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ABSTRACT 
This paper presents a new spatial smoothing approach for 

rank enhancement in sensor array direction finding appli- 
cations. The method works with coherent scene data when 
non-uniform array element gains would make conventional 
smoothing ineffective. Sub-array data  is pre-weighted be- 
fore smoothing to regularize the problem, and so that a 
consistent phase and gain structure is maintained across 
the sub-arrays. 

1. INTRODUCTION 
Many of the popular high resolution direction finding (DF) 
algorithms exploit the eigenstructure of the sensor array 
covariance matrix to estimate directions to signal sources. 
Unless rank enhancement is performed, these algorithms fail 
when multiple sources in the observed scene are coherently 
related. In this coherent scene environment, the signal sub- 
space component of the autocovariance matrix has rank less 
than the number of arriving signals. The usual solution is 
to increase signal subspace rank with a spatial smoothing 
operation prior to applying the DF algorithm [l]. However, 
spatial smoothing algorithms require that sensor elements 
have identical gain and phase responses, as is the case, for 
example, with the uniform line array (ULA). 

This paper addresses the problem of direction finding 
with a non-uniformly weighted array in the coherent scene 
environment. Non- uniform element response can be part of 
the array design, as in the case of physically shaded beam- 
forming arrays, or unintended, as for example when there 
are element failures, gain errors, or when there is undesired 
baffling. We will assume that the non-uniform element re- 
sponses are known, or can be estimated by an array cali- 
bration procedure. 

We will fist review conventional spatial smoothing as in- 
troduced by Shan et al for the (ULA) [l]. Assuming an 
array of M elements with wavefronts from P narrowband 
sources impinging upon it, the output from the array at 
time t may be modeled as 

x(t) = Au(t) + q(t> (1) 

where x(t) is the observed array data vector, u(t) is the 
length P vector of source amplitudes, the columns of A are 
the complex array response vectors corresponding to each 
of the P sources, and q( t )  is the additive observation noise. 
A = [a(@l)Ia(@2)1.. . la(@,)], where 6, is the direction of 

arrival of the p t h  source. For the case of a uniform line array 
and far-field sources, A is Vandermonde, with columns 

.(e,) = [I, e-J'p(eP), e - - 3 2 d e P )  1 1  . . . e--3(M--l)4eP) IT(2) 

wod . 
p(6) = - .szTz(~) 

where WO is the signal center frequency, d the inter-element 
spacing, and c the wave propagation speed. The autoco- 
variance of x(t) (assuming zero mean random processes and 
i.i.d. noise) is given by 

R = E{x(t)xH(t)} = ARuAH + a:I (3) 

where R, and o:I are the autocovariance matrices of ~ ( t )  
and q ( t )  respectively. 

For the coherent source case of interest, R, has rank 
less than P. Conventional smoothing increases the rank 
of AR,AH by averaging over autocovariance matrices of 
shorter sub-arrays. L distinct (though overlapping) sub- 
arrays may be defined for an M element ULA as 

Due to the Vandermonde structure of A for the ULA, equa- 
tion (I) can be modified as follows to represent any sub- 
array: 

where columns of A are truncated to the sub-array length. 
The smoothed covariance matrix is then computed as 

i = l  
r r  1 

= A R , A ~    ai^. (7) 

I t  has been shown that if L > P ,  then R, has rank P 
and retains the desired phase information for each source 
[l]. These are the conditions necessary for successfully ap- 
plying eigenstructure based DF algorithms, like MUSIC [2], 
directly to R. 
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2. DEVELOPMENT 
With non-uniform element responses, equation (1) is mod- 
ified as follows 

that R, will have a signal subspace with rank equal to P ,  
and will be suitable for eigenstructure based DF algorithms, 
such as MUSIC. 

A MUSIC based DF algorithm using the proposed 
weighted smoothing includes the following steps: x ( t )  = SAu(t) + qs(t) (8) 

where S is a diagonal shading matrix containing (possibly 
complex) element gains with respect to the signal. If the 
noise component at each element undergoes the same scal- 
ing as the signal, then q s ( t )  = Sq( t ) ,  and the obvious ap- 
proach would be to multiply equation (8) by S-', which 
yields the same smoothing problem as equation (7). How- 
ever, since observed noise may arise from effects other than 
linear propagation in the medium (e.g. electronic noise in 
the analog front-end circuits, quantization, structural vi- 
brations, etc.), this simple inverse shading approach is often 
unacceptable. I t  is not unusual, for example, in a SONAR 
hydrophone array to simultaneously experience a decrease 
in a channel's signal sensitivity while its noise level goes up 
due to some mechanical or acoustic failure mode. In such 

1. Select a Q matrix and compute the associated W[,] as 
solutions to (IO). 

2. Compute a sample estimate of R, by pre-weighting 
sub-array data samples and averaging over time 

where T i s  the sample spacing and N is the total num- 
ber of samples. 

3. Solve the generalized eigenvector problem, 

cases, the direct inverse shading approach will introduce 
noise amplification which degrades DF performance. The 
regularization offered by the following proposed method is 
needed to stabilize the problem. 

The covariance matrix of the z t h  shaded sub-array is given 

Rw[EsIE,] = c[E,IE:,]A (14) 

to partition the signal (Es) and noise (E,) subspaces. 

4. Scan the modified MUSIC spectrum, D(B), to estimate 
the directions of arrival by 

where the diagonal of S[i] contains the i through ( M  - L + 
i)th diagonal elements of S, and E[,] is the autocovariance 
of qS[;1. Note that due to shading, we have had to drop the 
i.i.d. noise assumption. Since S[%] is dependent on the sub- 
array index, a smoothed covariance computed as in equation 
(6) can not be factored as in equation (7) to produce a rank 
enhanced R,. To overcome this difficulty, a method first 
introduced by the author for point source image restora- 
tion is adopted [3]. We define a "smoothing regularization 
matrix," Q ,  which is chosen to be an arbitrary, constant, 
diagonal matrix. Given a choice for Q, data pre-weighting 
matrices, W[;], are computed as solutions to 

Q = W[,]S[,l V{i l l  5 i 5 M - L + 1). (10) 

The weighted smoothed covariance matrix is then 

*=l 

= Q A R , A ~ Q ~  +E. (12) 

Pre-weighting the sub-array data replaces S [ i ]  of equation 
(9) with the constant matrix Q, which can be factored out 
of all summation terms, thus providing the desired form for 
R, in (12). With proper design of Q, it can be shown [3] 

5. Local maxima in D ( 0 )  correspond to source directions 

where I ,  is the estimated bearing for the p t h  source 
and maxp indicates the p t h  local extremum. 

Though Q is arbitrary, its design does affect DF per- 
formance. We will discuss two possible choices. First, if 
Q = I,  then W[i] = Si' .  This simple choice for Q is only 
acceptable if S is invertible and noise amplification is not 
an extreme problem. A second formulation for Q which 
provides improved regularization, eliminates noise amplifi- 
cation, and is always computable, is given by 

qm = min I s E l ,  V m ,  15 m 5 M - L + l  (17) 
I 

where diag{Q} = [ q 1 , " . , q L l T ,  dzag{S[,]} = [ s ~ ] , . . . , ~ ~ ~ ] ~  
and diag{W[l~} = [w:], . . . , w ! ] ] ~  e is chosen close to zero 
(rather than at zero) to avoid numerical evaluation prob- 
lems in computing the ratio %. Note however that since we 

avoid division by zero, (18) is well defined, and the weight- 
ing matrix is bounded by 0 < wk! < 1. 

8, 
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Figure 1. Bearing estimation error as a function of SNR. 
Solid line is for Q designed as in equation (17), dashed line is 
for Q = I. Dash-dot line is for conventional smoothing, and 
is limited to -20 dB only because the MUSIC scan window 
was limited and did not allow more error. 

3. PERFORMANCE ANALYSIS 

In this section we address the issue of how various algo- 
rithm parameters affect weighted spatial smoothing perfor- 
mance. Mean squared-error in the bearing estimate for the 
p t h  source, €2, = E{(8,  - e,)'}, will be used as the perfor- 
mance metric. Among the factors which can influence esti- 
mation error are the choice for Q, both full array and sub- 
array sizes, the number of sub-arrays used in smoothing, 
SNR, and the number of time samples available. Monte- 
Carlo simulations will be presented to quantify error as a 
function of some of these parameters. 

Figure 1 illustrates how the choice of Q can affect per- 
formance. Mean squared bearing error was estimated by 
averaging over 200 random trials for each graph entry, with 
each trial including an array data set of 50 time samples. 
A Hamming shaded 12 element line array, with the fifth 
element response set to 0.01, was used. Noise was i.i.d. 
(at the processor), Gaussian, and equal amplitude sources 
were located at zero and 17 degrees. Error was computed 
for the 17 degree source based on the distance to the nearest 
peak in the MUSIC spectrum. The solid curve corresponds 
to Q computed as in equation (17), and shows that for this 
choice, position error can be more than 5 dB less than when 
Q = I. It is believed this is due to noise amplification at 
the fifth sensor element when Q = I. Note that for conven- 
tional smoothing €2, does not drop as SNR increases. This 
is because the two sources were not resolved at any SNR, 
and -20 dB error corresponds to a uniform distribution of 
bearing estimates over the limited bearing window used in 
the MUSIC scan. 

Figure 2 shows how bearing error depends on the nnm- 
ber of sub-arrays, L used in smoothing for a fixed full array 
size. Sub-array size was the largest possible for the given 
full array, i.e. M - L + 1. The same array shading, source 
configuration, and data parameters used in Figure 1 were 
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Figure 2. Bearing estimation error as a function of sub- 
array size, L ,  for two choices of Q. Solid line is for Q 
designed as in equation (17), dashed line is for Q = I. 

used in this analysis. Note that the best choice of the num- 
ber of sub-arrays to use can also depend on the choice for 
Q. 
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Figure 3. Array shading, d i a g { S } ,  used for the 24 element 
array. Overall shading is from a Hamming window, with 
element 10 set to 0.01. 

4. APPLICATION EXAMPLES 
The weighted spatial smoothing algorithm is demonstrated 
in the following computer simulated experiments with a 24 
element line array. As shown in Figure 3, the array shading, 
S, was based on a Hamming window, with the tenth element 
set to an amplitude response of 0.01 to simulate a sensor 
failure. Array elements were separated by 0.3 wavelength, 
and equal amplitude coherent sources were located in the 
far field at bearings of -40, -31, 15 and 25 degrees relative to 
array broadside. The data set consisted of 100 time samples 
per channel. 
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Comparison of Spatial Smoothing Methods, i.i.d. Noise 
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Figure 4.  MUSIC spectrum plots for i.i.d. Gaussian noise, 
not scaled by element shading. True source locations are 
-40, -31, 15 and 25 degrees. 

Figure 4 shows comparative results for the case of un- 
shaded i.i.d. Gaussian noise, i.e. when array signal response 
is as given by Figure 3, but noise arises from sources unaf- 
fected by shading. The SNR at the center array elements 
was 20 dB, and E[*] = ci1. The solid curve plots the MU- 
SIC spectrum, P(B),  obtained using the proposed weighted 
smoothing method. Equation (17) was used to specify Q. 
This response clearly shows a higher resolution, more accu- 
rate estimate of source locations than inverse shading with 
conventional smoothing, or simple conventional smoothing. 
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Figure 5. MUSIC spectrum plots for shaded noise case. 
Noise seen by the processor is i i d .  Gaussian noise which 
has been scaled by the element gains in Figure 3. 

Figure 5 shows performance for shaded noise, where non- 
uniform element responses affected signal and noise lev- 

els equally. The SNR at each element was 20 dB, and 
q s ( t )  = S q ( t ) ,  with q( t )  distributed i.i.d across the ar- 
ray. In this case the weighted smoothing and inverse shad- 
ing performances are essentially equivalent, while conven- 
tional smoothing fails to resolve the sources because the 
non-uniform element responses were ignored. 
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