On Interference Cancellation with a Focal Plane Array

Brian D. Jeffs, Karl F. Warnick and James Nagel Brigham Young University

SKA Cal and Imaging Workshop 2006 Cape Town, South Africa

The Promise of Array Feeds for Radio Astronomy

- Multiple simultaneously formed beams in different look directions.
- Fast survey capability.
- Adaptive beamforming to cancel RFI.
- Direct and adaptive control of dish illumination pattern.
- Increased sensitivity and spillover efficiency.
- Some SKA configurations may require this to deal with RFI.

The Challenges of Array Feeds for Radio Astronomy

- Complexity.
- Beampattern rumble.
- Difficult to maintain calibrated, stable beam response with moving interference.
- High stability requirements make even variations in sidelobe patterns problematic.

Why are adaptive beamforming feeds not already in wide use?

- Much work is needed to develop wideband, very low noise, cryo-cooled, densely packed feed array systems.
 - e.g. Bradley and Fisher, NRAO.

- Mutual coupling and impedance matching are still being studied.
 - e.g. optimal multiport lossless matching networks: Jensen and Warnick, BYU.
- Beyond these hurdles, astronomers can't trust the time-varying beampattern needed to adaptively cancel interference.
 - Mainlobe shape constraints are possible (e.g. LCMV), but inadequate for demanding astronomical requirements.
 - We introduce a viable solution to truly correct for beam-distortioninduced PSD estimation bias.

The BYU Experimental Array Feed

BYU Prototype Array

<u>Geometry</u>

- Seven dipole elements
- Hexagonal grid
- 0.6λ element spacing

Configuration

- Ground-plane backing
- 3 meter parabolic reflector
- Full sampling
- Seven channel receiver

Element Design

- Balun-fed dipole
- Thickened arms for 30% bandwidth (BW = -10 dB reflection coefficient)
- Impedance matched to 50 Ω without a matching network.
- Center frequency = 1600 MHz
- $\lambda/4$ above the ground plane.

Array Receivers

- Eight receiver channels (7 array elements plus auxiliary antenna).
- Scalable modular design (Future array will require 19 elements).
- Connectorized to avoid cross-talk.
- 2 Channels per box.

Element Directivity and Coupling Measurements

- A characterization of antenna array electrical and radiation properties is required.
- Used NRAO Green Bank outdoor antenna test range.
- Patterns were measured one element at a time with others terminated or open.
- Lock-in amplifier enabled accurate phase vs bearing measurements.

RFI Mitigation Experiment

- Signal at boresight
 - Standard gain horn (14 dBi)
 - CW transmission
 - 1611.3 MHz
- Interferer at 30°
 - Dipole antenna
 - 1 kHz modulated FM
 - 30 kHz deviation
 - 1611.3 MHz

PSD Estimate with Moving RFI

Correlation time = 4.9 ms

Adaptive beamforming even works with a non-stationary interferer.

Other Array Feed Studies Under Way

- Spillover efficiency and sensitivity optimization.
- Pattern rumble minimization.
- Optimal element spacing and array plane placement.
- Aperture efficiency.
- Beam shape control for off-axis beams.

Bias Corrected Interference Canceling Array Power Spectral Density Estimation

The Need for Bias Correction

Examples of beampattern distortion for two adaptive cancelation algorithms with a mainlobe interference.

- Null placement for interference canceling distorts nominal beampattern.
- Most severe as interferer enters mainlobe.
- Even if mainlobe is well controlled, pattern rumble affects noise floor.
- Particularly problematic when sidelobe rumble affects dish illumination spillover.

Signal And Beamforming Model

Algorithm Overview

- Beamformed feed output, y[n], is processed over a long term integration interval (LTI) for a PSD estimate, S_y .
- Interference must move relative to source of interest.
- Array covariance is assumed stationary over a short term integration (STI) window.
- Over the LTI, beam distortion effects in S_v are removed.
- An extension of Leshem and Van der Veen's bias corrected covariance subspace filtering for synthesis imaging: *IEEE Trans. Inform. Theory, vol. 46, no 5.*
- Does not yield a corrected time series, *y*[*n*].

Subspace Projection Beamforming

Signal Model for jth STI window of length L:

$$\mathbf{x}[n] = \left[x_1[n], \cdots x_p[n]\right]^T = \mathbf{a}_s s[n] + \mathbf{A}_d[n]\mathbf{D}[n] + \boldsymbol{\eta}[n]$$

 $\mathbf{X}_{j} = [\mathbf{x}[jL], \mathbf{x}[jL+1], \cdots, \mathbf{x}[(j+1)L-1]].$

- Sample covariance for j^{th} STI: $\hat{\mathbf{R}}_{j} = \frac{1}{L} \mathbf{X}_{j} \mathbf{X}_{j}^{H}$
- Partitioned eigen decomposition estimates subspace U_d spanning interference array signature, A_d[jL]:

 $\hat{\mathbf{R}}_{j}[\mathbf{U}_{d} | \mathbf{U}_{s+\eta}] = [\mathbf{U}_{d} | \mathbf{U}_{s+\eta}] \Lambda$

Projection beamformer weight for *j*th STI:

$$\mathbf{w}_{j} = \mathbf{P}_{j} \tilde{\mathbf{w}}$$
 where $\mathbf{P}_{j} = \mathbf{I} - \mathbf{U}_{d} \mathbf{U}_{d}^{H}$. Note $\mathbf{P}_{j} \mathbf{A}_{d} [jL] = \mathbf{0}$

Uncorrected Array PSD Estimator

Beamformed output vector for *j*th STI:

$$\mathbf{y}_{j}^{T} = \mathbf{w}_{j}^{H} \mathbf{X}_{j} = \tilde{\mathbf{w}}^{H} \mathbf{P}_{j} \mathbf{X}_{j}$$

Welch's PSD estimator for projection beamformer:

$$\hat{\mathbf{S}}_{y}^{T} = \frac{1}{M} \sum_{j=0}^{M-1} \left| \mathbf{DFT}\{\mathbf{y}_{j}^{T}\mathbf{G}\} \right|^{2}$$

$$= \frac{1}{M} \sum_{j=0}^{M-1} \left| \tilde{\mathbf{w}}^{H} \mathbf{P}_{j} \mathbf{X}_{j} \mathbf{GF} \right|^{2}$$

$$= \frac{1}{M} (\tilde{\mathbf{w}}^{H} \otimes \tilde{\mathbf{w}}^{T}) \sum_{j=0}^{M-1} (\mathbf{P}_{j} \otimes \mathbf{P}_{j}^{*}) \left((\mathbf{X}_{j} \mathbf{GF}) \circ (\mathbf{X}_{j} \mathbf{GF})^{*} \right)$$

The Corrected Array PSD Estimator

Bias corrected PSD estimator:

$$\hat{\mathbf{S}}_{y,c}^{T} = \frac{1}{M} (\tilde{\mathbf{w}}^{H} \otimes \tilde{\mathbf{w}}^{T}) \mathbf{C}^{-1} \sum_{j=0}^{M-1} (\mathbf{P}_{j} \otimes \mathbf{P}_{j}^{*}) ((\mathbf{X}_{j} \mathbf{G} \mathbf{F}) \circ (\mathbf{X}_{j} \mathbf{G} \mathbf{F})^{*})$$
$$\mathbf{C} = \frac{1}{M} \sum_{j=0}^{M-1} (\mathbf{P}_{j} \otimes \mathbf{P}_{j}^{*})$$

Since P_j removes the the nonstationary interference from X_j, on average C⁻¹ cancels bias caused by P_j.

$$E\{\hat{\mathbf{S}}_{y,c}^{T}\} = \frac{1}{M} (\tilde{\mathbf{w}}^{H} \otimes \tilde{\mathbf{w}}^{T}) \mathbf{C}^{-1} \sum_{j=0}^{M-1} (\mathbf{P}_{j} \otimes \mathbf{P}_{j}^{*}) E\{(\mathbf{X}_{j}\mathbf{GF}) \circ (\mathbf{X}_{j}\mathbf{GF})^{*}\}$$

$$= (\tilde{\mathbf{w}}^{H} \otimes \tilde{\mathbf{w}}^{T}) E\{(\mathbf{X}_{s+\eta,1}\mathbf{GF}) \circ (\mathbf{X}_{s+\eta,1}\mathbf{GF})^{*}\}$$
same as Welch's PSD w/o interference!

BRIGHAM YOUNG

Simulation Results

- Seven element uniform line array, no reflector.
- Half wavelength element spacing.
- 10⁵ samples in the long-term integration (LTI).
- 512 samples per STI window, no overlap.
- Hamming window shaping.
- Two moving interferers, starting at -40° and 33°.
- One stationary desired source at 5°.
- Array is calibrated in source direction.
- Response in all other directions is unknown.

Subspace Projection Beam Response vs Time

- Interferers
 - 10 dB INR for both.
 - Moving at 4.5e⁻⁴ and 3.0e⁻⁴ degrees/sample.
 - FM modulation.
 - One interferer freq. band overlaps desired source.
- Source
 - □ -30 dB SNR.
 - Narrowband.
- Adaptive null cuts into main lobe near the end of long term integration.
- Significant beamshape distortion.

Last STI Beampatterns

- Subspace projection keeps a null on the mainlobe interferer.
 - High sidelobes raise noise power in beamformer output.
- LCMV has less distortion due to minimum variance criterion.
 - trades-off noise v.s. interference.
- All have calibrated 0 dB response to source signal at 5°.

BYU BRIGHAM YOUNG UNIVERSITY

Effective Average Beampatterns over all STIs

- Computed as follows:
 - Use beamformer weights for each STI as computed from interference data set.
 - Place narrowband unit power source at a test bearing θ .
 - Calculate PSD using all STIs.
 Power at source frequency is the response for direction θ.
 - Repeat for all θ .
- Bias correction removes subspace projection distortions!
- Effective response exactly matches conventional beamformer!

PSD Estimate Comparisons

- Only subspace projection methods adequately cancel mainlobe interferer.
- Only bias corrected subspace projection keeps noise floor low enough to see signal.
- No bias in noise PSD level, but noise estimation variance is a bit higher.

When Interferer Stays Outside Mainlobe

Sidelobe rumble is evident, but mainobe is relatively unperturbed All methods but non-adaptive conventional beamforming yield good PSDs.

BYU BRIGHAM YOUNG

Power Spectral Density using all data via Welch's method

When Interferer Stays Outside Mainlobe

Applications sensitive to small changes in sidelobe pattern shape would still benefit from bias correction.

Conclusions

- Effective bias correction has been demonstrated for array PSD estimation during RFI cancellation.
- Unbiased array PSD estimator can be applied to any array configuration (not just array feeds).
- This will be useful for beamforming clusters of dishes being proposed for some SKA configurations. Also LOFAR stations.
- Next step is accurate feed array simulation.
- Real data experiments are underway.
- Full effective beampattern is hard to determine experimentally.

