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Abstract

L-Band observations at the Green Bank Telescope (GBT) and other radio observatories are often made in frequency

bands allocated to aviation pulsed radar transmissions. It is possible to mitigate radar contamination of the astronomical

signal by time blanking data containing these pulses. However, even when strong direct path pulses and nearby fixed

clutter echoes are removed there are still undetected weaker aircraft echoes present which can corrupt the data. In a

previous paper we presented an algorithm to improve real-time echo blanking by forming a Kalman filter tracker to

follow the path of a sequence of echoes observed on successive radar antenna sweeps. The tracker builds a history

which can be used to predict the location of upcoming echoes. We now present details of a new Bayesian detection

algorithm which uses this prediction information to enable more sensitive weak pulse acquisition. The developed track

information is used to form a spatial prior probability distribution for the presence of the next echoes. Regions with

higher probability are processed with a lower detection threshold to pull out low level pulses without increasing the

overall probability of false alarm detection. The ultimate result is more complete removal, by blanking the detected

pulse, of radar corruption in astronomical observations.

Index Terms

RFI mitigation, radar RFI mitigation, Kalman tracking, Bayesian detection.

I. INTRODUCTION

Radio astronomers must often share spectrum with other licensed radio services when observing deep space

objects. For example, though the neutral Hydrogen emission line at 1,420.4 MHz lies in a protected band, moderate

red shifting seen in distant sources can move the signal into the 1,230-1,350 MHz range where many high power

air surveillance radar transmitters operate. These impulsive sources are ever present. Even when the telescope is
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located in a radio quiet zone surrounded by mountains blocking the direct line of sight signal path, echoes from

aircraft hundreds of kilometers away can corrupt sensitive observations [1], [2], [3].

This paper reports on efforts to mitigate radar interference at the NRAO Green Bank observatory in West Virginia.

Pulses from the ARSR-3 surveillance radar located 104 km to the south southeast have corrupted Green Bank

Telescope (GBT) observations at 1,292 MHz even when signals arrive in the telescope deep sidelobes. Since radar

transmissions are impulsive with a relatively low duty cycle, the customary mitigation approach is to “blank” or

excise data samples containing corrupting echo pulses. The remaining data is still suitable for long integration

power spectrum analysis. The challenge lies in detecting interfering pulses so that they can be removed.

In a previous companion paper [4] we proposed a Kalman tracker to follow a sequence of aircraft echo detections

seen at a radio telescope. The track history was used to guide real-time predictive blanking. It was also suggested

briefly that track information could be used to improve detection performance. In this present paper we further

develop that concept, present a detection theoretic basis for a new Bayesian detection method, and analyze detection

performance improvement using Monte Carlo simulation. We refer the reader to [4] for a more detailed description

of the interfering radar signal characteristics and Kalman tracker implementation.

The principal advantage of the proposed Bayesian method is that it enables detection of weaker echoes than is

possible using conventional methods. This can improve track quality by reducing the number of missed detections

arising from normal random fluctuations in aircraft radar cross section (and thus echo intensity). Furthermore,

since in radio astronomy we are interested in signal levels below the noise floor, weak undetected echoes can still

have higher instantaneous power levels than the signal of interest, and can thus bias observations. Any method

that improves weak echo detection can potentially reduce the amount of corrupted, unblanked data used in signal

analysis.

In the proposed detection algorithm, Kalman track histories consisting of a series of detected echoes from each

aircraft are used to form a spatially dependent prior probability model for echo arrival. This prior distribution

enables the Bayesian detector approach which increases probability of echo detection (PD) without increasing the

effective probability of false alarm (PFA, i.e. the probability of declaring an echo detection when none is present).

The sampled radio telescope signal is first processed by a conventional radar digital matched filter receiver to

produce a complex baseband time series, b[n]. Details for the radar receiver design are found in [5] and [4]. Receiver

output b[n] is reordered for detection processing to form a 2-D range-azimuth map b(R, θ) as shown in Figure 1.

Each column of pixels contains receiver output samples from one transmitter pulse interval. Each time sample n

maps to a corresponding point in space p located at the center of a range-azimuth bin (or pixel). The midpoint of

bin p has Cartesian coordinates (xp, yp) and polar coordinates (Rp, θp). In expressions where geometrical position

is more meaningful than time sample index, bp will be used interchangeably with b[n], and serves as a shorthand

notation for bin p in the range-azimuth map, b(Rp, θp).

Detection processor outputs are used both to guide blanking and as inputs to the Kalman tracker (see [4]). The

tracker creates detection histories and predicts locations for the next anticipated echoes. These prediction points are

utilized in turn by the Bayesian detector as prior probability inputs to adjust detection sensitivity as a function of
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spatial position.

Sections II and III present the underlying probability models and theoretical algorithm development respectively

for the proposed Bayesian detector. Experimental results demonstrating performance are found in Section IV,

followed by conclusions in Section V. Prior conference publications providing partial results are [6] and [7].

II. PROBABILITY MODELS FOR THE BAYESIAN-KALMAN DETECTOR

This section develops statistical models for the prior probability of the presence of an aircraft radar echo given

the Kalman tracker history. These models will be exploited in Section II to form a new algorithm which improves

the probability of detecting weak echo pulses for a given fixed rate of false alarms. The approach is founded on

fundamental statistical decision theory principles and provides a unified framework for incorporating information

from a Kalman tracker state space estimate into a constant false alarm rate detector. A new detection statistic, “total

false alarm probability” (PTFA) will be introduced and used as an optimization criterion to derive the algorithm.

The method is general and can be applied to any sequential detection problem possessing a dynamical state space

model suitable for a Kalman tracker. The discussion here however will focus on the application of locating radar

aircraft echoes in radio astronomy data.

Within a single range-azimuth bin (Rp, θp) consider the problem of deciding whether to accept the hypothesis

that random event Hp: “an aircraft echo is present in bin p” or its complement H̄p: “no echo is seen in bin p,”

has occurred. The associated event probabilities are P (Hp) and P (H̄p) = 1− P (Hp). The classical radar detector

makes this decision using a Neyman-Pearson (N-P) likelihood ratio test by comparing bp with a fixed threshold1

to achieve maximum probability of detection (PD) while enforcing a specified constraint probability of false alarm

(PFA) [8]. This is a reasonable approach in the usual case when it is difficult to assign meaningful costs to each

decision or when prior probabilities for Hp are unavailable.

However the Kalman track state history contains information that can be interpreted, if an appropriate model

can be found, as a prior probability for presence of an echo. Echoes are more likely in a region S surrounding a

point where the tracker predicts an echo will occur, than in the rest of the range-azimuth map. The classical Bayes

decision criterion seems a likely candidate to exploit this knowledge, but again we do not have the required cost

measures in our radar detection problem [9]. The proposed algorithm addresses this issue and is structurally related

to both the Bayes and Neyman-Pearson criteria.

A. Kalman Tracker Notation

This section reviews a few equations and notation from [4] which are necessary in developing the Bayesian

detector. For simplicity the following discussion is limited to detections from a single track formed by a series

of echo detections from one aircraft. However, as implemented the system manages multiple simultaneous tracks.

1When statistics for noise and echo clutter are varying, a common implementation for constant false alarm rate (CFAR) detection scales the

fixed threshold by a local estimate of noise variance. This is effectively a time varying threshold detector, but does not adjust the threshold

according to probability of echo presence as does the proposed algorithm.
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Assume the kth radar transmit antenna rotational pass over the radio telescope occurs nominally at time t[k]. This

yields an aircraft echo detection, referred to as “snapshot k.” All quantities that are updated on a once-per-snapshot

basis will be represented with a [k] argument. For example, the sampled position for a single aircraft detected in

snapshot k is expressed as (R, θ)[k] or (x, y)[k].

The desired tracker outputs at snapshot k are: 1) a prediction point, (x̂, ŷ)[k + 1|k], where the next detection is

expected, and 2) shape parameters for region S centered on this point (see Figure 2 and Section II-B). S specifies

an area likely to contain the aircraft echo during succeeding snapshot k + 1. The “hat” notation, ,̂ will be used

throughout to indicate an estimated or predicted quantity. An argument [k + 1|k] indicates a predicted value for

snapshot k + 1 based on observations up to and including k, while [k|k] indicates a “correction” or smoothed

estimate of the true value at time k based on observations through snapshot k. The size of S depends on the quality

of the track and gets larger with an increase in observation noise, missed snapshot detections, or rapid acceleration

of the target. S is also used to define the blanked region for predictive real-time blanking, to determine which

track each new detection is associated with, and as the boundary for the region of increased prior probability for

an arriving echo pulse used in the Bayesian detection scheme.

For an existing track, each new observation snapshot initiates an iteration of the Kalman filter which produces

an updated state vector prediction, x̂[k + 1|k], and prediction error covariance matrix P [k + 1|k]:

x̂[k + 1|k] = F x̂[k|k] (1)

P [k + 1|k] = FP [k|k]F T + GQGT , where (2)

x[k] =
[
x[k] y[k] ẋ[k] ẏ[k]

]T

and where x and y are a single aircraft’s coordinates, ẋ and ẏ are corresponding velocities, F is the state transition

matrix, G is the process transfer matrix, Q is the process acceleration matrix, and T denotes matrix transpose.

Further details are found in [4].

The prediction point (x̂, ŷ)[k +1|k] is given by the first two elements of x̂[k +1|k] in (1). Its accuracy is gauged

using P [k + 1|k] from (2). With this prior information, it is reasonable to assume that for the snapshot at time

t[k + 1], echo detections have higher probability near the prediction point.

B. Echo Arrival Probability Model

We propose using uncertainty region S as the basis for a spatial prior probability density function (pdf) model

for the presence of an aircraft echo in snapshot k + 1. A few terms must first be defined before this model can be

introduced.

Assume that for each existing track exactly one echo will occur (with probability one) during snapshot k + 1

somewhere in an annular slice region

Ω =


(x, y)

∣∣∣∣∣∣
x = R cos θ and y = R sin θ where

Rmin ≤ R ≤ Rmax, θmin ≤ θ ≤ θmax
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containing all range-azimuth bins of interest. The {(x, y) | expression } notation defines the set of all (x, y) pairs

satisfying the expression. The single echo assumption implies that as far as the probability model is concerned, an

established track will always produce an aircraft echo during each new antenna pass as long as the track remains in

Ω. Cases of aircraft dropping out of the airspace due to landing or other events are neglected. These contingencies

are handled by track management logic which will drop a track after a series of snapshots which produce no

detections [4].

Prediction region S is defined by the quadratic matrix form for an ellipse

S =
{
(x, y)

∣∣ [x − x̂, y − ŷ]P−1[x − x̂, y − ŷ]T ≤ β2 and (x, y) ∈ Ω
}

(3)

where ∈ denotes “element of,” and (x̂, ŷ) = (x̂, ŷ)[k + 1|k] and P = P [k + 1|k] are used with the snapshot

dependence dropped to simplify notation. S is centered on (x̂, ŷ)[k + 1|k] and has size, elongation, and orientation

determined by P [k + 1|k]. User defined parameter β controls the scale (size) of S relative to the error variances

in P .

Larger prediction error variance in P [k +1|k] leads to a larger S, representing increased uncertainty as to where

the next radar echo will be detected. Figure 2 illustrates this behavior. The plot shows track evolution for real GBT

data over five snapshots for a dense scene with multiple overlapping aircraft tracks. The ellipses represent S for

each established track. Note the variety of sizes corresponding to variations in track quality.

Due to the assumption of a single echo per track - per rotational pass of the transmit antenna, we can inter-

changeably refer to the presence of an aircraft or its associated echo. Based on the antenna directional beamwidth

(including sidelobes) and the transmit pulse length, shape and repetition rate, this echo spans many range-azimuth

map bins covering many transmit pulses. Note that in this definition an echo is a collection of individual pulse

returns, not just one pulse reflection. The echo thus has a footprint F , or region of support, due to the effective

point spread function in the range-azimuth map as can be seen in Figure 1. This footprint has fixed size in (R, θ)

dependent on transmit beampattern and pulse shape. The echo may or may not be detected in any of these bins,

depending on echo amplitude, local noise sample statistics, and the detection algorithm. Figure 4 illustrates the

geometry of S, F , and a range-azimuth bin in (R, θ) and (x, y) coordinate systems.

Let fe(x, y | x̂, ŷ,P ) be the conditional density over (x, y) for the echo footprint centroid point (i.e. the actual

aircraft position) given parameters defining S. The probability the centroid is contained in some arbitrary 2-D patch

A is then given by
∫∫

A
fe(x, y | x̂, ŷ,P )dxdy. We propose the following pdf mixture model involving a truncated

2-D Gaussian term

fe(x, y | x̂, ŷ,P ) = (4)


1−PS
CΩ

√
x2+y2

+ 1
2πσ2|P | exp

(− 1
2σ2 [x − x̂, y − ŷ]P−1[x − x̂, y − ŷ]T

) (x, y) ∈ S

1−PS
CΩ

√
x2+y2

(x, y) ∈ S̄.
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The notation S̄ indicates the complement of region S such that Ω = S ∪ S̄ where ∪ is set union. The notation

f(·) will be used throughout the paper to denote any pdf, and subscript e here identifies this as an echo centroid

distribution over space. Figure 3 presents an example realization for this pdf.

User defined parameter σ controls how concentrated fe(x, y | x̂, ŷ,P ) is around its central peak. The remaining

terms in (4) are defined as

PS =
∫∫

S

1
2πσ2|P | exp

(
− 1

2σ2
[x − x̂, y − ŷ]P−1[x − x̂, y − ŷ]T

)
dxdy (5)

= 1 − e−
β2

2σ2 (6)

CΩ =
∫∫

Ω

1√
x2 + y2

dxdy, =
∫∫

Ω

dRdθ

= (Rmax − Rmin)(θmax − θmin)

where |P | is the matrix determinant of P . Equation (5) was evaluated by substitution of (3) for S, using x = αρ cos θ

and y = ρ sin θ, setting (x̂, ŷ) = (0, 0), and solving in polar coordinates to obtain (6). The probability the echo

centroid is anywhere within S is given by P (HS) =
∫∫

S fe(x, y | ·)dxdy =
∫∫

S
1−PS

CΩ

√
x2+y2

dxdy + PS ≈ PS . The

approximation is due to the Gaussian term in (4) dominating the expression. Outside of S we assume each range-

azimuth bin is equally likely to contain the echo centroid. This assumption is made to force a constant threshold,

and thus conventional constant PFA performance outside of S in the Bayesian detection framework introduced in

the following section.

The area of a bin is proportional to R, which necessitates that over S̄, fe(x, y | x̂, ŷ,P ) must be proportional

to 1/
√

x2 + y2 = 1/R. Dividing by CΩ in (4) normalizes the integral to this bin area growth with R. Problems

with division by zero are avoided since in every practical case Rmin � 1. Note also that this definition insures that∫∫
Ω

fe(x, y | x̂, ŷ,P )dxdy = 1 as required for a pdf.

This model is a reasonable choice because it possesses the following necessary characteristics:

• fe(x, y | x̂, ŷ,P ) decreases monotonically with distance from the prediction point.

• Over S it is a smooth function with no discontinuities.

• The shape of fe(x, y | x̂, ŷ,P ) depends on prediction error covariance, P [k +1|k], such that higher prediction

error leads to lower probability density.

• There is a low, uniform probability across all range-azimuth bins outside the prediction region for presence of

the echo centroid.

C. Calculating Prior Probability P (H̄p)

Given the echo centroid pdf model, fe(x, y | x̂, ŷ,P ), it is possible to solve for the probability P (Hp) that the

echo footprint intersects range-azimuth bin p.

Let Ap be the 2-D patch which covers bin p and which has midpoint (xp, yp) = (Rp cos θp, Rp sin θp). Uniform

sampling in Rp and θp yields non uniform spacing in (x, y), so the size and orientation of Ap depend on Rp and
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θp as shown in Figure 4, and must be considered when computing P (Hp). Define Fq as the footprint region for an

echo with centroid at another arbitrary bin q. All bins q where Fq intersects Ap contribute to the probability P (Hp)

of an echo in bin p. The probability that the echo centroid is in bin q is given by
∫∫

Aq
fe(x, y | x̂, ŷ,P )dxdy. Thus

the probability that any portion of the echo footprint is contained in bin p is given by

P (Hp) =
∑

{q |Ap∩Fq �=φ}

∫∫
Aq

fe(x, y | x̂, ŷ,P )dxdy (7)

where φ is the empty set and ∩ denotes intersection. Point (xp, yp) is at the approximate centroid of a region F̆p

defined as the area covered by the union of all Fq that satisfy Ap ∩ Fq �= φ, i.e. all Fq that overlap Ap.

When F̆p is small2 compared to S the local surface of fe(x, y | x̂, ŷ,P ) around (xp, yp) is well approximated

by a plane. Since all bin patches Aq in this region are approximately the same size as Ap, and the average of a

function of constant slope over a symmetric planar region is found at its centroid, (7) can be approximated as

P (Hp) ≈
∑

{q |Ap∩Fq �=φ}

∫∫
Ap

fe(x, y | x̂, ŷ,P )dxdy (8)

≈
∑

{q |Ap∩Fq �=φ}
αpfe(xp, yp | x̂, ŷ,P ) (9)

≈ Kαpfe(xp, yp | x̂, ŷ,P ) (10)

where αp =
∫∫

Ap
dxdy is the area of patch Ap and K is the number of bins, indexed by q, satisfying {q |Ap∩Fq �=

φ}. The approximations are due to integrating over Ap rather than Aq and assuming fe(x, y | x̂, ŷ,P ) is constant

over small patch Ap in (8).

Thus substituting (4) into (10) yields

P (Hp) ≈




Kαp(1−PS)

CΩ
√

x2
p+y2

p

+ Kαp

2πσ2|P | exp
(− 1

2σ2 [xp − x̂, yp − ŷ]P−1[xp − x̂, yp − ŷ]T
) (xp, yp) ∈ S

Kαp(1−PS)

CΩ
√

x2
p+y2

p

(xp, yp) ∈ S̄

(11)

P (H̄p) = 1 − P (Hp). (12)

The specific pulse repetition and antenna sweep rates of the ARSR-3 radar as observed at the GBT, coupled with

our baseband sample rate for b[n], lead to range-azimuth bin widths of ∆R ≈ 13.87m and ∆θ ≈ 0.0015 radians.

This yields αp ≈ ∆θ∆RRp = 0.0208Rp.

2We have found that F̆p is usually smaller than S in practice, due to the short range extent of echoes, and particularly when only the transmit

beampattern mainlobe is considered to be part of the echo footprint Fq . Some very bright echoes have sidelobe extent in azimuth that could

extend beyond S (see Figure 1), but excluding these from Fq is reasonable since we do not wish to emphasize detection of sidelobes in any

case.
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III. BAYESIAN DETECTOR ALGORITHM DEVELOPMENT

This section presents details of the proposed improved detection algorithm which is based on a new optimal

detection criterion, “constant total false alarm probability.”

A. Detection Statistic Model

The goal of radar detection is to observe digital receiver output time series b[n] (equivalently bp) and make a

decision at each time sample (equivalently range-azimuth bin p) whether an echo is present. For a single bin p, bp

is a random variable with conditional amplitude pdf’s fb(bp | H̄p) and fb(bp |Hp), given the absence or presence

of an echo respectively. Note that while fe(x, y |·) is a distribution over space, fb(bp | ·) describes an amplitude, or

voltage distribution.

Digital receiver output bp is formed as the sum of the squares of the real (in phase) and imaginary (quadrature)

baseband matched filter channels, each of which contains independent additive Gaussian noise [10]. As such, bp

consists of the sum of two squared Gaussian random variables, so bp/ση (where σ2
η is the noise variance for both

the real or imaginary channels) has a central chi-squared (χ2
2) distribution with two degrees of freedom under H̄ ,

and noncentral χ2
2 under H as illustrated in Figure 5 [8][11]. In many communications texts vp =

√
bp is used as

the detection statistic, and it is shown to have a Rice distribution,

fv(vp|Hp) =
vp

σ2
η

I0

(
vp|s|
σ2

η

)
e
− v2

p+s2

2σ2
η

where I0(·) is the zero-th order modified Bessel function of the first kind and noncentrality parameter s is

proportional to echo signal power [10]. The following discussion uses bp as the detection statistic, but a parallel

development could also be presented using vp by simply taking the square root of each side of every threshold test

inequality.

B. Related Detector Structures

This section discusses some well known detector architectures as a brief tutorial background and to motivate

design choices for the new method. The intent is to show that the Bayesian constant PTFA detector introduced in

equations (19) - (21) below can be interpreted as a natural extension of familiar concepts.

The famous Neyman-Pearson (N-P) detector uses the following likelihood ratio test:

fb(bp |Hp)
fb(bp | H̄p)

H
>

<
H̄

τ ′
NP (13)

where the stacked inequality denotes “decide Hp if the left hand side is greater than τ ′
NP, otherwise choose H̄p.”

Since the likelihood ratio is monotonic in b for these particular pdf’s, (13) is equivalent to a simple direct thresholding

of the receiver output:

bp

H
>

<
H̄

τNP (14)
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where τNP is a function of the constant threshold τ ′
NP. The associated probability of false alarm (detecting an echo

when none is present) is defined as

PFA =
∫ ∞

τNP

fb(bp | H̄p)db. (15)

The usual approach for establishing the threshold level is to fix PFA to some suitably small constant and then solve

(15) for τNP. Note that PFA is defined conditionally under H̄ and that the integrand comes from the denominator

of the left hand side of (13).

The simple NP test does not provide a mechanism for exploiting prior probability information obtained from the

tracker. One possible alternative is the Bayes decision criterion [9] [12]

P (Hp) fb(bp |Hp)
P (H̄p) fb(bp | H̄p)

H
>

<
H̄

CH,H̄ − CH̄,H̄

CH̄,H − CH,H
= τ(C) (16)

where constants CI,J for I, J ∈ {H̄,H} are costs (also called Bayes loss) associated with deciding I when J

is true, and C = {CH̄,H̄ , CH̄,H , C1,H̄ , CH,H}. Unfortunately, (16) has some disadvantages. We do not have a

satisfactory systematic approach to specify the costs. Also it is not clear how to frame this in the desired direct

thresholding form of (14).

To illustrate the difficulty, note that the left hand side of (16) is still monotonic in bp and that τ(C) is a constant

(though dependent on C). This suggests that a corresponding threshold test comparable to (13) would be

fb(bp |Hp)
fb(bp | H̄p)

H
>

<
H̄

P (H̄p)
P (Hp)

τ(C) = τ(p, C). (17)

Now threshold τ(p, C) depends on position p since P (H̄p) and P (Hp) are spatially varying. In this Bayesian

framework the direct threshold form corresponding to (14) is found by defining the likelihood ratio function L(b) =

fb(b |Hp)/fb(b | H̄p) and operating on the left and right hands sides of (17) with the functional inverse L−1(·) to

obtain

bp

H
>

<
H̄

L−1
(
τ(p, C)

)
= τ ′(p, C). (18)

The problem with this formulation is that although it is in fact the desired direct test on receiver output sample bp,

we do not know how to evaluate threshold τ ′(p, C). In a typical scenario all the CI,J are unknown. Also L−1(·)
depends on fb(τ(p, C) |Hp) which unlike fb(τ(p, C) | H̄p) is hard to model because aircraft echoes have unknown

random intensities. One cannot readily find the appropriate threshold value because we cannot use the constant

PFA constraint of (15) to avoid these complexities and still satisfy the desired Bayesian relationships of (16).

C. Constant PTFA Detection

We propose an alternative Bayesian framework for improved detection performance to address the problems

mentioned above, and which is based on a physically meaningful criterion related to specifying a fixed PFA. We
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define the unconditional “total probability of false alarm” (PTFA) as the joint probability that a spatially varying

threshold, τp, was crossed and no echo was present,

PTFA = P ((bp > τp) ∩ H̄p)

=
∫ ∞

τp

P (H̄p) fb(b | H̄p) db (19)

= P (H̄p)PFA.

This is the total probability (i.e. not conditioned on H or H̄) that a false alarm will occur at range-azimuth bin p

given some τp.

Equation (19) provides a means to solve for an appropriate threshold for a direct test in the form of (14) or(18),

but which incorporates the prior information P (H̄p) drawn from the Kalman track history through equations (11)

and (12). Note that τp �= τ ′(p, C) �= τNP so the detector is neither N-P, nor classical Bayes decision criterion, but

depends on the Bayes relationship used in (19).

Spatially varying τp is found by specifying a fixed value for the acceptable PTFA and solving (19) for τp in

closed form:

τp = −σ2
η log

(
PTFA

P (H̄p)

)
(20)

where PTFA is specified by the user to be some small constant, P (H̄p) is given by (11) and (12), and 2σ2
η is the

complex noise variance for b[n].

This is not the same test as in (16). One obvious distinction is that costs Ci,j are not included since the threshold

is set by solving a PTFA equation. Some insight is provided by noting that (19) uses the left hand side denominator

of (16) as an integrand, just as (15) integrates the denominator of (13). Also, we propose that constant PTFA

detection is a rational solution given that the expected total number of false alarms will be known over the range

azimuth map. This is set as a design parameter. On the other hand, a fixed PFA detector will have varying numbers

of false alarms as P (H̄) varies. The computational load for a radar detection system is proportional to the number

of threshold crossings, so being able to fix the average number of false alarms can be a useful constraint on system

capacity.

Summarizing, the constant PTFA detector (CTFA) is computed with the following steps:

1) Set PTFA = a small constant.

2) Evaluate (20) to find the spatially varying τp at each range-azimuth bin, b(xp, yp).

3) Threshold each bin:

bp

H
>

<
H̄

τp. (21)

The effect of this approach is that the threshold is lowered in the prediction regions S where based on prior track

history it is known that echoes are more likely. This leads to more reliable detection of weak aircraft echoes. By

proper selection of parameters PTFA, β, and σ, the probability of detection PD =
∫ ∞

τp
fb(bp|Hp) is increased while
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false alarms are kept low, as shown in Figure 5. Figure 6 illustrates the variable threshold τp plotted as a function

of x and y for two prediction regions from two tracks. Note that the lower quality track has a wider prediction

region (right), leading to a more shallow threshold depression. This corresponds to greater uncertainty about the

next echo location, so less emphasis on detection is generated here. Note however that in both cases the threshold

reduction is relatively small (less than 0.5% in this example) as a natural consequence of the way the constant

PTFA detector is defined. However, since it is applied over many bins, even such a small change in threshold can

have a significant effect on detection statistics, improving the probability of finding a threshold crossing in at least

one bin of the echo footprint. This is demonstrated in results presented in the following section. With this small

threshold depression PD is increased while avoiding the potential problem of forcing a detection in S whether an

echo is present or not.

As noted earlier there are often multiple concurrent aircraft tracks in Ω, each with a prediction region and

associated computed threshold levels τp. This potential conflict is handled as follows. Let τp,j be the threshold

computed for the pth range-azimuth bin using Sj from the jth track. A single threshold test is made for each bin

as in (21) where

τp = min
j

τp,j . (22)

This method was used in Figure 6. The set of threshold crossings is then processed with the CLEAN algorithm

[13] to collapse the sidelobe structure to a single point, and each cleaned detection is assigned to an existing or

new track following arbitration rules described in [4].

IV. EXPERIMENTAL RESULTS

A. Performance Evaluation with Simulated Data

It is very difficult to quantitatively characterize detection performance using real-world data because relevant

signal properties such as signal to noise ratio (SNR) and absence or presence of an echo are unknown. We have

developed a realistic echo synthesis code to generate data used in Monte Carlo simulation trials to estimate detection

properties such as probability of detection (PD) and probability of false alarm (PFA) as functions of SNR and

aircraft motion dynamics. The new Bayesian detector is shown to improve PD for a fixed PFA as compared with

the conventional approach, thus validating the strategy of detector design based on constant PTFA.

The simulator generates a time sequence b[n] of receiver outputs with the following properties:

• Receiver sensitivity, IF bandwidth, data sample rate, and antenna sidelobe gain response all approximately

match those used to collect radar data at the GBT.

• Transmitter pulse length, pulse shape, pulse repetition rate, antenna sweep rate, and transmit beamwidth

approximate those of the ARSR-3 radar system as discussed in [14], [15], [5], [4].

• Additive white Gaussian noise (AWGN) is used with variance ση
2 matching sample variance estimated from

real radar-echo-free GBT data.

• In order to eliminate problems in associating new detections with their corresponding tracks, there is only one

simulated echo track in each randomly generated trial observation.
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• Realistic aircraft motion is simulated using the Kalman state space model with acceleration a(k) generated

as a lowpass filtered 2-D Gaussian i.i.d. random noise process. The lowpass corner frequency is adjusted to

produce smoothly connected random maneuvers with turn radii consistent with commercial aircraft.

• The pulse echo amplitude follows a Swirling IV distribution model suitable for a square law receiver [16].

Received pulses have constant mean amplitude throughout an entire scan, but are uncorrelated from pulse to

pulse. The echo amplitude pdf is given by

fΣ(σ) =
4σ

σ2
av

exp(− 2σ

σav
) (23)

where subscript Σ denotes the Swirling pdf, σ is the random radar cross section (RCS) value, and σav is the

average RCS over all target fluctuations.

A Monte-Carlo simulation was used with repeated random trials to evaluate PD vs. PFA in order to estimate the

receiver operating characteristic (ROC). When comparing the new Bayesian algorithm with a conventional detector

one must carefully consider the differences in how false alarms arise. As defined in (15), PFA only depends on the

noise power and a threshold τNP with fixed value over the entire range-azimuth map. However, the new algorithm

improves PD at the cost of a slight local false alarm rate increase inside S. To be fair, a comparison of PD between

algorithms must be made when each has the same effective total PFA value. For Figure 7 the “Probability of False

Alarm” values along the horizontal axis represent actual observed error counts across a series of range-azimuth map

random realizations, divided by the number of trials and the number of bins (pixels) in a map. In order to calculate

sample statistics in the realistic PFA regime between 10−8 and 10−6 it was necessary to run many thousands

of random trials to observe enough of the rare false alarms to keep error variance low. A family of ROC curves

is presented to demonstrate the superior performance of the new algorithm. Detection probabilities are uniformly

higher for the Bayesian detector when both algorithms are producing the same number of false alarms.

B. Performance with Real Data

Two sets of real data were recorded at the GBT and used to test performance of the echo detection algorithm,

tracking, and blanking. Set one consists of five 12 second long data windows recorded at one minute intervals on

April 5, 2002. Set two contains a continuous block of 10 minutes of data (50 radar antenna rotations) recorded in

January, 2003. The Kalman tracker and both the conventional N-P and new Bayesian detectors were run on all data

in both sets. A more extensive presentation of these results is found in [5].

In data set one there are five snapshots containing eight distinct aircraft tracks. The Bayesian detector found

three echoes that were missed by the conventional method. A missed detection was declared when no conventional

threshold crossing occurred in a track’s prediction region at snapshot t[k + 1], but was reacquired in snapshot

t[k + 2], i.e. the tracker had to make a two-step prediction update to keep the track alive. The reacquisition at

t[k + 2] implies that the aircraft echo was present in S at t[k + 1], but was just too weak to detect. In total there

were 33 track associated detections with the conventional algorithm, and 36 with the new detector. No “false alarm”

detections (i.e. new threshold crossings not associated with a track) arose with the new method.
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In data set two there were four missed detections recovered by the Bayesian algorithm over 15 snapshots with

six active tracks as shown in Figure 8. One more possible false alarm was made by the Bayesian detector than with

the N-P approach. For this experiment both PFA and PTFA were set to 3.87 × 10−8 when calculating threshold

settings.

On the other hand, Figure 9 illustrates what occurs when the N-P detection threshold is lowered (by increasing

the design PFA) in an attempt to recover the lost echoes which were found by the Bayesian detector. When PFA is

raised from 3.87× 10−8 to 2.32× 10−7 two of the four missing detections were found, but four false alarms were

added. In order to detect the remaining two echoes PFA had to be raised so high that hundreds of false alarms

appeared (not shown in this figure). Clearly the Bayesian approach provides better false alarm management while

improving weak echo detection.

To illustrate the potential scientific observational impact of blanking the previously missed echoes which are now

caught by the Bayesian algorithm we processed a segment of data from data set two. This window from 187.2 to

188.4 seconds in the recording produced no aircraft detections using the conventional algorithm, but the new method

found three. Figure 10 shows power spectral estimates accumulated over the 1.2 second window which contained

ground terrain echo clutter. The upper curve includes no radar pulse blanking and exhibits a dominant spectral peak

around 5.5 MHz caused by ground clutter. The lower curve shows the spectrum after fixed time window blanking

synchronized to the transmit antenna sweep. This corresponds to excising all data between a delay of 0 and 150

µs in Figure 1. At this plotting scale all RFI appears to have been eliminated. All blanking was implemented by

“zero-stuffing” [3], that is, placing zeros into the time samples where radar interference is detected.

However, at the expanded scale of Figure 11, a difference is seen between spectral estimates using the new

Bayesian detection as compared with conventional N-P detection. The Kalman track was established from five

previous antenna sweeps, which occur at 12 s intervals. The three weak aircraft echoes which were detected

with the new algorithm were blanked, and the resulting lower curve spectrum shows reduced bias near 5.5 MHz

corresponding to the radar pulse center frequency.

V. CONCLUSIONS

The forgoing analysis has demonstrated the potential for a Kalman tracker based Bayesian detector to provide

high performance pulsed interference removal from radio astronomical data. Even when resulting spectral estimates

are improved only subtly, it is desirable in radio astronomy to remove every interference component possible to

increase confidence in the affected scientific observation. These radar systems are not going away, and as interest

increases for deep space observation in the radar band allocations such a system will become increasingly necessary.

Though the mathematical development presented here appears fairly complex, computer implementation of the

tracker - constant PTFA detector is quite straightforward. Computational burdens are small because track state

and threshold computation updates need be made only once per 12 second antenna sweep. Thus, aside from the

digital receiver functions, only modest computational resources are required as long as a digitized signal stream

is available. The digital radar receiver must operate at RF sample rates, but such systems are in widespread use.
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Any system used to blank pulses after detecting them (e.g. using N-P detection) must use the same type digital

radar receiver front-end. Therefore, by comparison the additional computational burden to add Kalman tracking and

constant PTFA detection could be handled by the slowest of PC’s.

This study suggests that the Kalman tracker Bayesian detector system is a good candidate for real-time operation

and permanent implementation at the observatory. Plans are currently under consideration to pursue funding for

such an obvious next step.

However, even without investing in significant real-time processing resources the proposed system can be used

in a post processing mode on virtually any extended pre-recorded data set containing pulsed radar RFI. In a post

processing scenario it would also be possible to adapt the proposed approach to operate both backwards and forwards

in time. One can envision a forward-backward two pass echo Kalman tracking scheme and a Bayesian detector

which draws on the entire data set (rather than just past detections) for prior probability inference. This should

offer additional detection performance gains, particularly at the beginning of an aircraft track where start-up errors

are large. As described above, two successive N-P detections are required before a track can be initiated. Using

backward prediction it would be possible to find weak echoes which did not cross the N-P threshold and which

occurred before the causal track was created. Future research plans include developing this bidirectional tracking

detector. Block estimation methods that do not rely on sequential processing, either forward or backward, can also

be investigated.
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Fig. 1. A typical range-azimuth map, b(R, θ), of radar data collected at the GBT. This map covers approximately 60◦ of azimuth θ along

the 3.5 s span of the horizontal axis. The bright region at about 1.8 seconds and 0-100 µs delay corresponds to the transmitter beam passing

overhead at the GBT and generating strong reflections from nearby mountain peaks. Several aircraft echoes are visible. Note the horizontal

extent of the bright echoes due to the sidelobe directional response pattern of the radar transmit antenna. The echo extent or region of support

for a single aircraft is denoted as footprint F .
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Fig. 2. An example of Kalman tracking performance for data acquired at the GBT. Four aircraft tracks have been automatically established

and plotted, including a pair of crossing tracks. Data from five snapshots are shown. In order to exaggerate the motion between snapshots and

reduce computational demand, only every other antenna pass was used, resulting in a snapshot interval ≈ 24s. The final point plotted for each

track is the prediction point, (x̂, ŷ)[k + 1|k]. Prediction regions, S, shown by the dashed ellipses vary in size according to track quality. Note

that the center track has a large S due to a missed detection. The entire area covered by the figure is represented by Ω. Predictive real-time

blanking is accomplished by excising the prediction region data. For this example, off diagonal terms in P [k + 1|k] were assumed to be zero,

which forces the S ellipses to align to the x and y axes.
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Fig. 4. Geometry of a prediction region, S centered on (x̂, ŷ). r2
x = β2P11[k + 1|k] and r2

y = β2P22[k + 1|k] where Pij [k + 1|k] is the

i, j-th matrix element in P [k + 1|k]. Minor axis length and rotation of the ellipse are affected by off diagonal term P12[k + 1|k]. Ap covers

the range-azimuth bin centered on (xp, yp). Fq is the echo footprint for an echo centered on some other bin, q. Due to uniform sampling in

angle with spacing ∆θ and because Rp > R1, the area of bin Ap is greater than that of the bin centered on (x1, y1). Note that the sizes of

Ap and Fq relative to S are exaggerated to display geometry.
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Fig. 5. Comparison of detection statistics for the N-P and proposed detectors. Inside S spatially varying τp is lower than conventional fixed

τNP. This increases PD for the new algorithm since the integrated area beyond τp under the curve fb(bp|Hp) is larger than the area beyond

τNP. However PTFA ≈ PFA because P (H̄p) < 1.0. For this illustration P (H̄p) = 0.4 and the signal to noise ratio at the matched filter

output is 4.8 dB, which determines the non-centrality parameter s for fb(bp|Hp).
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Fig. 6. The spatially varying detection threshold τp = τ(xp, yp). In this example Ω contains two prediction regions S from two aircraft

tracks. Prediction points (x̂p, ŷp) correspond to the two local minima. Prior knowledge that echoes are likely over the two S ellipses leads to

lowered threshold levels and thus the probability of detection is increased. For this plot Rmin = 104 km, Rmax = 239 km, θmin = 11
24

π,

θmax = 19
24

π, σ = 0.2, PTFA = 1.0×10−4, σ2
η = 0.001, rx = 30 km for both prediction regions, and ry = 15 km and 45 km respectively

for the left and right regions. These parameters are typical for GBT data except that rx and ry have been increased by a factor of 10, and

PTFA by 100 to make detail in the plot easy to see.
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Fig. 7. Detection performance comparison for the “new” Bayesian constant PTFA method and “old” conventional N-P constant PFA approach.

PFA vs. PD ROC curves are shown for a range of SNR values. PFA values for both algorithms are computed as the ratio of observed false

alarms to the number of trials times the number of bins in Ω.
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Fig. 8. All detections for the even numbered antenna sweeps in data set 2. Note that the conventional N-P detector missed four echoes (marked

by crosses without circles) found by the new Bayesian method. This represents an 9% increase in finding true echoes when using Bayesian

detection. The new detector added one false alarm, marked with a triangle. PTFA = PFA = 3.87 × 10−8.
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Fig. 9. Detection comparison when the N-P threshold is raised in an attempt to locate some missed echoes that were found by the Bayesian

detector. Boxed detections are new correct ones. Triangles indicate new N-P false alarms. PTFA = 3.87 × 10−8, PFA = 2.32 × 10−7.
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Fig. 10. Sample power spectra at the GBT showing radar RFI near 5.0 MHz. The upper curve includes no pulse blanking. The lower curve

has only blanking for fixed ground echoes.
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Fig. 11. Spectrum for the same 1.2 second data set seen in Figure 10, but using Kalman tracking and detected pulse blanking. Five previous

antenna sweeps were used to form the track history. The upper curve resulted from conventional detection methods. The lower curve used the

new Bayesian detector. Three additional aircraft were detected in this snapshot which had been missed by the conventional detector. The lower

curve shows the resulting lower spectral levels in the radar RFI region near 5.0 MHz.
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