encountered in inherently ill posed 
inverse solution problems of this type. Without weighting the 
subimages by Sl,,,], no system rank enhancement would 
be possible and eigenstructure based methods would fail. 
Two suggested choices for Q were presented, each of which 
achieves regularization by attenuating the influence of small 
values in the frequency domain blur when computing the 
restoration. This de-emphasis of unstable terms in the system 
inversion is analogous to the regularization inherent in well 
know restoration methods, including pseudoinverse filtering, 
Wiener filtering, Bayesian image reconstruction, Tikhonov 
Miller regularized restoration, and others [14], [16]. 

Though this paper has focused on point image restoration, 
the proposed generalized smoothing method also has some 
obvious applications to coherent scene sensor array processing. 
DOA subspace methods can now be extended to problems 
previously considered unsuitable for array smoothing. This in- 
cludes arrays with nonuniform element responses (e.g., shaded 
arrays) and some arrays with nonuniformly spaced sensor 
elements. 

For example, consider the case of several correlated point 
sources in the far field as observed by a 2-D rectilinear sensor 
array with nonuniform element gains. Equation (12) can be 
interpreted as a model for observations from this array, with 
vector g ( t )  representing the array sample at time t, with 
sensor elements ordered in row-scanned form. Existing rank 
enhancement methods would fail here, but all that is required 
is to enter the (known) element gains on the diagonal of H in 
(12), specify sub-arrays, compute weighting matrices SL,,,], 
and estimate the smoothed covariance matrix exactly as in 
(20). 

APPENDIX A 

In this appendix we wish to prove that if L 2: P and if 
averaging is done only along the diagonal of the observed 
image, i.e., m = n in R[,,,] of Eq. (18), then generalized 
smoothing leads to a covariance matrix R, of rank P. This 
proof follows the 1 -D smoothing case addressed by Pillai [ 131. 

Since U is time invariant, R, is a rank 1 matrix that can 
be represented as the diad 

R, = uaH. 

Thus, for the case that m = n for all subimages 

R, = B B ~  

Where 

B = [a I aq1,11 I * . . laC[L,L]].  (28) 

B may then be separated into the product of a diagonal matrix 

B =  

where 

and a Vandermonde matrix. 

-1 w: w; . . .  
1 wf w; ... 
. .  . .  . .  

Q1 

a2 

0 
9) 

-j27r(%+$) wp = e 

Note that this form does not hold for Ci,,,], m # n, so the 
second matrix would not be Vandermonde. Clearly the rank 
of B (and thus R,) is the minimum of P and L since a 
Vandermonde matrix has rank equal to the minimum of the 
number of its rows or columns, and the diagonal matrix has P 
nonzero diagonal elements, ap.  Thus, regardless of the point 
configuration, P 5 L points may be resolved in the image 
where L = min((M1, - 01 + 2),(M2 - 0 2  + 1)) is the 
maximum number of diagonally shifted 01 x 0 2  pixel sub- 
images that can be formed from a ( M I U  + 1) x nir, frequency 
domain image. 

If averaging is done across other sections of the image in 
addition to the diagonal, then the rank may or may not increase 
depending upon the location of the points. For example, it is 
easy to show that if the stars are all located in a single row, then 
smoothing across a set of vertical sub-arrays will not increase 
the rank of R,. While averaging in off-diagonal sub-images 
may not always increase rank signal subspace, it is often useful 
in creating a better estimate of R due to noise averaging. 
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