CALIBRATION AND OPTIMAL BEAMFORMING FOR A 19 ELEMENT PHASED ARRAY FEED

Brian D. Jeffs¹, Karl F. Warnick¹, Mike Elmer¹, Jonathan Landon¹, Jacob Waldron¹, David Jones¹, Rick Fisher², and Roger Norrod²

¹Brigham Young University, Provo, UT, bjeffs@ee.byu.edu ²NRAO, Charlottesville VA, Green Bank WV, rfisher@nrao.edu

Calibration And Imaging Workshop, CALIM2008 Perth, 7-9 April, 2008

Green Bank 20-Meter Telescope

- \square 20m, F/D = 0.43, fast slewing.
- Re-commissioned for array feed experiments.
- 3.6m auxiliary antenna tracks
 RFI for mitigation.

BYU – NRAO 19 element array

- Hexagonal grid of thickened 1.6 GHz dipoles.
- \Box 0.6 λ spacing, single polarization.
- \Box 0.25 λ offset from ground plane.

Analog RF front end

- Downconversion to IF in front-end box behind array.
- □ 19 double conversion, room temperature analog receivers, $T_{sys} \approx 110$ K.
- Remotely tunable from 1200-2000MHz.
- □ IF bandwidth selectable at 0.5, 1.0, and 5.0 MHz.
- Connectorized modular system facilitates maintenance & channel isolation.

Digital receiver back end

- 3 MHz IF from FEB to RFI shielded digital receiver in pedestal room.
 - □ 19 thin, inexpensive cables are low loss at this IF.
 - 1st and 2nd LO from base to FEB using low loss microwave coax.
- 20 channel, 12 bit, synchronous sampling at 1.25Msamp/sec.
- Continuous streaming to fast RAID-0 disk array for \sim 2 hours.
- Digitally mixed to complex baseband in post processing.

Receiving System Block Diagram

Signal and beamformer model

□ Array sample vector $\mathbf{x}[n] = \mathbf{v}_s s[n] + \mathbf{v}_d d[n] + \mathbf{n}[n]$

Sample array covariance estimate for *j-th* shortterm integration (STI):

$$\hat{\mathbf{R}}_{j} = \frac{1}{L} \mathbf{X}_{j} \mathbf{X}_{j}^{H} \approx \mathbf{R}_{s} + \mathbf{R}_{d}[jL] + \mathbf{R}_{n}$$

$$\mathbf{X}_{j} = [\mathbf{x}[jL], \mathbf{x}[jL+1], \cdots, \mathbf{x}[(j+1)L-1]].$$

Beamformer output

$$y[n] = \mathbf{w}_j^H \mathbf{x}[n], \qquad j = \lfloor n/L \rfloor$$

Beamformer Definitions

Conjugate field match (CFM)
 w_j = v̂_s, v̂_s from calibration data set.
 A.K.A. phase conjugate weighting, or spatial matched filter.
 Max SNR solution for i.i.d. noise.
 LCMV

$$\bullet \mathbf{w}_j = \hat{\mathbf{R}}_j^{-1} \mathbf{C} [\mathbf{C}^H \hat{\mathbf{R}}_j^{-1} \mathbf{C}]^{-1} \mathbf{f},$$

- Columns of C are distinct calibration constraint vectors.
- **f** is desired response in constraint directions, $\mathbf{w}_j^H \mathbf{C} = \mathbf{f}$.
- Single mainlobe constraint case (MVDR):

$$\mathbf{w}_j = \frac{\hat{\mathbf{R}}_j^{-1} \hat{\mathbf{v}}_s}{\hat{\mathbf{v}}_s^H \hat{\mathbf{R}}_j^{-1} \hat{\mathbf{v}}_s}$$

Beamformer Definitions (2)

Max SNR (A.K.A. Max sensitivity)
 w_j is the solution to eigenvector problem

 R̂n⁻¹(v̂sv̂s^H)w = λ_{max}w
 R̂n estimated from off-source calibration data.

 Subspace projection for interference cancellation.

 Partitioned eigen decomposition estimates subspace U_d

spanning interference array signature:

 $\hat{\mathbf{R}}_{j}[\mathbf{U}_{d} | \mathbf{U}_{s+\eta}] = [\mathbf{U}_{d} | \mathbf{U}_{s+\eta}] \Lambda$ $\mathbf{w}_{j} = \mathbf{P}_{j} \tilde{\mathbf{w}} \text{ where } \mathbf{P}_{j} = \mathbf{I} - \mathbf{U}_{d} \mathbf{U}_{d}^{H}.$

- $\hfill \widetilde{W}$ is the precomptued fixed, quiescent, interference-free beamformer.
- Note the lack of any conventional, fixed weight, windowed, or iteratively optimized beamformer.

Calibration procedure

- 1. Estimate $\hat{\mathbf{R}}_{n}$ while steered to a quiet, off source sky patch.
- 2. Using the brightest available calibrator source, steer dish to calibration angle $\{\Omega_k | 1 \le k \le K\}$ (relative to the source) and estimate $\hat{\mathbf{R}}_{\Omega_k}$.
- 3. Calibration grid, $\{\Omega_k | 1 \le k \le K\}$, includes all multibeam steerings and mainlobe shape constraints.
- 4. Calibration steering vector $\hat{\mathbf{v}}_{\Omega_k}$ is the dominant eigenvector of $(\hat{\mathbf{R}}_{\Omega_k} \hat{\mathbf{R}}_{\mathbf{n}})$.

Beamformer calibration Issues

- Bench-top or antenna range calibration is inadequate.
 - Differential drift between channels: gain, phase, and noise levels.
 - Local environment (e.g. supports) affect element patterns.
 - Variation in element patterns across the array is complex, hard to measure the patterns densely enough.
- Detailed EM model is unsuitable for calibration.
 - Helpful for qualitative analysis and representative studies.
 - Cannot model physical response closely enough for high sensitivity beamforming.

Beamformer calibration Issues (2)

Strong mutual coupling

- Complicates element patterns; they are not identical.
- Correlates receiver noise which must be accounted for in beamformer design to optimize sensitivity.
- Coupled differential LNA noise drift makes fixed beamformer non-optimal, even if element patterns were known exactly.
- Adaptive beamforming calibration is needed:
 - In each (multiply)steered beam direction,
 - In each response constraint direction.
- Deterministic beamforming requires in addition:
 - Calibration over entire spillover region.
 - Responses are too variable to achieve low spillover illumination without dense calibration.

Fixed-adaptive beamforming

- We don't know how to do conventional, deterministic beamformer design in this calibration environment.
 - Works in simulation, but for real data we lack sufficient information.
 - Much easier with a bare array than with a PAF and dish.
 - Much easier in a lower sensitivity regimes (e.g. non-cryo-cooled LNAs, comm. systems and radar, not dominated by spillover noise).
- □ Solution:
 - Pre-compute fixed-adaptive \mathbf{w} from calibration data only.
- Optimal LCMV, MVDR, and Max SNR solutions automatically minimize T_{sys}.
- Hold w fixed for observations, i.e. use like a non-adaptive beamformer.
- \Box For subspace projection, use e.g. LCMV to find $\tilde{\mathbf{W}}$.

Calibration and beamforming results

Green Bank 20 Meter Telescope

and EM simulations

W49N, OH source detection

- Conjugate field match (CFM) and LCMV beamformers were calculated from single pointing Cyg A calibration data.
- □ 10s observation, on-off source baseline subtraction.
- □ LCMV permits W49N detection. CFM spillover noise is too high.

Adapting to spillover noise variation with elevation "tipping"

- At zenith:
 - All spillover sidelobes see warm ground, dominates T_{sys}.
 - 2K-4K sky in main beam.
- Mid elevations:
 - Upper sidelobes see cold sky.
 - 10K-20Ksky in main beam.
- Near horizon:
 - 45K sky dominates T_{sys} .
 - Half of spillover sidelobes see cold sky.

 An adaptive beamformer can exploit changes in spillover and sky noise spatial structure to minimize T_{sys} at each elevation.

Tipping spillover geometry

LCMV tipping simulation results

- Aperture efficiency increases as sky temp in main beam grows.
- Beam becomes more directive to narrow the patch of warmer sky in main lobe.
- At typical LNA T_{min} values, T_{sys} is reduced by 1-2 percent.
- 20m, F/D = 0.43 dish with 19 element array was assumed.

Tipping simulation results

- Noise power (arbitrary scale) drops at lower elevations as LCMV adapts to changes in the noise spatial structure.
- This simulation used T_{min} = 120K to match the experimental system.

Tipping real data results

- Good agreement with simulation.
- Peak at 40 deg. is due to temporary instability in one receiver channel.
- A modest

improvement in T_{sys} is possible at mid to low elevations.

Experimental beamformer responses

- Green Bank 20m, 19 element data,
 F/D = .43.
- Stepped elevation slice across sky through Cyg A.

CygA_13offsets_20secDwells_halfbeamwidths_110sec_corr

- Center element only.
- Conjugate filed match.
- Max SNR (max sensitivity)

CygA_13offsets_20secDwells_halfbeamwidths_110sec

Multiple steered beams

- Single 19 element data record combined with multiple sets of beamformer weights.
- Source: Virgo A
- 12 arcmin. steps (1/4 beamwidth) in an azimuth cut.
- Beamwidth is 48 arcmin.
- Beamformer is max SNR:
 - Cyg A calibration
 - multiple calibration pointings.

Sensitivity for off-axis beams

Aperture efficiency ($@T_{sys} = 134K$): 57%

- Due to large LNA T_{min} , the beamformer finds a solution with relatively high aperture efficiency (79%) and low spillover efficiency (97%).
- Beam equivalent T_{sys} is higher than the LNA T_{min} due to array mutual coupling.

Adaptive noise cancellation

- Subspace projection adaptive canceling beamformer.
- Strong moving CW RFI source in deep sidelobes.
- Dish was stepped in elevation through source, Cyg A

Future work

- Real-data beampattern and sensitivity measurements for w pre-computed from EM models. How close can we get?
- Study performance bounds for deterministic beamformers.
- □ Lower T_{rec} , T_{sys} experiments, ~35K, July 2008.
- □ 37 element array soon.
- Larger grids and longer integrations for calibration data.
- RFI mitigation
 - Null depth improvement.
 - Beampattern control and adaptive bias removal.