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ABSTRACT 
In this paper the maximum a posteriori (MAP) reconstruc- 
tion of magnetoencephalograms (MEG) is investigated. 
The solution is cast as a classical inverse imaging prob- 
lem, which for MEG is notoriously ill posed and requires 
strong regularization. Two different Markov random vec- 
t o r  field (MRF) models suitable for MEG regularization 
are developed. The first model uses a potential function 
which encourages solution sparseness on a rectilinear sam- 
ple grid. The second model permits simulating an MRF 
over the non-uniform grid required for hemispherical sam- 
pling of the brain. Both methods utilize a new Markov vec- 
tor field structure where neuron current dipole orientations 
are explicitly included in the model. MAP reconstructions 
are presented using simulated and real MEG data. 

1. INTRODUCTION 
We will consider maximum a posteriori (MAP) reconstruc- 
tion of magnetoencephalogram (MEG) data to form neuron 
electrical activity functional mapping of the human brain. 
A simple linear relationship between source current dipoles 
arising from neuron activity and the resulting extracranial 
magnetic fields is used so that the solution may be cast as a 
classical inverse imaging problem. A mathematical frame- 
work for Markov random field models (MRF) suitable for 
MEG imaging will be developed. 

Neuromagnetic imaging (NMI), the process of creating 
a source image consistent with the magnetic field observa- 
tions, was first performed on a single plane with constrained 
source orientations by Singh et al. [l]. Currently, one of the 
leading areas of research in NMI is in the Bayesian context, 
with MRF’s used to represent prior knowledge about the 
source distribution in the form of an image prior probabil- 
ity density function (pdf). In the NMI framework, Phillips 
et a1 have developed a composite, dual MRF model using 
a binary indicator process and independent Gaussian ran- 
dom variables to  represent whether a source is on or off and 
source amplitude respectively [2]. Their model assumes a 
prior knowledge of source orientation, so a scalar MRF may 
be used. 

In each of the two proposed methods described below, 
a single consistent vector field MRF source model is intro- 
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duced. In the first method, a Gibbs distribution potential 
function is chosen to encourage solution sparseness. The 
second method permits Gaussian MRF modeling on the 
non-uniformly sampled hemispherical surface used to rep- 
resent the brain cortex. In both methods, the brain neuron 
current activity is modeled as an MRF vector field, rather 
than the conventional scalar field. With the the new vec- 
tor field approach, dipole orientations are included in the 
model and are not required to  be known a priori. 

Neuron electrical activity in the brain will be modeled as 
a distribution of discrete current dipoles, &: each with an 
unknown magnitude and 3-D orientation. The goal of MEG 
imaging is to estimate the values of these dipole parameters 
on a sample grid throughout the tissue of interest. Neuron 
current dipole activity is observed indirectly using an array 
of sensitive SQUID magnetometers placed around the skull. 

We define the 3 x 1 element transfer vector, r;,,, to sat- 
isfy the static Biot-Savart law for single sensor response to 
an array of active dipoles, 

where ‘.’ and ‘ x ’  represent vector inner and outer prod- 
ucts respectively, bi is the i t h  MEG sensor output, ri is its 
3-D position vector, G(i )  is the unit direction vector nor- 
mal to the plane containing the sensor’s gradiometer coil, 
& = [q9+,  Q ~ , ~ ,  q,,,IT is the 3-D current dipole vector at the 
sth pixel site, and rs is the position vector for this dipole. 
The entire array observation may be represented in matrix- 
vector product form 

where 11 represents sensor error (noise), and 111 and S are 
the total number of sensor and pixel sites respectively. 

MEG imaging is known to be a notoriously ill posed 
inverse problem, with a very large ambiguity in the so- 
lution space. The proposed algorithms are based on the 
Bayesian MAP image restoration method because of the 
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natural means it provides for regularizing the inverse solu- 
tion. The MAP estimate of q is given by 

where f(.) represents a probability density function (pdf). 
The image prior pdf, fq(q),  must be chosen to model statis- 
tical characteristics of the desired true image, so as to yield 
a unique solution. We will introduce a two MRF models for 
fq (9) which significantly improve reconstruction results. 

2. AN MRF MODEL FOR SPARSE MEG 
REGONSTRUCTION 

For this first algorithm, the image prior pdf, fq(q), is rep- 
resented by a Gibbs distribution formulation of an edge 
preserving Markov random vector field model 

where q, = llc/l, 8, =tan-’ and subscript ‘ ( ( - 7 r , 7 r ) ) ’  

indicates modulo 27r arithametic mapped onto the range 
( -T,T) .  C is the set of all pixel cliques in the MRF neigh- 
borhood system, and S is the set of all image sample points. 
71 and yz are the regularization constants for the magni- 
tude prior and orientation prior respectively. b,t and Psi 

are neighborhood influence parameters that control corre- 
lations in magnitude and orientation respectively for neigh- 
boring dipoles. Note that for simplicity we have constrained 
the dipole orientation to lie within the z - y plane, though 
the extension to 3-D rotation is trivial. 

The proposed prior model given in equation (4) incorpo- 
rates a generalization of the potential function used by Ge- 
man et  a1 for single-photon emission tomography [3]. This 
potential has been shown in scalar fields to  produce edge- 
preserving reconstructions, and we will demonstrate that  
when used in the MEG vector MRF model it favors the 
sparse solutions needed for resolving current dipoles. With 
the dipole field, it is not sufficient to merely control the 
correlation structure of the pixel magnitudes. Correlated 
neighboring dipoles should not only have similar magni- 
tudes, but their direction orientation must be similar. The 
final summation term in equation (4) encourages local ho- 
mogeneity in dipole orientation by imposing a square law 
penalty on angular differences. 

Assuming i.i.d. Gaussian noise, and substituting equa- 
tion (4) into (3) yields the restoration solution equation 

q 8 . Z  ’ 

q = argmin (b - Gq)T(b - Gq)  
q 

( 5 )  

We have used the Metropolis algorithm for simulated an- 
nealing to solve ( 5 .  

Figure 1 shows the configuration of simulated MEG sen- 
sors on a hemisphere surrounding a 4 x 4 grid of current 
dipole sites. This geometry was used to generate synthetic 
data to evaluate the effectiveness of the proposed algorithm. 
A first order uniform neighborhood was used in the MRF 
model, i.e. for a given pixel site s, b,t and Pst were non 
zero only for indices, t ,  corresponding to the four nearest 
neighbors (up, down, left, right). 

2 

Figure 1. Sensor locations in relation to source locations. 
Pluses show the sensor array in relation to source locations 
(circles). 

Figure 2 presents a typical example of the restoration 
cases evaluated for the new algorithm. Figure 2a shows the 
true dipole locations and orientations used to  synthetically 
compute observed data, b. Figure 2c shows the restora- 
tion result using equation ( 5 ) ,  while 2b presents a mini- 
mum norm solution obtained with the ART algorithm for 
comparison. Clearly the new method beter resolves the 
two isolated dipoles, and does not suffer from the spuri- 
ous dipole artifacts that appear in 2b. It is noteworthy 
that both these solutions are equally consistent with the 
observed data, which illustrates the ill-posed nature of the 
problem. 

3. NON-UNIFORMLY SAMPLED SCALAR 
GAUSS-MARKOV RANDOM FIELDS 

Figure 3 shows the actual sensor geometry for the Neuro- 
mag model 122 SQUID detector head array that we will use. 
There are 122 conformal gradiometers, with two mutually 
orthogonal loop pairs at each of the 61 sites. With this 
realistic sensor configuration, and forming current dipole 
estimates on the brain cortex surface, it is not possible 
to use the rectilinear source grid of the previous section. 
The dipole sample grid must have non-uniform spacing 
due to the spherical surface geometry, and therefor a non- 
uniformly sampled MRF model is called for. 

In the absence of detailed brain cortical structure infor- 
mation, and since brain tissue is homogeneous at the scale 
used for the dipole grid, we are obliged to  adopt a homo- 
geneous model for the covariance structure of the current 
dipole distribution. We will assume that the underlying 
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Figure 2. MAP reconstruction of current dipole distribu- 
tion using a sparse image prior. a) Original current dipole 
image. b) Minimum norm reconstruction using the ART 
algorithm. c) MAP reconstrution using prior of equantion 
(4). 

physical current distribution in brain tissue is a stationary, 
zero mean, continuous space Markov random field [4] with 
an isotropic covariance structure. 

This continuous MRF is sampled at arbitrary points to 
provide elements of a discrete MRF for our reconstruction 
model. The correlations between samples are set to match 
those of the underlying continuous field, but the resulting 
discrete MRF will in general be neither stationary (with 
respect to the ordering of sample indices) nor isotropic. 

Let R, ($, r) be the desired covariance function between 
two continuous space points, $ and r, on the dipole hemi- 
sphere. By isotropic, we mean that R,($, T) is only a func- 
tion of the Euclidean distance between $ and T. Now if s 
and t are points on the non-uniformly sampled lattice, S ,  
then we require that the covariance between these samples 

Figure 3. Plot showing gradiometer locations and configu- 
rations for the Neuromag 122  system. 

in the discrete MRF, q, be given by E{& '4;) = Rq($ = 
rs, rt = rt). 

The joint pdf of a scalar Gauss-Markov random field, x 
can be expressed as [ 5 ,  61 

Neighborhood influence parameters, b,t and a, in (6) must 
be chosen to  model the desired covariance of the continu- 
ous spatial distribution. In uniformly sampled MRF's, this 
is easily accomplished given a desired covariance matrix, 
R,, however, no such method is available for non-uniformly 
sampled fields. 

Equation (6) can also be represented as a multivariate 
jointly normal density with covariance matrix R, = B-I, 
where interaction matrix B has elements, {B,t}, which re- 
late to our GMRF influence parameters as follows: a, = ztcs B,t and b,t = -B,t [ 5 ] .  In a 1-D MRF, an expo- 
nential covariance function yields a tri-diagonal B, where 
most B,t = 0. Unfortunately, with non-uniform sampling, 
even the simplest of 2-D continuous covariance functions, 
Rz(+,r), require nearly all the B,t to  be non-zero [7]. An 
MRF model is only computationally useful if the neigh- 
borhood system is small, i.e. if each pixel has only a few 
neighbors. With most B,t # 0, every pixel is a neighbor 
of every other pixel, and the MRF model is useless for effi- 
cient reconstruction algorithms. We will present a method 
for approximating B for a specified R, ($, r) such that the 
neighborhood system remains small, and the model matches 
the desired correlation structure more closely. 

The goal is to-find an approximation, B, for B such that: 
a) most of the B,t = 0, i.e. the neighborhood structure is 
small, b) 11B-' - R.11~ 5 e, i.e. the approximation error 
is bounded, c) the element-wise variances of x match the 
desired values, and d) B is positive definite, invertable. We 
have shown that the following approximation meets these 
criteria [7] 

1 1  
B = DTADZ, (7)  
A = M @ R , l + E ,  
D = diag{A}diag, {R2} 

where 0 indicates the Schur element-by-element matrix 
product, diag{ } is a diagonal matrix formed from the di- 
agonal of the argument. M is a selection matrix which 
controls the size of the neighborhood for each pixel, and 
has elements mst given by 

1 t E 6 ,  
0 otherwise m,t = 

where 6, is the set of all sites which are neighbors of pixel 
s. A simple threshold test is used to form this set. For a 
given pixel s, t is a neighbor of s if IB,tJ 2 T. r is manu- 
ally selected to be just large enough to achieve the desired 
neighborhood size on average across the sample grid. E is a 
diagonal matrix with elements ess = CteG, B,t. The effect 
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Figure 4. Pseudo-randomly sampled field used in the ex- 
periment of Figure 5 .  

of E is to insure B will be positive definite and to assist in 
keeping the pixel marginal variances at the desired level. 

It may be noted that forming B requires a one-time com- 
putation of the inverse of a potentially very large matrix, 
R,. In the MEG imaging problem the number of voxels 
in the image space is relatively small, so this issue is not a 
problem. Conversely, the space matrix B is preferred to the 
full B to reduce neighborhood size and computation load 
in the iterative algorithms used to solve equation (3). 

The effectiveness of the above approximation was 
demonstrated on a non-uniformly sampled Gauss-Markov 
random field. A simple 2-D isotropic exponential covari- 
ance was used for the underlying continuous field, 

(9) 

The corresponding desired discrete interaction matrix, B, 
is given by 

{B-'},t = {R,}st = &($J = rs,T = rt) (10) 
- - f l l r s - r t l l z  

Figure 4 shows positions of 144 random samples sites which 
overlay the exponential correlation continuous MRF. Using 
these sample locations, the approximation of equation (7) 
was applied to compute the GMRF neighborhood weights, 
with p = 0.5, and T set to give approximately four neigh- 
bors for each pixel site. Chen's algorithm [8] was used to  
generate 2000 realizations of the GMRF random field so 
that sample covariances could be computed between pixel 
sites and compared with the desired values given by R,. 
Figure 5 compares covariance values (relative to an inte- 
rior pixel at s = 30) for a synthesized non-uniform GMRF 
with the corresponding desired values. Note that the syn- 
thesized data has sample cross covariance values that track 
the ideal desired values remarkably closely, with a model 
neighborhood the same size as a uniformly sampled first 
order neighborhood. 

30 

desired covariance 
25 - 

0 M 100 150 
at* number 

Figure 5. Sample covariance vs. desired covariance for an 
interior pixel in the field with high sampling randomness. 

3.1. Extension to Vector field Models for M E G  

The vector GMRF model is an obvious extension of scalar 
equation (6). Note that the second term in this equation is 
a penalty (in the exponent of f,(x)) for dissimilar intensity 
values between pixels zs and xi. For a vector field, we 
wish to penalize (in a square law sense) differences in the 
vectors at sites s and t to  encourage neighboring dipoles to 
have similar magnitudes and orientations. We propose the 
following model, 

Reconstruct ion 

S , t E C  S E S  

Assuming white Gaussian noise, the vector GMRF 
model of equation (11) for fq(q) leads to the MAP recon- 
struction solution 

q = a,rgmin(b - Gq)T(b - Gq) 
B 

S , t E C  s E S  

where X is the regularization weight which controls the rel- 
ative influence on the solution of the image prior fq(q). 
Equation (12) can be solved using a simple steepest descent 
technique. 

3.2. Resul ts  with Clinical Data 
Figure 7 shows results of image reconstruction using equa- 
tion (12) on clinical data collected using the Neuromag 122 
array. This data represents the somatosensory evoked re- 
sponse from electric stimulation of the right ring finger. 
Data is averaged over 109 trials to increase SNR, which 
even after averaging is less than 10 dB. Figure 6 presents 
an aggregate plot of the averaged data from all 122 sensors 
overlaid on a single axis. The sampling interval is 0.8 ms, 
and the spikes at about sample 125 are induced noise from 
the shock stimulus. The evoked response occurs at about 
sample 180. Note the poor SNR even in this averaged data, 
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which makes the results of Figure 7(a,b) the more impres- 
sive. 
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Figure 6. Plot of MEG data evoked by right ring finger 
stimulus. 

Figure 7 shows two reconstructions of the data formed 
using a single time sample (for each sensor) 36 ms after 
the stimulus. 7(c,d) depict a reconstruction with a smaller 
weighting (A )  on the image prior term. The active region of 
the brain for this experiment should be the left somatosen- 
sory cortex, located in the region above the left ear canal. 
Figure 7(a,b), shows a strong preference of our model to 
select this region. On the other hand, less dependence on 
the irregular lattice GMRF image prior creates an image 
which is not as definitive, as shown in Figure 7(c,d). Both 
solutions are equally consistent with the observed data, b, 
which illustrates the need for a strong regularizing term in 
the reconstruction. 

4. CONCLUSIONS 
This paper has demonstrated the effectiveness of a vector 
form Gauss-Markov random field model for Maximum a 
posterzori reconstruction of brain current dipole distribu- 
tions from external magnetic field measurements. A tech- 
nique was presented for achieving (approximately) an arbi- 
trary desired covariance structure for a non-uniformly sam- 
pled Markov random field while keeping the neighborhood 
structure small. The experiments with real MEG data are 
encouraging. Solutions have reduced random noise, reduced 
canceling dipole content (i.e. dipole configuration compo- 
nents that are invisible at the sensors), and better resolution 
of isolated dipoles than an unregularized image reconstruc- 
tion. 
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