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Abstract 

This paper addresses the problem of resolving and localizing 
blurred point sources in intensity images, such as atmo- 
spherically blurred star images. It is shown that this prob- 
lem can be modeled in a form similar to that used for sensor 
array data in direction of arrival (DOA) estimation. A new 
superresolving restoration algorithm is described as a gener- 
alization of eigenstructure decomposition methods popular 
in DOA estimation. The algorithm includes a signal 
subspace rank enhancement technique that works in the 
presence of non-uniform element weighting due to blur. A 
theoretical analysis of source localization error is presented, 
and an expression predicting error performance is derived. 
Restoration examples are presented illustrating the accuracy 
of the error analysis and demonstrating algorithm perfor- 
mance. 

1. Introduction 

Point source image restoration involves resolving indi- 
vidual points, or impulses, in an image that has been cor- 
rupted by convolution with some blurring function. For 
this special case of image restoration, it is known or as- 
sumed a priori that the true image is sparse or point like. 
The point spread function (PSF) of the imaging system can 
merge closely located point sources to the extent that they 
can not be resolved in the presence of noise without some 
form of superresolution provided by the restoration algo- 
rithm. 

Point image restoration is applicable in the fields of 
astronomical image restoration, biomedical imaging and 
echo resolution. Deblurring of star fields is one of the ma- 
jor applications. Blur in long exposure astronomical star 
images may be due to atmospheric turbulence, misfocus, 
poor telescope tracking, finite aperture size, or other optical 
distortion effects. Atmospheric turbulence can cause nearby 
stars to become blurred beyond resolution so as to appear as 
a single star. 

The eigenvector based approach discussed here depends 
on the underlying point-like structure of the true image, and 
is closely related to methods used for source localization in 
sensor array processing. By transforming the problem into 
the frequency domain, we exploit the fact that spatial shifts 
of a finite support blurring function result in phase shifts 
across the elements of the frequency domain image, and 
yield data structurally similar to sensor array data seen in 
DOA estimation. 
This work supported in part by NSF grant MI91 10187. 

This algorithm was presented by the authors at 
ICASSP-94 [l], and will be reviewed here. The emphasis 
of this paper is a new performance analysis which permits 
prediction of restoration error as a function of algorithm 
parameters. 

The following observation model for an image (or im- 
age sequence) observed at time t. will be used in this devel- 
opment 

where g is the row-scanned observation vector, D is a dou- 
bly block circulant 2-D convolution matrix whose columns 
are formed from spatially shifted copies of the row scanned 
blurring function, f is the uncorrupted deterministic image 
vector, and 7 is the additive observation noise vector. The 
doubly block circulant structure of D implies that source 
position shifts are mapped to 2-D phase shifts in  the fre- 
quency domain. The circular convolution assumed by this 
model introduces no error as compared to the true linear 
convolution observed in the image data, if the point sources 
of interest are no closer to image edges than the width of the 
PSF region of support. 

Note that in equation (l), f is independent of time. 
This model is analogous to the fully coherent scene case 
found in the DOA literature, and requires special techniques 
to build up the degenerate rank of the associated autocovari- 
ance matrix before eigendecomposition methods may be ap- 
plied. We introduce a new 2-D rank enhancement method 
which is an extension to 1-D array smoothing as proposed 
by T. Shan et a1 [2 ] .  

g ( t )  = Df + 77(t) (1) 

2. Algorithm Theoretical Development 

In this section we transform the image restoration prob- 
lem of equation (1)  into a form which can be solved with 
traditional eigenstructure based DOA estimation techniques. 

2.1 Frequency Domain Signal Model 

Since f is sparse, we may replace Of with A u ,  where U 
contains the intensity coefficients of all the non-zero ele- 
ments off, and A contains only those columns of D which 
correspond to elements of U: U has length P,  equal to the 
number of point sources in the image. 

(2) 
In order to map spatial shifts in source position to phase 
shifts, (2) is transformed into the frequency domain [ 1 ][3] 

g(t )  = Au + q(t) .  

g( t )  = Au + $t> (3) 
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where - indicates the 2-D DFT is computed prior to row 
scanning the images, and each of the columns of the matrix 
A .  Columns of A have identical magnitude, but a different 
progressive phase because columns of A are related by 
block circulant shifting of the PSF. We can express A as 
the product of a diagonal matrix H ,  and a matrix V which 
contains the phase (position) information for each of the 
columns of A 

A = H  [ V x 1 , y 1  1 v x z , y *  I " ' V x p , y p  I ] = H V .  (4) 

H is the frequency domain representation of the unshifted 
PSF, i.e. H = diag{FFT(d)} where d is the first column 
of D .  Each frequency domain position vector, v , ~ , ~ ~ ,  
corresponds to an image with a single unblurred point at 
location (x,, , y,, ), 

(5 )  

(6) 

The autocovariance matrix of g can now be represented as 

R, = H V R , V ~ H ~  + 10;. 

2.2 Generalized 2 - 0  Smoothing 

Equation (6)  is similar to the covariance model used in 
coherent scene DOA problems [2]. The signal subspace of 
Rg, represented by the first term in equation (6) ,  has a rank 
of one because the magnitudes of the point sources are not 
time varying. Rank must be increased to P for eigenvector 
based methods to work. Unfortunately, blur operator, H ,  
prohibits using conventional array smoothing, as typically 
applied to uniform line arrays [2]. We introduce a new rank 
enhancement method as a generalization of spatial smooth- 
ing. Generalized 2-D smoothing is accomplished by 
weighted averaging in the frequency domain over the auto- 
covariance matrices of sub-images. 

Figure 1 shows how these sub-images are extracted from 
a larger image and how they are arranged into a vector. The 
observed frequency domain sub-images are given by 

g [ m . n ]  ( r )  = [ g m , n  ,gm,n+lt. " )  8 m . 0 ,  7 g m + l , n *  g m + l , n + l ) " '  

7 i i m , 0 , * . . . *  i o ,  ,n 1 go, , n + l ) . .  ' 7  20, ,e, ] (7) 

g [ m , n ] ( t )  = H[m,nlV[m,nlu + 17(t). 

Figure 1. Row scanned sub-image at (m,n). 

V is not Vandermonde as in the uniform line array case, 
but fortunately there is a simple relationship between all of 
the V[m,nl which may be exploited for smoothing. 

V [ m , n ]  = V[l.llC[m,n]) where 

Assuming the noise is uncorrelated from pixel to pixel, the 
autocovariance matrix of g[m,fl, is 

~ [ m , n ]  = ~ [ m , n ] ~ [ 1 , 1 ] ~ [ m , n l ~ u ~ ~ , n ] ~ ~ l l ~ ~ , n ,  + 10: (8) 
The H,m,nl terms in (8 )  are dependent on sub-image in- 

dices and prohibit smoothing. To overcome this difficulty 
and to introduce a regularization operator to control noise 
amplification, we define a "smoothing regularization ma- 
trix", Q. Q is chosen to be an arbitrary, constant, diagonal 
matrix. Given a choice for Q ,  weighting matrices, W r m , n l ,  
are computed as solutions to 

Q =  W[m,n]H[m,n] V[m*nl.  (9) 

R = - C ~ [ m , n ] ~ m , n l ~ ~ , n ]  

The generalized smoothed covariance matrix is defined as 

(10) 

where B is the set of sub-images included in smoothing. 
When equations (8) and (9) are substituted into (IO), the 
sub-image dependent H[m,nl  are replaced by the constant 
matrix Q ,  and the expression may be factored 

1 

[ m , n ] ~ E  
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As in the traditional DOA problem, it can be shown that 
with the proper choice of sub-images, the rank of F ,  will 
increase to P for each additional sub-image which is in- 
cluded in the average [1][3]. Thus eigenvector methods can 
be directly applied to the smoothed autocovariance matrix 
R .  

2.3 Restoration Algorithm 

Given R ,  a point source image restoration algorithm 
based on MUSIC [4] may be developed. The smoothed 
sample covariance matrix is computed as an estimate of R 

H R 

i = ZLmzE, 1 
~ ( ~ [ m , , , l ~ [ m , , , l ( ~ ~ ) ) ( ~ [ m , ~ ~ ~ ~ m , , , l ( ~ ~ ) )  (12) 

where Tis  the interval between time samples and iR is the 
total number of samples. Due to the averaging implicit in 
smoothing, single snapshot data ( e l )  is acceptable. 

Estimates of the signal and noise subspaces, Es and 

E,,, are found by solving the generalized eigenvector prob- 
lem, 

(13) 
If the number of sources in the scene is known to be P ,  
then Es contains eigenvectors corresponding to the P 

largest eigenvalues in A .  The minimum description length 
(MDL) method [7] was used to estimate P in computing 
results shown in Section 4. 

The restored image is computed from the modified 
MUSIC spectrum, defined as: 

where Y , , ~  is the position vector of equation (5). f(x,y) 
is a continuous function of ( x , y ) ,  and may be computed at 
any desired sample spacing. Peaks in the spectrum corre- 
spond to estimated point positions. 

2.4 Designing Q 

Q must be specified by the user and serves several impor- 
tant functions. Without it, smoothing in the presence of a 
blumng function would not be possible. Though a number 
choices have been shown to work acceptably, the following 
Q specification stabilizes the solution with respect to noise 
amplification in the reconstruction, and whitens the noise 
subspace [3]. Equation (15) was used in the results to 
follow. 

0 otherwise 

3. Performance Analysis 

For point source image restoration, the most important 
measure of performance is usually the spatial accuracy in 
placement of the located points. A metric such as SNR 
improvement would be inappropriate, since because the im- 
age is assumed to be point-like, only peaks of f ( x , y )  are 
significant, and the image background noise level can be 
neglected. We will use mean squared error (MSE) in posi- 
tion for the pth point as our performance criterion, 
- 
Ax; = E ( ( i p  - x p ) 7  (16) 

where 2, is the estimated position, and xp is the true 
value. Without loss of generality, we consider only the x 
component of the prh detected peak in 3( ip ,  j p  ) . 

A number of parameters can affect performance of the 
algorithm, including the amount of averaging used in 
smoothing, the number of snapshots, image size, the choice 
of Q ,  and the SNR. The analysis presented here seeks to 
quantify the effects of these variables on resolution capabili- 
ties of the algorithm by generalizing methods reported in 
the literature for smoothed eigenstructure based DOA esti- 
mation [3][5]. 

A first order approximation used by Rao and Hari and 
others for position error [SI can be generalized as follows to 
include Q and the position scan vector, v, [3] 

1 

- c  where v ,  = -, h, y and E,, = E,, - E , , .  
d X  

The difficulty with equation (17) is that the true and pertur- 
bation noise subspace terms (E, ,  and ") cannot be readily 
computed from the observation, &,,,,,. 

Beginning with the development of Rao and Hari, the 
following approximation for point position error was de- 
rived, which uses only observed or computed quantities. 
Note that unlike the approach of [5], this new expression 
does not require that noise be distributed i.i.d. complex cir- 
cular Gaussian, and permits non-uniform element weight- 
ing. 
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With equation (18) it is possible to predict performance 
for a given set of data, perform a trade-off analysis between 
sub-image size and the amount of smoothing achieved, and 
to gain insight into the effects of design choices for Q [3 ] .  
Figure 2 presents a simple two star example of predicting 
MSE in position as a function of the number (L) of sub- 
images used in smoothing. L is determined by sub-image 
size. All possible sub-image shifts in the observed 12 by 
12 pixel image are used, so as sub-image size decreases, L 
increases. Point sources were located at (x,y) coordinates of 
(5,7) and ( 7 3 ,  with a circular Gaussian blur of one pixel 
standard deviation. i.i.d Gaussian noise was added for an 
SNR of 40 dB. Figure 2 also plots the actual error averaged 
over 300 trials with different noise samples (solid line), and 
demonstrates that equation (1 8) provides an excellent 
approximation to the true error. Figure 3 shows how 
equation (18) can be used to evaluate position error as a 
function of blur extent and the choice of Q. In Figure 3a, a 
circular Gaussian blur function with different standard 
deviation widths (w) was evaluated against the number of 
sub-images. In 3b, performance for three different Q values 

k 
i 

-5- 40 60 80 
L 

Figure 2. Mean squared position error 
as a function of number of sub-images. 

x's indicate values from eqn. (1 8). 

is presented. The observed image was the same as in Figure 
2. 

4. Experimental Results 

Figures 4 and 5 present two examples of restoration for 
synthetic star images which are useful in evaluating perfor- 
mance because the underlying true image is known. The 
first synthetic case demonstrates the superresolution capabil- 
ity of the algorithm. Figure 4a is a cluster where two stars 
are separated diagonally by two pixels. The stars are 
blurred with a Gaussian shaped PSF, i.i.d. Gaussian noise 
is added for a SNR of 40 dB, and the blurred image is 
sampled at 114 the original pixel resolution (in each 
direction) to yield the observed image in Figure 4b. In this 
image, the star pair has a separation of only 1/2 pixel. 
Figure 4c shows the resulting MUSIC spectrum, scanned at 
4 times the resolution of Figure 4b. Note that the apparent 
star between the two true stars is actually a saddle point at 
lower intensity, and is not a peak. Figure 4d shows the 
location of peaks in 4c, and correctly locates all three stars. 

Figure 5 presents an example performance comparison 
between the new algorithm and two common image restora- 
tion approaches. Figure 5a shows the observed image for a 
three star cluster, blurred and noise corrupted as in Figure 4. 
Figure 5b shows a least squares reconstruction which fails 
miserably since this method favors smooth solutions and 
does not use the prior knowledge that the true image is 
point-like. Figure 5c is a restoration using the CLEAN al- 
gorithm [6]  which is well suited for star images, and pro- 
duces point-like results. However, since the blur is severe, 
this method biases the star positions, and adds a fourth star 
artifact. Figure 5d is the peak-picked MUSIC spectrum us- 
ing the new algorithm. Computed positions exactly agree 
(within one pixel quantization) with the true image. 

5. Summary 

It has been shown that a duality exits between point 
source image restoration and the coherent DOA problem. 

'9 5 

-21 , ' / w=2 
-2 
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Figure 3. a) Position error as a function of blur width (w). b) Position error 
as a function of the choice for Q; dash-dot 1ine:Q as per equation (13 ,  dotted 
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L 

a) b) 

line: Q=Z , and solid line: Q,,, = min l(H[m,n,)i , i l .  
[ m . n l ~ B  
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a) b) cl 4 
Figure 4. Superresolution restoration of synthetic star example. a) Unblurred image. b) Observed blurred, noisy, 
subsampled image, c) MUSIC spectrum computed from b. d) Peaks from image c. 

a) b) c) 4 
Figure 5. Comparison with other algorithms. a) Blurred three star image. b) Least squares restoration, c) CLEAN 
restoration. d) Peaks of the MUSIC spectrum using new algorithm (same as true image.) 

Transforming images into the frequency domain maps spa- 6. References 
tially shifted-blurred points to a linear combination of com- 
plex sinusoids modulated by the frequency domain blurring 
function. This structure enables applying eigenvector based 
techniques, which are desirable because they allow for super- 
resolution, approximate the ML estimator, and are computa- 
tionally tractable. 

Since the resulting frequency domain problem is coher- 
ent, a means of rank enhancement of the covariance function 
was introduced. This technique is a generalization of array 
smoothing that compensates for the effects of modulation 
introduced by the blurring function, and provides regulariza- 
tion to reduce noise amplification in  the system. 
Previously, rank enhancement through smoothing had only 
been treated for I-D uniform linear arrays. In the image 
case, smoothing may be performed despite the non-uniform 
modulation affects of the blur. 

An expression predicting the MSE in point position es- 
timates was derived and shown to yield a close match with 
large sample estimates of the error. Equation (1 8) is useful 
for evaluating performance as a function of important algo- 
rithm parameters, including the blurring function, the 
choice of Q, and the number of sub-images used in smooth- 
ing. This performance analysis and the examples of restored 
images demonstrate the effectiveness of the new algorithm 
and suggest it will be practical in a number of applications. 
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