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ABSTRACT 
This paper addresses image and signal processing problems 
where the result most consistent with prior knowledge is 
the minimum order, or “maximally sparse” solution. These 
problems arise in such diverse areas as astronomical star im- 
age deblurring, neuromagnetic image reconstruction, seis- 
mic deconvolution, and thinned array beamformer design. 
An optimization theoretic formulation for sparse solutions 
is presented, and its relationship to the MUSIC algorithm is 
discussed. Two algorithms for sparse inverse problems are 
introduced, and examples of their application to beamform- 
ing array design and star image deblurring are presented. 

1. INTRODUCTION 
Many important signal processing applications are formu- 
lated as ill-posed inverse problems which have no unique so- 
lution unless some regularizing prior constraint is imposed. 
In a surprising number of these cases, the appropriate con- 
straint which agrees with our prior knowledge is that the 
solution must be “sparse.” By sparse we mean that the so- 
lution is minimum order, or has the maximum number of 
zero valued elements consistent with observed data and the 
system model. 

Examples of applications best solved using a sparseness 
requirement include blurred point source image restoration 
(e.g. star field images), neuromagnetic image reconstruc- 
tion to map brain electrical activity, seismic deconvolution, 
overlapping specular echo resolution in SONAR or RADAR, 
and thinned array beamformer design. 

Unfortunately, sparse solutions are usually both analyt- 
ically and computationally more challenging than typical 
optimization problems. In this paper we review some of 
our work in the area, and demonstrate by example how 
widely applicable sparse optimization methods are in real- 
istic DSP applications. Two very different algorithms for 
finding sparse solutions to ill-posed inverse problems will 
be presented. 

In each of the applications discussed below, we adopt the 
discrete linear observation model 

y = H x + q  (1) 

*The author would like to acknowledge the contributions to 
this work by Thomas Hebert (who suggested looking at linear 
programming to solve the maximally sparse problem), Metin 
Gunsay, and Richard Leahy. 

where y is the A4 x 1 observed data vector, x is the N x 1 
desired, unobserved source vector, 77 is additive noise or 
measurement error, and H is the system response matrix. 
Typically H i s  singular, and the problem of finding x given 
y is highly ill posed. 

The minimum order solution consistent with the observed 
data and signal model (1) is given by the following simple 
and heuristically satisfying formulation 

2 = arg m i n k  I{..} such that $ { y  - Hx} 5 e (2) 
n=l 

where I { . }  is the indicator function, which under the sum- 
mation counts the number of non-zero elements in x, and 
${.} is some distance metric, chosen to be appropriate for 
the application of interest. Enforcing ${y - Hx} 5 E pro- 
vides a fidelity constraint on the solution. We shall refer 
to 2 obtained from equation (2) as the maximally sparse 
solution. Using I { . }  as the optimization objective forces 
2 to have the fewest non-zero terms without violating the 
fidelity constraint. 

2. ALGORITHMS FOR SPARSE SOLUTIONS 

2.1. Maximally Sparse Simplex Search 
If we define the fidelity distance constraint based on 
element-wise absolute values, then $(.} = I 1, and a com- 
putationally efficient simplex search algorithm related to 
linear programming is possible. Equation (2) becomes 

N 

2 = arg m i n x  1znlp s.t. ~y - H X ~  5 e ,  o < p < 1 (3) 
X 

n=l 

where E is a non-negative vector. Note that the indicator 
function has been replaced with the approximation JZnlP, 
which is differentiable (almost everywhere) and simplifies al- 
gorithm development and analysis. We have shown that for 
o < p < 1, argmin{CrrN_, IsnlP) argmin{Cn=, ~ { x n } } ,  
with equality holding for a sufficiently small value of p [3]. 

To solve equation (3) we express it in the equivalent 
equality constraint form [31 [21 

N 
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G =  a r g m i n x ( u ; ) p  U s.t. Xu = b, U 2 0 (4) 
i=l 
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r x+ 1 

= [;‘:I 
where s+ and s- are arbitrary, non-negative “slack vari- 
ables” which are non-zero only when the constraint of equa- 
tion (3) is satisfied in the inequality rather than the equal- 
ity sense. The estimate of x which solves (3) is given by 

Since ~ ~ ~ l ( u i ) p  is concave over U 2 0, the solution to 
(4) must lie at one of the finite number of extreme points 
of the constraint set, i.e. at a vertex of the convex poly- 
tope defined by Zu = b [4] [3]. These extreme points are 
called basic solutions, UE, and have at most 2M non-zero 
elements. A basic solution may be computed by partition- 
ing U as 31 = [CID], where C has dimensions 2M x 2M 
and contains the basis vectors for the solution. Multiplying 
the constraint of (4) by C-’ leads directly to the obvious 
basic solution, 

2 = j ; +  -2 - .  

[IIC-lD]u = C-lb, 

UB = [(C-lb)T, 0 , .  . . ,O]’ (5) 

Any choice of 2M columns from Z for which C is non- 
singular is acceptable for a solution UB, and elements of U 

are reordered to correspond to the ordering of columns in 
C. The simplex search algorithm finds a globally optimal 
solution by repeatedly moving from one basic solution ver- 
tex to some neighboring vertex which reduces the objective 
function E:=“, ( Z L ~ ) ~ .  This is accomplished using computa- 
tionally efficient pivoting operations as in standard linear 
programming [4]. In each iteration of the simplex search, 
one column from the basis, C ,  is swapped (pivoted) with a 
column from D. Columns are chosen to reduce ~ ~ = “ , ( u 2 ) p  
with each such pivot. Pivoting continues until no neighbor- 
ing vertices reduce to objective. 

2.2. Eigen-space Parametric Methods 
In this section we will show an equivalence relationship be- 
tween maximally sparse optimization and parametric sub- 
space decomposition algorithms (such as MUSIC [ 5 ] )  com- 
monly used in direction of arrival (DOA) estimation. The 
benefit of this relationship is that MUSIC and other related 
algorithms are more computationally efficient than the sim- 
plex search of Section 2.1.. 

The usual signal model for parametric methods is 

y = A ( O ) s + q ,  where (6) 
A(@) = [a(&)( ... la(6’~)], 0 = [01, ... BPI*. 

A(@) is the parametric system matrix, 0 is the parameter 
vector to be estimated, and s is the P x 1 source amplitude 
vector. For DOA estimation, 8, is the direction of arrival for 
a plane wave signal from the p t h  source with corresponding 
amplitude sp .  a(6,) is the response across a fixed array of 
sensors to a unit amplitude source in direction 0,. P ,  0,  
and s are unknown. Implicit in this model is that all sp are 

non-zero, P < M ,  and that the a(0,) are mutually linearly 
independent. Though seldom recognized, this model has all 
the earmarks of a sparse system. 

Wax proposed an optimal ML joint detection and estima- 
tion method based on the Akaike Information Criterion [7].  
By detection we mean determining the number of sources 
present ( P ) ,  and by estimation we mean finding the corre- 
sponding 6,’s. Assuming q is i.i.d. Gaussian noise, Wax’s 
joint estimator becomes 

where d(P)  is the number of degrees of freedom in 0 as a 
function of P ,  and X is a constant that depends on noise 
variance. 

In practical implementations of MUSIC, DOA estimates 
are formed by “scanning” 0 on a discrete sample grid, &, 
1 5 n 5 N .  In other words, in evaluating the parametric 
model, only sources located in a finite number of directions 
are considered or permitted. With 6’ thus quantized, (6) can 
be represented in the form of (l), i.e. y = Hx + q, where 

x has exactly P non-zero terms, but the positions and am- 
plitudes of these terms are unknown. 6, = cjnp V p ,  1 < p 5 
P ,  though the indices np, 1 _< np 5 N ,  are unknown and 
must be estimated. 

Each column of H 
corresponds to a fixed parameter value, 6’ = c j n .  Assuming 
that A(@) is rank P ,  and columns of H are linearly inde- 
pendent, then d(P) is equal to the number of columns of 
H that are not multiplied by zero in the product Hx. It 
follows then that d ( P )  = E,”=, I{z,}. Also, minimizing 
with respect to 0 and s in (7) is equivalent to minimiz- 
ing with respect to x alone. This is true since by choosing 
any xnP to be non-zero, a corresponding 0, = dnP is im- 
plicitly selected as the parameter value associated with sp 
and column np of H. Likewise, by solving for amplitudes, 
x n p  , optimizing over the corresponding sp is accomplished. 
Thus, an equivalent representation for equation (7) is 

Consider substituting (1) into (7). 

N 

n=l 

The constrained minimization of equation (2) may be 
solved as an unconstrained minimization using the penalty 
method [4]. Defining +{y - Hx} = IIy - Hx1I2, and using 
the penalty method, equation (2) yields equation (9) ex- 
actly, with X as the penalty weight. Thus we see that for 
a discrete parameter space, and Gaussian noise, optimal 
joint detection and estimation using the parametric model 
of (6) is equivalent to maximally sparse optimization with 
a squared error constraint. 
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A MUSIC based solution to (7) is 

. 6 ) ~ u  = [arg local min a ( ~ $ ~ ) ~ E , E ~ z i ( ~ # ~ ) l '  (10) 
4n 

 MU = At(6)y, &U = argminAIC{P} 

where Ry[E~IE,] = [EplE,]A, Ep is the matrix of eigen- 
vectors corresponding to the P largest eigenvalues of co- 
variance matrix R,, A is the diagonal matrix of ordered 
eigenvalues [ 5 ] .  AIC{ . }  indicates the Akaike Information 
Criterion (or other order estimation metric). 

MUSIC achieves efficiency by decoupling the detection 
and estimation parts of the problem, thus avoiding the ex- 
haustive search implied by (9). Stoica and Nehorai showed 
that if the sp are mutually uncorrelated,  MU is a large 
sample realization of 6 3 ~ ~  [6]. Therefor, MUSIC is a prac- 
tical approximate solution to the maximally sparse problem 
of (2), when the covariance of y can be estimated. 

P 

3. APPLICATIONS 
3.1. Sparse Beamforming Array Design 
The problem of designing antenna arrays in which the ele- 
ments are not equally spaced has been studied widely over 
the last 30+ years. A prime motivation for this work is 
the possibility of improved resolution or reduced sidelobe 
levels as compared to an equispaced array with the same 
number of elements. In this section we present a method 
for designing symmetric narrowband beamforming arrays 
using the minimum number of elements required to satisfy 
directional response specifications [3]. 

Let xn be the real beamformer weight (shade) for a sen- 
sor element at 3-D position rn in an arbitrary N element 
symmetric array. Let be a unit direction vector for az- 
imuth 0 and elevation cp. Assume the array is pre-steered to 
a desired mainlobe direction Sd = sgdrlpd by complex phas- 
ing. The beamformer response to a far field unit amplitude 
source in direction ( O m ,  cpm)  is then 

-1 

-1.5 

N 

Y(e,, pm) = 2xn  coskrn .  SO,,,,^,,, - S d )  (11) 
n=l 

where k is the propagation wavenumber, and indicates 
vector dot product. 

For sparse design, the desired response is specified on 
a sufficiently dense lattice of constraint directions, Yd = 
[y(&, pl), 3 .  . Y ( O M ,  p ~ ) ] ~ ,  and a dense grid of potential el- 
ement positions, rn is specified. Equation (11) becomes, 
y = Hx, where the mth row of H is given by hff = 
 COS krl .  SO,,^,,, - s d ) ,  . . cos krnr . (SQ,,~, - s d ) l T .  The 
sparse array design can be expressed as in equation (3) by 
simply substituting Yd for y. The simplex search algorithm 
is then used to solve (3). The algorithm sets as many ele- 
ment weights as possible to zero on the dense initial array 
grid. Zero weighted elements can then be removed from the 
array. The result is a minimum order, non-uniform array 
design. 

Figure 1 shows the final positions for the 16 element solu- 
tion of an example of sparse array design. The initial dense 
element grid was a filled disc, including 60 co-planar sensors 

- 
0 0 .  B 

e 
B . O  - 

as shown. The beam is steered in the plane of the sensors, 
along the positive y axis. The desired response specification 
was that the mainlobe width and maximum sidelobe level 
were not to be degraded as compared to that obtained from 
the dense initial array using unity shading. 

Figure 2 shows the beam response pattern for the thinned 
array of Figure 1. Both element shading and position were 
obtained using the simplex search algorithm. The desired 
mainlobe and sidelobe constraints were achieved with a sav- 
ings in array complexity of nearly 4 to 1 as compared with 
the initial array. 

Sparse Circular Array Design 
2 
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Figure 1. Thinned array design obtained using the simplex 
search algorithm. ' * ' indicates the original element grid. 
'0' indicates an element in the sparse design. 

Figure 2. Beam response pattern for the sparse array of 
Figure 1. 

3.2. Point Source Image Restoration 
Most well know restoration algorithms are ill suited for 
blurred point source images, such as star fields or IR target 
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tracking images. Methods which incorporate prior knowl- 
edge that the image is sparse, or point-like, are much bet- 
ter able to resolve closely spaced objects like binary stars 
blurred by atmospheric turbulence. This section presents 
two approaches to point-source image deblurring; one based 
on maximally sparse simplex search, and one using eigen- 
space parametric methods. 

Application of the simplex search to image restoration is 
straightforward, with minor adaptations of the existing for- 
mulation [2]. Assuming the blur can be modeled as a shift 
invariant linear operation, then H of equation (1) is simply 
the doubly block Toeplitz convolution matrix constructed 
from the blur discrete point spread function (psf). For in- 
tensity images, we must constrain x to be non-negative, so 
we drop x- from U, and the corresponding block column 
from 3C in (4). 

Figures 3 and 4 present an example of star field deblurring 
using the simplex search algorithm on telescopic data. 

Figure 3. Star cluster image from the CWRU/NOAO ob- 
servatory, with 2.1 arcseconds resolution per pixel. a) [left] 
blurred image. b) [right] psf estimate from an isolated star 
in the same frame. 

Figure 4. Maximally sparse simplex search restoration of 
Figure 3a. Note that five distinct stars were identified. 

The MUSIC based eigenspace approach can also be used 
to restore blurred point source images [l]. However, of- 
ten only a single image frame is available, and the under- 
lying point sources are constant valued and deterministic 
(rather than random processes as assumed in the paramet- 
ric model). This implies that direct computation of R, 
would yield a degenerate rank-one signal subspace, EP, and 
MUSIC would fail. 

In [l] we presented a method for transforming the image 
into the frequency domain and performing generalized 2-D 
smoothing to form a full rank covariance matrix. Using this 
smoothed covariance, the MUSIC approach described above 
may be applied. One advantage of this approach is that the 

point source positions are not limited to  the original pixel 
sample grid, and may be scanned a t  any desired resolution. 
We have shown this permits sub-pixel super resolution in 
determining source positions [l]. 

Figure 5 shows a 2-D generalized frequency domain MU- 
SIC reconstruction of the image data in Figure 3. Note that 
stars are located on a grid with four times the resolution 
of Figure 4 in each dimension. One of the stars identified 
with the simplex search is not included in the MUSIC re- 
sult. This implies that P may have been under-estimated 
with the AIC criterion. Also, a higher setting for E in (3) 
causes the simplex search to drop this middle star. Ex- 
periments with synthetic data where the “ground truth” is 
known show that both algorithms do an excellent job of 
recovering the true image. I 

1 
I 

I 

Figure 5. MUSIC based eigenspace sparse restoration of the 
data in Figure 4. 
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