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Abstract 

The Generalized Gaussian Markov Random Field 
(GGMRF) is used as an image prior model in MAP 
restoration of blurred and noise corrupted images. 
This model is adapted to characteristics of the true 
image by jointly estimating the true image and the 
GGMRF shape parameter, p ,  from the corrupted ob- 
servation. A simple estimator for p based on sample 
kurtosis is introduced. It is shown that the value of p 
ranges widely when modeling typical images and tex- 
ture fields. Higher quality restorations can be obtained 
when the estimated p value is used, rather than com- 
monly used arbitrary choices. 

I. INTRODUCTION 
N this paper we present a Bayesian approach to im- I age restoration that uses the observed image data to 

control the form of the image prior model. The im- 
age is modeled using the Generalized Gauss Markov 
random field (GGMRF) [l], but unlike previous appli- 
cations of this model to MAP restoration, we assume 
the image prior shape parameter, p ,  is unknown. Both 
the true image and p are estimated from the degraded 
observation. The proposed approach can yield better 
results than other Bayesian methods where the image 
prior is fixed arbitrarily. Such methods cannot adapt 
to the wide range of image structural forms regularly 
encountered in restoration applications. 

MAP image restoration using the GGMRF prior 
with a fixed value of p was introduced by Bouman and 
Sauer and was shown to improve edge rendering [l]. 
Adaptive estimation of the shape parameter, p ,  during 
restoration was first presented by us in [2]. Saquib and 
Bouman have recently proposed excellent maximum 
likelihood estimators for p and the associated GGMRF 
scale parameter, T [3]. In their restoration simulations 
however, a fixed compromise value of p = 1.1 was used 
because of the belief that most images are best modeled 
with a p 5 1, and because simple techniques for opti- 
mizing the image posterior distribution require p > 1, 
in order to insure a convex cost function. 

We will show that for a GGMRF to accurately model 
a variety of image classes, p must be allowed to vary 

over a range of at  least 0.3 5 p 5 2.6. We also demon- 
strate successful joint estimation of p and the true im- 
age using only the blurred and noise corrupted obser- 
vation. Restoration examples with p < 1, p M 1, and 
p M 2 will be discussed. 

We adopt the following familiar linear observation 
model 

y = H x + n ,  (1) 

where y is the row scanned degraded image vector, H 
is the convolutional blur matrix, x is the true image 
vector, and n is additive noise. 

11. IMAGE PRIOR MODEL 
To model an image, x, as a Markov random field 

(MRF), the prior distribution is usually specified 
through as a Gibb’s distribution of the form [4] 

where T is the scale parameter, is the potential 
function over clique e, and C is the set of all cliques de- 
fined for the neighborhood system of the Markov field. 

The potential function for the first order symmetric 
GGMRF is q5(zs, ~ ; p )  = 12, - ztlP where s and t are 
nearest neighbor pixels which form the clique we will 
designate as c = ( s , t )  El]. Figure 1 plots this poten- 
tial for various values of p as a function of the neigh- 
boring pixel differences, d,,t = 2, - q. The value of 
p determines significant structural features in x. For 
synthetic GGMRF images, we have noted that small 
p values yield sharp edge transitions and constant val- 
ued regions, while large p (e.g. p 2 2) produces smooth 
transitions between regions. 

When a GGMRF is used to model actual images, 
the best fit for p varies over a wide range. Table I lists 
34 images for which p values were estimated using the 
method described below in Section 111. Note the wide 
variation for p .  Figure 2 shows eight of these images. 
The complex scene images with sharp boundaries yield 
p values well below 1.0, while many texture-like fields 
have much higher corresponding p values. 
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Fig. 1. Potential function of GGMRF for different values of p .  
Note that z = d,,t in this figure. 
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Adopting the first order GGMRF as our image prior 
model, the joint distribution for x is given by 

Brick 1.93 Cloth seat 

Leaves 1 2.36 Grass 2 
where A = [ w] ''' and c is the standard deviation 
par amet er. 

Given an observed image y, and assuming the addi- 
tive noise is Gaussian, the adaptive MAP estimate of 
x is x = arg{minx,p @(x, y ; p ) ) ,  where 

(4) 
and C contains all nearest neighbor pairs, and S is the 
set of all pixels in the lattice. y is the regularization 
parameter controlling the relative influence on the so- 
lution from the image prior model as compared to the 
restoration error term influence. 

111. PARAMETER ESTIMATION 
In this section, we establish a key relationship be- 

tween a GGMRF and the generalized Gaussian (GG) 
distribution, and present a simple method based on 
this relationship to  estimate p for any given GGMRF 
image. 

An inspection of (3) suggests that direct estimation 
of p from an observed GGMRF x would be difficult. 
The distribution is highly non-linear in p and depen- 
dence on p is through the neighborhood structure of 
G. The problem can be simplified by noting similar- 
ities between the conditional distribution of x in ( 3 ) ,  
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TABLE1 
ESTIMATED p VALUES FOR A WIDE VARIETY OF TEXTURE AND 

SCENE IMAGES WHEN THE FIRST ORDER GGMRF MODEL IS 

APPLIED. 

and the density function for a single, zero mean, GG 
random variable d 

These similarities suggest the following hypothesis: 

Hypotheszs. Let dS,, be the difference between nearest 
neighbor pixels s and a of a GGMRF,i.e. d,,, = x,-x,, 
where a is restricted to  be a neighbor in one direc- 
tion (e.g. a is always the left nearest neighbor). Then 
(neglecting boundary cases) d8 , ,  is distributed as i.i.d. 
generalized Gaussian Vs E S and has the same shape 
parameter as the GGMRF. 

Observations. When ( 3 )  is expressed in terms of pixel 
differences, dS,,  = x, - x,, and then factored, the joint 
density of x takes on the form of products of terms 



between kurtosis and the GG shape parameter p is 

Fig. 2. Examples of GGMRF p value estimates for several tex- 
ture and scene images. a) [top 1.1 “Mountains 1,” p = 0.46; 
b) [top r.] “Hall,” p = 0.64; c) [row 2 I.] ‘‘Tile,’’ p = 0.84; d) 
[row 3 r.] ”Leaves 1,” p = 1.10; e) [row 3 I.] “Wood grain,” 
p = 1.39; f )  [row 3 r.] “Concrete,” p = 1.48; g) [bot. I.] 
“Clouds 2,” p = 1.92; h) bot. r.] “Grass 2,” p = 2.36. 

which look like equation (5). This suggests the differ- 
ences, ds,a are distributed generalized Gaussian. We 
also note that Besag argued similarly that the condi- 
tional distribution of a Gaussian Markov random field 
is Gaussian [5]. The hypothesis has also been confirmed 
experimentally over a wide range of p values by accu- 
rately estimating p for GGMRF’s through d,,,, using 
estimation methods designed for GG random variables. 
0 

Given ds,a we can form a simple estimate for p based 
on kurtosis. It can be shown that the exact relationship 

The sample kurtosis can be computed as 

IS1 (&,a - (t>4 
I% = 2 ’  (7) 

SES 

[ c ( d s , a  - w’] 
SES 

where a (as above) is the one directional nearest neigh- 
bor of s, (SI is the cardinal number of the set of pixels 
on the lattice, and 2 = $q CsES ds,a.  After an esti- 
mate of kurtosis is obtained, l j  is computed by solving 
equation (6). No closed form solution for p in known, 
however a table look-up approximate inversion of (6) 
is easily computed. In practice we have done this effi- 
ciently by sampling equation (6) for a number of values 
of p ,  and then using cubic spline interpolation between 
the nearest table entries to approximate the value of p 
that corresponds to l j .  We call this the “inverse kurtosis 
method.” Several authors have used kurtosis to esti- 
matep for GG random data, but they have used only an 
approximate relationship and therefor have produced 
biased estimates [6] [7]. 

IV. AN ITERATIVE ADAPTIVE ALGORITHM 
The shape parameter estimator introduced above re- 

quires that the GGMRF, x, be uncorrupted by blur 
or noise. The algorithm presented in this section en- 
ables us to apply these estimation methods even in 
the case of a corrupted GGMRF, and thus to jointly 
estimate x and p. The approach is similar to an 
Expectation-Maximization (EM) algorithm, and in- 
volves a bootstrap procedure which alternates between 
estimates of p and x until convergence is achieved. 

Adaptive GGMRF Algorithm 

1. Choose an initial shape parameter estimate, ?j(O), and a 
image estimate, a(’), for the GGMRF prior model (e.g. 
P(O) = 2.0 and k(O) = y.) 

2. Fix p = j k  and compute 

B(“’) = arg{minQ(jC(k),y;p)), 
X 

where @(X,y;p) is the energy function of the GGMRF 
prior model as given in equation (4). Use e.g. Metropo- 
lis algorithm, Gibbs sampler, etc. 

3. Using k(ktl) ,  compute a new estimate ?;fktl) by form- 
ing the nearest neighbor difference image, d and solving 
equations (7) and (6 ) .  

m $(’I), terminate, otherwise increment k and go 
to step 2. 

4.  If 
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The optimization called for in step 2 represents 
a conventional MAP restoration, and can be accom- 
plished in a number of ways. We have used the 
Metropolis algorithm [8] [4], though other approaches 
such as the Gibbs Sampler should work as well. 

V. RESTORATION RESULTS 

Our experiments have shown that the adaptive al- 
gorithm works well in estimating both x and p when 
x is truly a (synthetic) GGMRF and the observed im- 
age is corrupted by both blur and noise. Chen’s algo- 
rithm [9] was used to generate GGMRF’s for a variety 
of p values in the range of .7 < p < 3 .  These images 
were convolved with a 3 by 3 pixel uniform blur, and 
then i.i.d. Gaussian noise was added at 20 dB SNR. 
The corrupted images were restored using the adaptive 
GGMRF algorithm. Estimates of p were acceptably 
accurate (e.g. k0.2) and restoration error was bet- 
ter than that achieved using a conventional Gaussian 
Markov random field model (i.e. p = 2). 

The more interesting question however is whether 
the algorithm performs well with more realistic images. 
The following experiment was designed to test the per- 
formance for more typical images, which are clearly not 
exactly modeled by a GGMRF. Two of the texture im- 
ages in Figure 2, d) “Leaves 1,” and g) “Cloth seat,” 
were blurred with a 3 by 3 pixel averaging window, and 
i.i.d. Gaussian noise was added for an SNR of 20 dB. 
The corrupted images were restored using the adaptive 
GGMRF algorithm, with an initial guess of p = 2.0 
. The restored images (not shown) had significantly 
improved visual quality, and the joint estimates for p 
were well within an acceptable range. For “Leaves 1,” 
?; = 1.26, (compared to the unblurred image estimate 
of p = 1.10.) For “Cloth seat,” 6 = 1.45, with an 
unblurred estimate of p = 1.93. 

As another performance example, the 128-by-128 
image shown in Figure 3a was blurred by a 25-by-1 
PSF = [1 1 . . . 11, representing a ID horizontal mo- 
tion blur. i.i.d. Gaussian noise at an SNR of 30 dB 
was added to the blurred image to produce figure 3b. 
The shape parameter estimated directly from the un- 
corrupted Figure 3a was 0.8. 

“The adaptive algorithm was applied to Figure 3b to 
jointly estimate x and p .  Ten iterations were used to 
generate Figure 3c. The starting value of p was 2; the 
ending estimate was j3 = 0.61. For comparison, a MAP 
restoration using a GMRF ( p  = 2) was computed and 
shown in Figure 3d. The squared error in Figure 3d 
is twice that of the error in Figure 3c. Though some 
of the blurring due to horizontal iiiotion is reduced in 
Figure 3d, the result still looks over-smoothed. On the 
other hand, Figure 3c is both visually and numerically 
better because the edges were preserved as a result of 

Fig. 3. Imagesfrom the experiment of the adaptive algorithm. a) 
[top 1.1 Original 128-by-128 image, b) [top r.] Blurred noisy 
image, c) [bot. I.] Adaptive GGMRF MAP restoration of a,  
d) [bot. r.] GMRF model restoration of a. 

adapting the model to the image. 
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