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ABSTRACT 

This paper introduces a blind method based on Bayesian 
maximum a posteriori estimation theory for restoring im- 
ages corrupted by noise and blurred by one or more un- 
known point spread functions. Image and blur prior infor- 
mation is expressed in the form of parametric generalized 
Gauss Markov random field models. A method for esti- 
mating the GGMRF neighborhood influence parameters is 
presented, along with examples of blind restoration to re- 
duce residual blur in adaptive optics telescope images of 
space objects. 

1. INTRODUCTION 

In this paper we consider the blind multiframe restora- 
tion problem of recovering images corrupted by noise and 
blurred by one or more unknown point spread functions 
(psf). The Bayesian maximum a posteriori (MAP) estima- 
tion approach is well suited to blind restoration because 
it provides a framework for expressing prior information 
about both the image and unknown blur. Using appropri- 
ate probability density function (pdf) models as image and 
blur priors enables us to overcome the inherent ambiguity 
of the blind inverse problem, and serves to regularize the 
solution. We will show that with correct parameter selec- 
tion, the generalized Gauss Markov random field (GGMRF) 
model [l] is effective for both prior pdf’s. The GGMRF 
model is able to represent a wide range of practical image 
types, including both structured, hard edged fields typical 
of the true image, and smooth, “low pass” or “band lim- 
ited” images typical of blurring psf’s. 

Though the algorithm presented here may be used in a 
variety of blind deconvolution applications, we are particu- 
larly interested in high resolution restoration of multiframe 
adaptive optics (AO) telescopic images. A 0  systems can re- 
move much of the atmospheric-turbulence-induced blur in 
astronomical and orbiting space objects imagery, but there 
is typically some adaptation error [ 2 ] .  Though the general 
structure of this residual blur is known 131, the detail is not, 
and varies significantly over a period of milliseconds. A se- 
quence of A 0  images of a single object provides multiple 
observations with different unknown psf’s, and constitutes 
a multiframe, blind image restoration problem. 

We adopt the following image observation model for both 
single and multiple frame data representation 

= 3tf + f j ,  where (1) 
[gl, gz ,  . . . , @;MI* , ii = [71, 7 2 ,  . . . , 7 M I T ,  g =  

where M is the number of frames, gi, f ,  and are vec- 
tors formed by column scanning the 2-D images of the ith 
observation frame, the true image, and the ith noise frame 
respectively. Hi is the doubly block Toeplitz convolution 
matrix formed from the i“h frame psf, hi. 

2. PROBLEM FORMULATION 
Assuming f and 3t are statistically independent (a reason- 
able assumption in practice), the blind MAP restoration 
problem may be stated as 

* I  

f , %  = argmaxP,lf,h(glf,3tFI)pf(f)ph(3t) ( 2 )  
f ,X 

In order to solve equation (2), we adopt the following 
probability density function models. p,( i i )  is assumed to be 
zero mean, i.i.d. Gaussian. This implies that p , l f , h (g l f ,  3t) 
is i.i.d. Gaussian with a mean of 3tf. The image is modeled 
as a GGMRF, with pdf given by the Gibbs distribution [l] 

where C f  is the set of pixel cliques invoked by the specified 
neighborhood system, p is the GGMRF shape parameter, 
S f  is the set of all pixels in the image lattice, fs is the sth 
pixel in f ,  and bs9t are neighborhood influence weights. 

The blur pdf is also modeled as a GGMRF 
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where eh is the set of all cliques for the blur neighborhood 
system, q is the blur GGMRF shape parameter, Sh is the 
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Figure 1. Synthetic GGMRF images. a) [top left] p = 0.5, 
b) [top right] p = 1.0, c) [bot. left] p = 2.0, d) [bot. right] 
p = 3.0. 

set of all points in the blur lattice over all frames, and cs,t 
and d, are neighborhood influence weights. 

The GGMRF model is particularly flexible and useful for 
image restoration problems because it is capable of repre- 
senting a wide variety of statistical image classes using just 
a few parameters. Equations (3) and (4) can be viewed 
as definitions for random texture fields. Model parameters 
control the structure of this texture, and can be chosen to  
represent both typical images and blurs. p and q are known 
as shape parameters, and control the “edginess,” or transi- 
tion structure in the image. b,,t cs,t and ds jointly control 
the correlation structure between neighboring pixels. With 
appropriate value selections, the model can be parameter- 
ized to generate fields that look like the detail in a wide 
range of visual textures. 

Figure 1 shows an example of how shape parameter p 
(or q )  affects the GGMRF texture field. The images shown 
were generated as synthetic Markov random fields using a 
first order uniform neighborhood while only p was varied. 
We propose that Figure la ,  with p = 0.5, is a better statisti- 
cal match for the blocky geometric structures of man-made 
objects, like satellites, than are the other three fields. We 
also assert that Figure Id,  with p = 3.0, is an good model 
for the deviation from the mean, p h , s ,  for residual A 0  blur. 
In practice, we will set 0.5 < p < 1.5 and 2.0 < q < 4.0. 

Including a mean, p h , s ,  in the ph(31) model (which was 
not needed in pf (f)) allows us to incorporate prior psf infor- 
mation from previous experiments. For example, in astro- 
nomical imaging isolated stars in a nearby field, or frames 
acquired on different experiments, can be averaged to serve 
as the reference mean. An analytic model can also be used 
as a mean. The Lorentzian function has been proposed as 
a model for mean residual A 0  blur [3] [4]. 

Substituting equations (4),(3) and our p g l g , h ( g l b f f ,  31) 
model into (2), and performing a little algebra yields 

M 

i=l 

where we have taken the logarithm of the right hand side 
and have dropped additive constants. y and X control the 
relative influence as regularizing terms that the image and 
blur pdf’s have on the solution respectively. 

Equation ( 5 )  can be solved using stochastic relaxation, 
such as the Metropolis algorithm, when either p or q is less 
than one. An efficient steepest descent algorithm may be 
used when p , q  2 1 [5]. 

3. GGMRF PARAMETER ESTIMATION 
Shape parameter estimation for the GGMRF model is cru- 
cial for higher quality image restoration. Without appropri- 
ate parameter settings, the image and blur priors will bias 
the restoration solution to some nonsense result. The key 
model values of equation (3) which control image structure 
are the shape parameter, p ,  and neighborhood influence 
parameters, b,,t (corresponding parameters in equation (4) 
are q and cs , t ) .  The value of p controls image edge activ- 
ity, while b,,t values determine image correlation structure. 
Though it is difficult to obtain good parameter estimates 
from a degraded image, it is often possible to find an ensem- 
ble of images similar to the desired true image. Estimates 
from this ensemble can then be used in restoring the de- 
graded image. This ensemble approach has been used with 
a sample kurtosis based p estimator, and has been shown to 
produce better restoration results than when an arbitrary 
p value is used [6] [7]. 

In this section we demonstrate the effectiveness of the 
coding method for GGMRF neighborhood influence param- 
eter estimation. We will show that the maximum likelihood 
(ML) coding estimator for Gauss Markov random fields 
(GMRF) works surprising well when applied to GGMRF 
images. This is true even though the method is not a true 
ML estimator in the GGMRF case. 

The conditional density function for a Gauss Markov 
random field can be expressed in a form similar to the 
GGMRF model of equation (3), 

where 6, is the neighborhood of s. It can be shown [8] that 
this representation is equivalent to a form used by Kayshap, 
Chellappa and others [9] 

The advantage of equation (7) is that well known tech- 
niques are available for estimating &. The relationship be- 
tween Bt and our neighborhood influence parameters, b,,t, 
is et = e. Thus, given a method to  estimate e t ,  

we can use it to estimate b,,t in a GMRF. 
The coding method was introduced by Besag [lo], and 

later updated by Kashyap and Chellappa [9]. We adopt the 

t E 6 )  k t  
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Chellappa notation in this discussion. The main idea of the 
coding method is to separate the lattice set S into several 
disjoint sets, S ( k ) ,  called codings, such that no two sites in 
one S(') are neighbors, and where S = U S(') U. . . S('? 
Figure 2 shows the codings for a first-order system. 

Figure 2. Coding for the Four-neighborhood (First-order) 
System. All pixels designated with the same number belong 
to a single coding. 

Since within a single coding no pixels are neighbors, 
and thus their conditional distributions are independent, 
we may write 

p( f (k )  18) = P ( f P  I ft,Vt E &,e) ,  (8) 
S E S "  

where all f,(') on the neighborhood are mutually indepen- 
dent, and 8 = [e,, 82,. . . , 8lslIT. Maximizing equation (8) 
with respect to 8 gives the ML coding estimate, O k .  The 
arithmetic averagz of the estimate over all codings yields 
the final value of 8. 

F2r a first order zero mean GMRF, the coding estimate 
for 8 k  is the solution, with respect to 8, of the linear system 

h 

A8 = x, where (9) 

and where f E S(')). In this equation we have used a relative 
position index, r n ,  to neighbor pixel t = s + rn.  For a first- 
order neighborhood, rn = {rg = (O,O) ,  T I  = (0, l), r2 = 
(0,-1), r3 = (-l,O), ~4 = (l,O)}. This is illustrated in 
Figure 3. 

ML estimation of bs,t for a GGMRF with p # 2 is an un- 
solved problem because the partition function, Zf, depends 
on these parameters in an unknown way that cannot eas- 
ily be evaluated. Lacking a direct solution, we hypothesize 

Figure 3. First-Order Neighborhood System For the Coding 
Method. 

that the ML coding estimator for neighborhood influence 
parameters in a GMRF is an acceptable approximation for 
the corresponding parameters in a GGMRF for p M 2. The 
remainder of this section presents an experimental evalua- 
tion of this hypothesis. It is shown that for 0.8 5 p 5 2.6, 
the first-order GMRF codling estimate of equation (9) pro- 
vides surprisingly accurate estimates of bS,t for a GGMRF. 

The experimental procedure involved generating a vari- 
ety of synthetic GGMRF random fields with known shape 
and neighborhood influence parameters. Estimator results 
were then compared with the known values. Seven different 
shape parameter values, p = 0.8, 1.1, 1.4, 1.8, 2.0, 2.2, and 
2.6, (covering the range of values that we have commonly 
used in restoration applications), and four sets of neighbor- 
hood influence parameters were used in all possible combi- 
nations to generate the test image set. Chen's algorithm 
was used for image synthesis 1111. For notational conve- 
nience we define an augmented influence parameter matrix 

Figure 4 shows an example of the four different images gen- 
erated using different influence parameters (a1 . . . B4) as 
defined in Table ?? while 17 is fixed at  1.1. 

Table 1 presents the estimation results for the p = 1.1 
case. Note that even though p is much different than the 
GMRF value of p = 2.0, each estimated influence parameter 
(weight) was correct to within 0.02. This was the maximum 
estimation error over all trials, for all combinations of p and 
B. These results demonstrate that the proposed coding 
method, though designed for GMRF images, is an excellent 
neighborhood influence parameter estimator for GGMRF 
images. 

An example of blind restoration using estimated neigh- 
borhood influence paramet,ers is presented in Section 4.. 

4. SPACE OBJIECT RESTORATION 
EXAMPLES 

This section presents examples of GGMRF blind restora- 
tion of a satellite and an *asteroid image degraded by A 0  
residual blur. These results demonstrate the potential of 
the new method for high resolution recovery of space ob- 
jects in partially corrected A 0  multiframe sequences. 
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Figure 4. Synthetic GGMRF Images for Shape Parameter 
p = 1.1. a)[Top Left] true neighborhood influence matrix, 
B1, b)[Top Right] B2, c)[Bottom Left] B3, d)[bottom Right] 
B4. 

For the first example, a series of five partially corrected 
A 0  star images were used as the blurring psf’s, and noise 
was added at a level of 20 dB peak SNR. Each observed 
frame is 64 by 64 pixels. Figure 5 shows the true image a t  
high resolution (128 by 128 pixels), one of the five observed 
frames for reference, and the steepest descent algorithm re- 
sult. GGMRF models were used for both the object and the 
psf’s, with p = 1.1 and q = 2.5. The object model was fist 
order, while the blur psf model was second order to impose 
more smoothness in blur estimates. Note that though the 
solution is noisy due to low observation SNR, much of the 
satellite structure is recovered. Figure 6 shows the blur esti- 
mates corresponding to Figure 5. It is noteworthy that the 
central peak structure of the psf’s are correctly estimated, 
though there is error in the random halo structure due to 
the low SNR. The low level structure has been emphasized 
in this figure by using a logarithmic grayscale. 

The second example demonstrates use of estimated 
neighborhood influence parameters in restoring an image 
of asteroid Ida obtained by a spacecraft close fly-by. The 
original image is shown in Figure 7a. Three distinct A 0  
residual blurs were synthesized using randomized realiza- 
tions of Drummond’s Lorentzian model [3], and then used 
to blur Figure 7a. Figure 7b shows one of the three ob- 
served frames, generated by convolving the original image 
with one frame of the blur model. Figure 7c is the GGMRF 
restoration result obtained with a first-order uniform neigh- 
borhood model for f ,  p = 1.1, a second order model for H, 
and q = 3.0. Note the significant recovery of detail in Fig- 
ure 7c as compared to 7b. 

The original asteroid image was processed using the cod- 
ing method to estimate neighborhood influence parame- 
ters. The computed values were 81 = 62 = 0.339, and 
83 = 84 = 0.164. The restoration using these parameter 
values, shown in Figure 7d, recovers slightly more detail 
than the restoration using a uniform neighborhood influ- 
ence parameter. 

True Weight Matrix 
I3 

0.250, (-1,O) 
0.250, (0 , l )  

0.250’ 1 
L 0.250, (0,-1) ] 

0.250, ( 1 , O )  
0.250, ( -1 ,O)  

13’ = [ -.250, (0 , l )  ] 
-.250, (0, -1) 

0.083 ( 1 , O )  
0.083, (-1,O) 

13’ = [ 0.417, (0 , l )  ] 
0.417, (0, -1) 

0.000, ( 1 , O )  
0.000, (-1,O)  

B4 = [ 0.500, (0 , l )  ] 
0.500, (0, -1) 

Estimated Weight Matrix 
f i  

0.270, (1,O) 
0.251, (-1,O) 

0.258, (0, -1) 

0.258, (1,O) 
0.258, ( -1 ,O)  

-.263, (0, -1) 

0.080, 
0.075, 
0.425, 
0.432, 

-.006, 
-.005, 
0.486, 
0.500, 

Table 1. GGMRF Neighborhood Influence Parameter Esti- 
mation, p = 1.1. 

Figure 5. Steepest descent GGMRF restoration of synthetic 
Satellite data with 20 dB peak SNR. a) [left] High resolution 
(128 x 128) true object. b) [middle] An example observa- 
tion frame (64 x 64). c) [right] Restored image, 40x40 pixel 
window. Parameter settings were p = 1.1, q = 2.5, y = 0.2, 
X = 200, a = 0.001, and 1,000 iterations. 
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Figure 6. Blur estimates for synthetic Satellite data. a) 
[left] True blur psf’s. b) [right] Blur estimates. 

5. CONCLUSIONS 

The two experimental examples presented above, along 
with many others not included here due to space limita- 
tions, show the GGMRF algorithm is a promising tool for 
blind restoration of A 0  images of space objects. We further 
conclude that estimated neighborhood influence parameters 
are appropriate in this class of images for GGMRF blind 
restoration. Restoration is marginally improved as com- 
pared with an arbitrary uniform first-order neighborhood 
influence parameter matrix. Further work is needed to eval- 
uate algorithm effectiveness for images without dominant 
edges (e.g. nebula and galaxies) where the blur and image 
GGMRF models may have similar parameter values. 
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