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ABSTRACT

The LOFAR astronomical array currently under development in The
Netherlands will produce synthesis images of the most distant (and
thus oldest) space objects by observing at unusually low frequencies
(30-250 MHz) over a large aperture (100 km) using many anten-
nas (on the order of 10,000). This presents some significant chal-
lenges for sensor calibration because at these frequencies Earth’s
ionosphere acts as a random refractive sheet which over the large
aperture induces source direction dependent gain and phase errors
that must be estimated and calibrated out. Existing array self cali-
bration algorithms used at higher frequencies by other radio astron-
omy instruments such as the Very Large Array (VLA) do not address
direction dependence and will not work in the LOFAR environment.
A new algorithm called “demixed peeling” is presented and assessed
as a solution to the direction dependent calibration problem for large
distributed sensor arrays.

1. INTRODUCTION

The LOFAR radio telescope currently being developed by ATRON
will operate at 20MHz-240MHz. These frequencies are lower than
the operating frequencies of most radio telescopes currently in use.
At lower frequencies new calibration problems arise because the ef-
fects of the ionosphere are more severe. More specifically, the cali-
bration will be look-direction dependent and rapidly changing over
time. In this paper we will describe a self calibration algorithm that
was introduced in [1] called peeling. In section 3 we introduce an
extension to reduce the number of iterations of the peeling algorithm

Experience with LOFAR calibration will be important for future
radio telescopes like the Square Kilometer Array (SKA), which is
currently being designed. The methods presented in this paper could
also be relevant to similar problems outside the field of radio astron-
omy, such as SONAR direction finding through turbulent water.

1.1. Selfcalibration for the LOFAR Radio Telescope

The LOFAR array will be located in The Netherlands and have an
overall apertures of approximately 100 km. Figure 1 illustrates a
possible geometry for the planned 72 station array. Each station con-
tains 100 dual polarization antennas covering a 100 m diameter area.
Antenna signals will be combined in a digital beamformer to elec-
tronically steer a pencil beam in each station to track the deep space
objects of interest. At central processor level a station can be con-
sidered as a single directional antenna. Cross correlations between
signals from all stations are computed to form the basic data set for
synthesis imaging. The end product is a data cube consisting of an
image or intensity map of the field of view per frequency channel.

This project was supported by STW, The Netherlands
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Full LOFAR array geometry for 72 stations

Fig. 1. Possible geometry for the full LOFAR array. Each circle
represents a LOFAR station which acts as a single beamformed di-
rectional sensor element in the full array.

Radio imaging arrays use the brighter sources in the field of
view as references to calibrate unknown instrumental and propa-
gation gains and phases. This method is often referred to as ”self
calibration”. It is assumed that the measured signal is dominated
by reference sources whose position and brightness are known from
previous surveys and are catalogued. LOFAR surveys will extend
and improve the source catalogs, providing more reference sources
for future calibration.

The ionosphere is the outer layer of the earth atmosphere. Radia-
tion from the sun partly ionizes the atmosphere and the resulting free
electrons slow down electromagnetic waves propagating through the
ionosphere. This additional propagation delay is proportional to the
wavelength squared, hence the corresponding phase shift is propor-
tional to the wavelength. Therefore at lower frequencies the effects
of the ionosphere are more severe. Turbulence in the ionosphere
causes the electron density to fluctuate both in space and in time.
These effects have a significant impact on LOFAR because of its low
operational frequency. Because both the distance between the sta-
tions and the size of the beams are larger than the irregularity scale
of the ionosphere LOFAR calibration is look-direction dependent.
No algorithm has previously been available for direction dependent
self calibration of radio imaging arrays.

2. DATA MODEL

Notation: The transpose operator is denoted by T , complex con-
jugate by ∗, and conjugate transpose by H. An estimated value is
denoted by ·̂, an expected value by E[.], and � is the element-wise
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matrix multiplication (Hadamard product).
Assume that the observed signal is dominated by Q bright cali-

brator point sources. For narrowband observation the complex base-
band signal across the array is given by

xk[m] =
ˆ
xk,1[m], · · · , xk,I [m]

˜T

=

QX
q=1

ak,q[m]sk,q [m] + ηk[m]

where xk,i[m] is the mth time sample of the beamformed signal for
station i, 1 ≤ i ≤ I , in subband k centered at fk Hz. sk,q[m] is
the signal from the qth “calibrator” source, ak,q[m] is the array re-
sponse vector for this source, and ηk[m] is the spatially and tempo-
rally white noise sample vector. Due to earth rotation the geometri-
cal delay component of ak,q[m] changes slowly with time, which is
a critical feature exploited in synthesis imaging. Calibrator locations
and intensities are accurately tabulated in star catalogues.

Assuming that ak,q[m] is constant over M samples, called the
short term integration (STI) interval, the time-frequency dependent
sample autocovariance matrix for (n − 1)M ≤ m ≤ nM − 1 is

R̂k,n =
1

M

nM−1X
m=(n−1)M

xk[m]x
H

k [m]

≈ Rk,n = Ak,nΣkA
H

k,n + Λk, where (1)

Ak,n = [ak,n,1, · · ·ak,n,Q].

Σk and Λ are diagonal matrices with elements σ2
k,q, 1 ≤ q ≤ Q

and λ2
k,i corresponding to the calibrator source powers and station

noise variance respectively. In radio astronomy, elements of Rk,n

are called “visibilities” [2]. Each visibility represents the interfero-
metric correlation along the baseline vector between the two corre-
sponding array elements.

ak,n,q can be factored into the product of a known phase term
kk,n,q due entirely to propagation delay for the array and source
geometry, and an unknown complex calibration gain gk,n,q which
includes both source direction dependent ionospheric perturbations
and electronic instrumentation gain errors,

Ak,n = Gk,n �Kk,n = [gk,n,1 � kk,n,1, · · · ,gk,n,Q � kk,n,Q]
(2)

Direction dependence is modeled with a distinct calibration vector,
gk,n,q, for each source q.

The problem at hand is to estimate Gk,n over a range of k and
n given a series of sample covariances R̂k,n. Substituting (2) into
(1) yields the visibility measurement equation (ME) [3]

MEk,n(G, Λ) = (G� Kk,n)Σk

“
K

H

k,n � G
H

”
+ Λ.

For a single STI the least squares calibration solution is

Ĝk,n, Λ̂k = arg min
G,Λ

‖R̂k,n − MEk,n(G, Λ)‖2
F (3)

where ‖ · ‖F denotes the Frobenius norm.
Direct solution of (3) is not computationally practical and we

have found that for direction dependent calibration, Gk,n is not iden-
tifiable through R̂k,n unless some constraining structure over k and
n exists and is exploited in the estimation algorithm. We have used

2-D polynomials in fk and tn to realistically model magnitude and
phase as a smoothly varying function of frequency and time:

Gk,n(p) = Γk,n(p) � exp{jΨk,n(p)} (4)

Γk,n(p) =
DX

d =1

Ydf
κd

k tηd
n , Ψk,n(p) =

DX
d =1

Tdfκd

k tηd
n

p =
h
vec{Y1}

T

, · · · , vec{YD}
T

,

vec{T1}
T

, · · · , vec{TD}
T

, diag{Λ}
T

iT

. (5)

Yd and Td are the I×Q gain and phase coefficient matrices respec-
tively where κd and ηd are the corresponding frequency and time in-
teger exponent powers for the dth polynomial term, and D is the total
number of terms. A single source gain polynomial model, gk,n(pq),
can be defined by retaining only the qth columns from both Γk,n(p)
and Ψk,n(p) in (4). pq is formed by selecting the corresponding qth

columns from Y1, · · · ,YD and T1, · · · ,TD.

3. THE PEELING ALGORITHM

The current leading candidate algorithm for LOFAR calibration was
introduced by Jan Noordam and has been dubbed “peeling” due its
sequential approach of successively calibrating on one bright source
at a time followed by removing (peeling) that source’s contribution
from the observed sample covariances, R̂k,n [1]. Peeling is based
on three basic simplifying assumptions:

• Joint estimation for parameters of all Q calibrators sources
can be approximated with a series of single source calibration
problems, in descending order of source brightness.

• Calibration gains (magnitude and phase) vary slowly and
smoothly over time and frequency. Consequently over some
span of at most K frequency bins and N time bins called a
cell, Gk,n is approximately constant. Cell (k̃, ñ) includes all
frequency-time bins in the set Ck̃,ñ = {(k, n) : k̃K ≤ k ≤

(k̃ + 1)K − 1, ñN ≤ n ≤ (ñ + 1)N − 1}.

• Over a cell the variations in Kk,n (a.k.a. fringe rotations) due
to Earth rotation and frequency change are large.

Assuming the Q sources are ordered in descending brightness, an L
pass peeling algorithm is given by

1. Initialize: source index q = 1, pass index l = 1, and param-
eter vector p̂p = 0 for 1 ≤ p ≤ Q.

2. Update the residuals (peel): For all but the qth source and over
all (k, n), subtract the current best estimates of their contri-
butions from each sample covariance,

V̂k,n,q = R̂k,n −

QX
p = 1
p �= q

MEk,n,p(pp), where

MEk,n,p(p) = [gk,n(p) � kk,n,p]σ
2
k,p[gk,n(p) � kk,n,p]

H

.

3. Phase center and average: Phase rotate source q to d.c. in
each V̂k,n,q and average to attenuate non-centered sources.

Ṽk̃,ñ,q =
1

KN
×

P P
(k,n)∈C

k̃,ñ

diag{k∗
k,n,q}V̂k,n,q diag{kk,n,q}, (6)
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4. Estimate polynomial coefficients:

p̂q = arg min
p

X X
(k̃,ñ)

· · ·

‚‚‚L � W �
“
Ṽk̃,ñ,q − bqgk̃,ñ(p)g

H

k̃,ñ
(p)

”‚‚‚2

F
,

where L is a masking matrix of ones below the diagonal and
zeros elsewhere which is used to avoid fitting to diagonal
terms from Λ. W is a weighting matrix to whiten the noise
in case the noise power is not the same for all entries.

5. Iterate: If q < Q increment q and go to 2, else if l < L
increment l, set q = 1 and go to 2, otherwise stop.

We have found that using multiple passes, e.g. with 2 ≤ L ≤ 5
reduces bias in p̂q which arises when averaging over a cell produces
insufficient attenuation of the non centered sources in step 3. Con-
tamination in the single source fit performed in step 4 occurs be-
cause Ṽk̃,ñ,q has contributions from more than the centered source.
The next section presents a more direct method of reducing this con-
tamination bias so that the assumption that sequential single source
calibration approximates joint calibration is more nearly correct.

4. DEMIXING CALIBRATOR CROSS CONTAMINATION

In step 2 of the peeling algorithm, estimates of the contribution from
each source (excluding the current centering source q) are subtracted
from the observed sample covariance. The residual V̂k,n,q is in-
tended to contain only the contribution from source q but also has
noise, and due to estimation errors in p̂p includes a bias caused by
imperfect subtraction of the other sources. In step 3 the contributions
of source q are phase rotated for coherent addition while residual er-
rors from the other sources are attenuated by incoherent averaging
due to wide variation in kk,n,p, p �= q, across the cell.

The purpose of steps 2 and 3 is to form a single-source approxi-
mation of the problem. Ideally Ṽk̃,ñ,q , would be equal to the single
source data model, Vk,n,q , for sample (k, n) at the center of cell
(k̃, ñ). Assuming the gains gk,n,q are truly constant within the cell
yields

Ṽk̃,ñ,q ≈ Vk,n,q = gk,n,qσ
2
k,qg

H

k,n,q, ∀(k, n) ∈ Ck̃,ñ.

During the first algorithm pass (l = 1) there are no available
estimates for sources q < p ≤ Q so their contribution cannot be
subtracted in step 2. Averaging in step 3 is then not sufficient to
reduce bias down to the noise level and therefore multiple successive
iterations are necessary. The number of iterations can be reduced if
the process starts with an initial unbiased single source estimate.

In this section we develop an unbiased estimator, V̌k̃,ñ,q , so that

even on the first pass E
ˆ
V̌k̃,ñ,q

˜
≈ Vk,n,q. The algorithm works

on a per cell basis, so for convenience the cell indices (k̃, ñ) will be
dropped.

Assume that estimates p̂p for 1 ≤ p < q have previously been
computed and the corresponding sources are peeled without bias in
step 2. We now seek an estimate p̂q which is unbiased by the pres-
ence of sources q < p ≤ Q in R̂k,n. At this stage p̂p = 0 and
MEk,n,p(p) = 0 for q < p ≤ Q and these sources would not be
peeled. The expected value of a single entry from V̂k,n,q can then

be expressed as

E [v̂k,n,i,j ] =

QX
p=q

kk,n,p,ik
∗
k,n,p,jνp,i,j , for 1 ≤ i, j ≤ I,

νp,i,j = σ2
k,pgp,ig

∗
p,j (7)

The summation in (7) can be written as an inner product

E [v̂k,n,i,j ] =
ˆ

kk,n,q,ik
∗
k,n,q,j . . . kk,n,Q,ik

∗
k,n,Q,j

˜
νi,j

where
ν i,j = [νq,i,j , · · · , νQ,i,j ]

T

.

This gives us one equation per (k, n) pair. We can stack all these
equations into a single matrix form. Let

K̃i,j =

2
64

k1,1,q,ik
∗
k,1,1,j . . . k1,1,Q,ik

∗
1,1,Q,j

...
. . .

...
kKc,Lc,q,ik

∗
Kc,Lc,q,j . . . kKc,Lc,Q,ik

∗
Kc,Lc,Q,j

3
75

and
v̂i,j = [v̂1,1,i,j , · · · , v̂Kc,Lc,i,j ]

T

then
E [v̂i,j ] = K̃ν i,j .

Multiplying both sides with the pseudo inverse of K̃, K̃† =
(K̃

H

K̃)−1K̃
H, we obtain

E
h
(K̃

H

K̃)−1
K̃

H

v̂i,j

i
= ν i,j .

Thus
ν̂i,j = (K̃

H

K̃)−1
K̃

H

v̂i,j (8)

is the least squares estimator we are looking for.
A closer look at (8) reveals that it is directly related to the origi-

nal approach of phase centering and averaging. First define

C = KN(K̃
H

K̃)−1

Now we can write

ν̂i,j = C
1

KN
K̃

H

v̂i,j = Cṽi,j

where ṽi,j = 1
KN

K̃
H

v̂i,j . Comparison of the structure of this ma-
trix equation with the summation operation of (6) reveals that the
first element of ṽi,j is equal to the (i, j)th element of Ṽk̃,ñ,q . The
remaining elements of ṽi,j correspond to evaluating (6) for sources
q + 1 to Q. Thus computing ṽi,j = 1

KN
K̃

H

v̂i,j performs an
element-wise version of the peeling phase centering and averaging
step on not just q, but for all sources q to Q. The multiplication by
inversion matrix C ’demixes’ the contributions of the sources into
separate single source problems.

The estimates p̂p are based on all samples in the domain. The
demixing algorithm works only on a single cell. Therefore the re-
sult of removing a contaminating source by demixing is noisier than
removing a source by conventional peeling subtraction.

The noise amplification by demixing depends on the condition
of C. Because of the third assumption of Section 3, large fringe
rotations within a cell, C will be well conditioned. For large cells,
C will converge to the identity matrix.

The optimal weight for a least squares fit is known to be the in-
verse of the asymptotic covariance of the residuals [4]. For low SNR
the cross correlation of the residuals is small. The optimal weighting
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Source Catalog Name RA◦ DEC◦ SNR dB

1 3C461 350.8 58.8 -20.7
2 3C405 299.9 40.7 -21.0
3 3C86 51.8 55.3 -30.0

Table 1. Three brightest calibrator sources

is then given by the inverse of the variances. This weighting can be
achieved by setting the entries of W in step 4 to

wi,j = 1/ stddev(ν̂i,j,1) =

„
σ2c1,1

KN

«−1/2

where c1,1 is the top left entry of C, σ2 is the variance of the entries
of V̂. An estimate of σ2 is the product of the diagonal entries of V̂,
σ̂2 = v̂i,iv̂j,j .

5. SIMULATION RESULTS

Performance of the peeling algorithm and demixing procedure were
evaluated by computer simulation. A realistic self calibration sce-
nario was modeled using the LOFAR geometry of Figure 1, but with
every other station deleted to form a 36 element array for reduced
computational complexity. Station beams were pointed at right as-
cension (RA) 54.0◦ and declination (DEC) 55.1◦ .1 An accurate
model based on the existing LOFAR initial test station (ITS) [5] was
used for the station beam directional response, including sidelobe
fine structure. For this 40 MHz observation, the -3 dB beamwidth
was approximately 5◦ with sidelobe peak levels typically -13 dB be-
low the mainlobe.

The Q = 3 brightest radio sources after beamforming were in-
cluded in the simulation. Table 1 lists their locations, taken from
the standard 3C and 4C radio survey catalogues, and apparent SNRs
computed from tabulated flux values assuming sky noise limited re-
ception. Sources 3 is seen within the station beam mainlobe while 1
and 2 appear in deep sidelobes.

A first order 2-D polynomial was applied both for synthesizing
array data, xk[m], and in the peeling algorithm parameter model.
Cells consisted of K = 50 frequency bins covering 100 kHz, and
L = 10 time bins. Ten cells, 1 ≤ k̃ ≤ 10, ñ = 1, were used to
fit a first order (d.c. and slope term) polynomial in frequency, so
Γk,n(p) = Y1 + Y2fk and Ψk,n(p) = T1 + T2fk . The “true”
parameter matrices were randomly generated.

Figure 2 presents results of Monte Carlo trial simulations to eval-
uate peeling squared bias error in with and without the demixing
procedure. Error was computed by comparing estimated polynomial
coefficients from p̂q, 1 ≤ q ≤ Q = 3 with the true Yd and Td.

Estimation error variance (not shown) was acceptably low and
the same level with and without demixing. But as can be seen,
demixing significantly reduced bias error which we believe is due
to contamination from the other sources when applying the single
source model in peeling step 3. Averaging across all parameters for
each source yields an average bias reduction by a factor of 17.7 for
source 1, 3.33 for source 2, and 3.71 for source 3.

Without demixing, peeling requires I = 3 passes to reduces
bias levels to compare with one pass of demixed peeling. However,

1RA and DEC are astronomical polar coordinates for fi xed
locations in the celestial sphere used to locate deep space ob-
jects; the celestial equivalent of latitude and longitude. See e.g.
http://liftoff.msfc.nasa.gov/academy/universe/radec.html.
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Fig. 2. Comparison of bias error in estimating polynomial param-
eter pq , 1 ≤ q ≤ 3 for peeling alone, and peeling with demixing.
One peeling pass was performed in each case. The parameter index
number is a function of station index, i and polynomial term index,
d, and is ordered as in (5) and text following.

though this demonstrates the theoretical correctness of the approach
described in Section 4, its practical utility is questionable. With our
simulation implementation in MATLAB it takes 3.31 times as long
to complete a single demix pass as does a three pass regular peeling
algorithm to produce similar quality parameter estimates. We are
currently investigating methods to code demixing more efficiently,
but for the present time we believe that the multi-pass peeling al-
gorithm of Section 3 is the best candidate for direction dependent
calibration of the LOFAR radio astronomy array.
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