
M12.5 
MAXIMALLY SPARSE RECONSTRUCTION 

OF BLURRED STAR FIELD IMAGES 
Brian D .  Jefls and Douglas Elsmore 

Brigham Young University 
Provo, UT 

ABSTRACT 

In this paper we address the problem of removing blur 
from, or sharpening, astronomical star field intensity images. A 
new image restoration algorithm is introduced which recovers 
image detail using a constrained optimization theoretic approach. 
Ideal star images may be modeled as a few point sources in a 
uniform background. It is therefore argued that a direct measure 
of image sparseness is the appropriate optimization criterion for 
deconvolving the image blumng function. A sparseness crite- 
rion based on the $, quasinomi is presented and an algorithm for 
sparse reconstruction is described. Synthetic and actual star im- 
age reconstruction examples are presented which demonstrate 
the algorithm‘s superior performance as compared with the 
CLEAN algorithm, a standard star field deconvolution method. 

1. Introduction 

Blur in astronomical star images may be due to atmospheric 
turbulence, misfocus, poor telescope tracking, finite aperture 
size, or other optical distortion effects. The blumng operation 
may be modeled as the two dimensional convolution of a point 
spread function (usually lowpass in spatial frequency) with the 
uncorrupted true image. If the point spread function is known, 
or may be estimated, then image resolution may be improved by 
any of several deconvolution techniques [ 1,21. However, due to 
the low pass nature of the blurring function, observation noise, 
and the ill posed nature of the problem, a unique solution is not 
possible in general, and the type of solution obtained from any 
given algorithm is highly dependent on its underlying (explicit 
or implicit) objective function. 

A common method for achieving high optical resolution in 
the presence of atmospheric blur is speckle interferometry, 
where phase information is extracted from the speckle pattern 
and used to sharpen the image. In many cases of interest how- 
ever, only intensity information is available, and another ap- 
proach is indicated. In this paper we address restoration and 
resolution enhancement of blurred star field intensity images. 

We postulate that ideal star images are inherently sparse in 
nature, that is they are dominated by a constant flat field back- 
ground intensity level with a small percentage of image pixels 
containing star intensity information. This image model justifies 
using a novel maximally sparse optimization criterion in the re- 
construction algorithm, which i n  turn enables dramatic im- 
provement in resolution. We adopt the following linearized im- 
age degradation model: 

h = H L + n  (1) 

tor, H is the blurring operator matrix representing the point 
spread function, and 21 is the additive observation noise vector. 
H is assumed known, or is estimated from the data by averaging 
the intensity distributions around several isolated stars. H need 
not be spatially invariant. The restoration problem is cast as one 
of h e a r  inequality constrained nonlinear minimization: 

(2) 

where the constraint vector represents our observation uncer- 
tainty due to the additive noise p and possible error in our 
knowledge of the point spread function. The solution vector z is 
constrained to be non-negative since we are dealing with 
intensity images from an incoherent imaging system. 

There are in general an infinite number of admissible solu- 
tions which are consistent with the observed degraded image and 
satisfy the constraints of eqn. (2). The choice of objective func- 
tion, g (z), is key to controlling the form of the solution image, 
I. The more common objectives, 12 vector norm, entropy, etc. 
yield unacceptably smooth results which often do not improve 
image resolution [3]. Our prior knowledge that the desired im- 
age is sparse suggests that the appropriate objective function i s  a 
direct measure of solution sparseness. The restoration problem 
may then be restated as, “find the solution x_ which has the 
fewest possible non-zero elements and satisfies 

IHx_ - 1?. I 2 .” We propose an objective, g(a) = C I x i  I ” ,  
which is related to the I,, quasinorm, and which will be shown to 
be an excellent sparseness metric when O<p<l. Equation (2) 
may then be expressed as 

min g (x) such that I H Z -  hl 5 E ,  x i >  o 
1c 

N 

1- I 

N 

x_ i= I 
min g (g) = (xi)” siich that IHx_ - b I 5 E , (3) 

0<p<l, x , ?  0 

In the following sections we justify the choice of g(&) as a 
sparseness measure, describe an algorithm for solving eqn. (3), 
and present experimental results on restoring blurred star im- 
ages. 

2. Maximally Sparse Optimization With I,, 
Quasinorms 

The most obvious measure of image sparseness is a simple 
count of the non-zero pixels. This may be accomplished with an 
objective,f(rr, based on the indicator function: 

where h is the observation vector obtained by row scanning the 
sampled 2-D degraded image, is the uncorrupted image vec- 
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f ( ~ )  is not well suited as an objective function i n  an opti- 
mization algorithm and does not permit any control over the de- 
gree of sparseness desired [4]. g(& as defined above achieves 
an equivalent measure of sparseness without some of these diffi- 
culties. To demonstrate this consider the unit ball surfaces i n  R2 

I l P  
for the quasi-norm 1 1  lp= ( I xi I p ,  as shown i n  Figure 1 

I = /  

for values of p i n  the range 0QPl=. For p2l we have the con- 
ventional lp  vector norm. The linear constraints in  (3) form a 
convex set, and it is well known that within convex constraints, 
a local minimum of I I L  11 I . p > l ,  is a global optimum. Many 

efficient algorithms exist for solving such problems [5]. Of 
particular interest are the cases for values of p=1,2, and 00, 
corresponding to linear, quadratic, and minimax objective func- 
tions, which form the basis of many widely used optimization 
procedures. However these methods do not achieve sparse re- 
sults for an underdetermined problem of the form of eqn. (2). 

P 

Figure 1. Unit Balls of the l,, Norm for Various p .  
Note that  a s p  approaches 0, the uni t  ball approxhes the axes. 

For O<p<1 , 1, is only ;I quasi-norm. Over R N ,  1 1 ~  1 1  is 
neither convex nor concave, containing many strong local ni in-  
inia and presenting a difficult optimization probleni. Large val- 
ues of p result in  smooth solutions, however, as p -4 the solu- 
tions tend to become more “spiky,” or sparse [6J. The reason 
for this can be seen in  Figure 1. A s p  + 0, the u n i t  ball curves 
approach the X I ,  x2 axes, which is exactly where the uni t  ball 
surface for the indicator function of eqn. (4) lies. We identify 
minimum order optimization as a special case of generalized /p  

/P 

optimization. Since g(z) = ( 112 11 )” we have 
P 

N 

i=l i=/ 
lim g(x) = cki P = ; l ( x i )  =f( . z )  ( 5 )  

This suggests that we may use (at least in  the limiting case) 
g(2) from eqn. (3) for sparse optimization. In [4] it is proved 
that if the set of feasible solutions to the constraint equation of 
(3) are bounded in magnitude, then there is a finite po>O such 
that for all O<plp, any solution to eqn (3) is in fact maximally 
sparse. p need not approach zero to achieve sparse results. The 
utility of this observation is that for p finite, g(& eliminates 
some of the handicaps of usingfb) in an optimization algorithm 
while still yielding a maximally sparse solution. g ( ~ )  is continu- 
ous everywhere and differentiable except at the axes. We may 
also adjust the desired sparseness of the solution by varying p in 
the range p,<ppll. 

P+0 

3. The I,, Simplex Search Algorithm 

In [4] and 171 we introduced three theorems which together 
prove that solving eqn (3) is equivalent to solving the following 
problem involving linear eqiialiry constraints. 

N 

X i=l 
niin g (x) = (xi)” such rhar ftx = b , 

O<p<l, x i t 0  

where 

E RN , s+, s‘ E RM, b E RM, fc: (2M)x(N+2M) 
J+ and a‘ are respectively slack and surplus variables as coni- 
monly employed in  linear programming [ 5 ] .  Note these vari- 
ables are not included in  the computation of g(x) and are dis- 
carded in the final solution leaving only the maximally sparse z. 

I t  was also shown in  [4,7] that the globally optimum solu- 
tion to eqn. (6) must lie at an extreme point of the constraint set. 
These extreme points are called basic feasible solutions, and are 
defined as any x which satisfies f t x  = b, x i >  0, and contains at 
most M non-zero elements. This observation has tremendous 
significance since there are only a finite number of basic feasible 
solutions thus limiting the search space for the global optimum. 
Unfortunately, this set is prohibitively large. The restriction to 
basic feasible solutions does however suggest that an algorithm 
similar to the simplex method used for linear programming (LP) 
may be effective [ 5 ] .  This is the basis for the algorithm 
presented here, which we have called the lP simplex search. 

We may compute a basic feasible solution by partitioning ft 

[ A  ID]=H, w h e r e A E R M x M  (7 ) 
multiplying by A-I leads directly to a basic solution xB . 

[ 1 IA-lD ]x= A - ’ b ,  x B  = [ A - ’ b ,  0, ...0IT (8) 
Any choice of M columns from ft for which A-I is non-singu- 
lar is acceptable for the initial solution xB . The variables xi as- 
sociated with columns of A are termed basic variables, and A 
the basis. As in the standard LP simplex algorithm, program it- 
erations consist of “pivoting” a column from D into the basis, 
and the appropriate column from A out of the basis into D. 
Each pivot represents a move from one basic solution to a n  adja- 
cent basic solution, which may be read directly from the right 
hand side of eqn. (8). The utility of the simplex algorithm is that 
we need not recompute A- ’  explicitly with each pivot. Once the 
columns to enter and leave the basis are selected, a simple alge- 
briic operation is performed on each element of the system (7) to 
implement the pivot move 151. 

Locating the optimum basic feasible solution is accom- 
plished by appropriate selection of entering and leaving columns 
at each pivot, thus choosing only those moves to adjacent basic 
solutions which reduce the cost g(x). The sequence of iterations 
produces a series of solutions with monotonically decreasing 
cost. The algorithm temiinates when all surrounding adjacent 
solutions are of higher cost than the current one. 

With the linear cost function used i n  LP, the normal pivot 
computations can be augmented to lead to a direct indication of 
the best pivot column to select. however in the /, simplex search 
the nonlinear cost g(x) must be explicitly computed for each 
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candidate adjacent basic solution, and one which leads to a cost 
reduction is selected. The steps of the lp  simplex search algo- 
rithm are as follows: 

i = 0, find any initial basic feasible solution to eqn. (6) 
x B , ,  = [ A - ’ b  , 0 ,  ... O I T .  
Compute the cost of the bounded basic feasible solutions 

0, adjacent to x 
If no adjacent solution is of equal of lower cost, terminate, 
optimum found. Otherwise, i f  any lower cost solutions 
exist. select one and  pivot to it. Otherwise, perform a n  
;inti-cycling procedure [ 51 to pivot to an equal cost solu- 
tion. Increment i and set xB, to the new solution. 
Repeat 2) and 3) to termination. 

This algorithm has been demonstrated i n  several different 
applicationsyo produce excellent approximations to the optimally 
sparse solution, but due to the nonlinearity of the cost function, 
g(x), i t  may terminate before a true global optimum is located. 
Results do however compare favorably with existing algorithms 
for sparse star field image restoration and such other diverse 
applications as sparse beamforming array design, seismic de- 
convolution, and neuromagnetic image reconstruction [4,7]. 

When global optimality is of paramount concern, the lp 
simplex search is easily adapted to a simulated annealing algo- 
rithm [4]. Here the choice of which adjacent solution to pivot to 
(step 3 above) is not always based on strict reduction of the cost. 
A degree of randomness is introduced in the choice so that less 
sparse solutions may occasionally be chosen in a given iteration. 
The degree of randomness is gradually reduced according to an 
“annealing schedule” until the algorithm stabilizes at the globally 
optimum solution. Selection of an appropriate annealing sched- 
ule is a trade-off between the required computation time to reach 
termination, and the degree of solution sparseness. 

4. Comparison with the CLEAN Algorithm 

Perhaps the most widely accepted algorithm for incoherent 
star field deblurring is CLEAN, introduced i n  1974 by Hogbom 
[ I  1. It has been used successfully for deconvolving atmospheric 
blur, imaging system point spread functions, and other distor- 
tion sources from both optical and radio telescopic star images. 
A CLEAN iteration consists essentially of locating the peak 
blurred image intensity value, then subtracting a scaled copy of 
the known point spread function, centered on the peak, from the 
image. This process is repeated until the peak in the residual im- 
age is below a predetermined error tolerance limit. The 
“cleaned” image consists of nonzero values only in the locations 
corresponding the peaks which were processed [ I , X ] .  

This procedure has similarities with the lp simplex search. 
Both methods are “designed” to operate on sparse sources, that 
is when the true image consists largely of blank sky [1,8]. In 
fact, if this model is inappropriate, neither method will yield ac- 
ceptable results. Since CLEAN iterations terminate when re- 
stored image error drops below a specified limit, it may also be 
cast in  the form of the constrained optimization of eqn. (2). 
CLEAN however was proposed as an ad-hoc procedure, with 
no optimization theoretic basis. Although i t  clearly sharpened 
processed images, i t  was unclear what underlying implicit ob- 
jective function, g(& was active. 

It has more recently been shown that the underlying objec- 
tive in CLEAN approximates 11 minimization [SI. A cleaned im- 
age minimizes the sum of pixel intensities within the error con- 
straints: 

(9) 
N 

min CX,  such rhnt trig - I! I 5 E , x ,  2 o 
& I = /  

This is readily seen as a special case of the //. optimization 
provided by the ‘p simplex search. In 121 Stark points out the 
enhanced resolution and generally sparse results in  images re- 
stored by solving a system equivalent to eqn. (9). 11 mininiiza- 
tion however cannot in  general achieve the maximally sparse re- 
sult. As was shown in [4], solutions continue to be more sparse 
as p decreases from 1 to some po, at which time eqn. (4) yields 
the maximally sparse result. Thus CLEAN, having been de- 
signed to recover a true image consisting a few stars in a blank 
sky, can fall short of its stated objective. In -the following sec- 
tion we present examples where the l p  simplex search outper- 
forms CLEAN and restores resolution with fewer extraneous ar- 
tifacts. 

5. Results 

In this section we present experimental results of star field 
image restoration using the I,, simplex search. Figures 2 through 
5 are from a synthetic image case and give a comparison be- 
tween the l / .  simplex search and CLEAN. Figures 6 and 7 are 
from an actual telescopic star image. All images shown are 20 
by 20 pixels i n  size. 

Figure 2 shows the original ideal image of a star pair in :I 
black background. Each star has an intensity of 1.9. Figure 3 is 
the degraded version of Figure 1. A 2-D Gaussian function with 
a standard deviation of 2.5 pixels was used to blur the image, 
and spatially independent Rayleigh distributed noise was added 
for a signal to noise ratio of 39 dB (U= .02). Figure 4 is the the 
I ,  simplex search restoration of Figure 3. For this example 
values of p= .I4 and E = .Oh were used. Both of the original 
stars were resolved, though the intensity of the upper right star 
was incorrectly estimated lower than in the true image. 

Figure 5 is the CLEAN reconstruction of Figure 3. As in 
Figure 4 the error limit was & = .06, while the loop gain [XI was 
set to 0.95. Note that an extraneous star artifact to the lower left 
was generated. We have noted in  our experiments that the more 
severely blurred images will be correctly resolved by the lp  sim- 
plex search while CLEAN will introduce extraneous stars. If the 
blurring is less severe, so that a peak can be located in the de- 
graded image corresponding to each of the true stars, then l,, 
simplex search and CLEAN produce equivalent results. 

Figure 6 is a star group near globular cluster M15, extracted 
from an actual telescopic image. This image has a resolution of 
approximately 0.5 arc seconds per pixel. Figure 7 is the 1 sim- 
plex search restoration of Figure 6, using values of p= . f4 and 
E = .OX. The blurring point spread function used in the restora- 
tion was proposed by King 191, and consists of a Guassian cen- 
tral lobe, an exponential decay outer ring, followed by an in -  
verse square decay on the outer skirts. This function provides a 
good match to a wide range of observed star intensity point 
spread functions. The radius of the function was scaled to 
closely match isolated stars seen in the original image near the 
extracted window shown in figure 6. 

6. Conclusions 

The above examples demonstrate that maximally sparse 
restoration is a promising approach to star deblurring. It is ide- 
ally suited to the case where only point sources, and no dis- 
tributed objects, exist in the true image field. The form of a re- 
stored image is highly dependent on the objective function 
(explicit or implicit) underlying the restoration algorithm. We 
may argue that when a sparse source image model is used, the 
only justifiable objective is a measure of sparseness. The lp 
simplex search is a practical maximally sparse algorithm, and 
outperforms CLEAN in cases of severe blurring. 
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Figure 3. Blurred arid iwlse corrupted version of Figure 2.  
Gaussian blur with o =1.5 Dixels. -39 dB noise. 

Figure 
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