IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-34, NO. 9, SEPTEMBER 1987

713

An Evaluation of Methods for Neuromagnetic Image
Reconstruction

BRIAN JEFFS, RICHARD LEAHY, MEMBER, IEEE, AND MANBIR SINGH, MEMBER, IEEE

Abstract—In this paper, we discuss several aspects of a potential new
medical imaging modality for producing a quantitative three-dimen-
sional map of neuron current densities associated with brain function.
The neuromagnetic image is produced by reconstructing a current di-
pole field from external magnetic field measurements made with an
array of superconducting quantum interference device (SQUID) detec-
tors. This field is produced by numerical inversion of the Biot-Savart
equation. The purpose of the work is to investigate fundamental limits
on the feasibility of the proposed system under ideal conditions. The
following problems are addressed: 1) What are the factors limiting res-
olution of the system? 2) What is a suitable model for neural activity
in the brain? 3) What classes of algorithms are suitable for estimating
the model parameters? The major conclusion of this work is that the
inversion problem is severely ill-posed and the choice of model and
estimation algorithm are crucial in obtaining reasonable solutions. A
class of solutions, termed minimum dipole, is proposed as a means of
obtaining more acceptable results.

I. ‘“NEUROMAGNETIC IMAGING’’

HE aim of neuromagnetic imaging (NMI) is to pro-

duce maps of neuron current densities resulting from
brain activity associated with both evoked response to ex-
ternal stimuli and hopefully the higher thought processes.
Neuromagnetic images are produced by reconstructing the
neuron current field from measurements of the induced
external magnetic field. This imaging technique differs
from the magnetoencephalogram (MEG) isofield map-
pings of the skull [1] since the internal brain electrical
activity, rather than the external magnetic field, is dis-
played. The MEG maps are obtained directly from the
data, whereas the NMI field requires the solution of an
ill-posed inverse problem. As with the MEG maps, we
treat NMI as a magnetostatic problem by sampling the
time series of the neuromagnetic waveforms from the de-
tector at a single time of interest so as to isolate the re-
sponse component we wish to analyze. It is our intention
to address the feasibility and fundamental limitations of
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this imaging modality and to evaluate the effectiveness of
several reconstruction algorithms commonly employed in
medical image reconstruction.

Magnetic fields associated with evoked responses may
be measured on a sample. grid around the skull using a
SQUID biomagnetometer [1], [2], [3]. These data have
been used to estimate the location, orientation, and mag-
nitude of a single current dipole in the brain which best
fits the data in a least squares sense [1], [4], [5]. This
approach is useful when the current field of interest is
known to be localized to a single small region of the brain.
Neuromagnetic imaging extends this concept to the case
of multiple-current dipole sources or more complex dis-
tributed current fields which would exist when separated
regions of the brain are involved in a response, or during
higher brain functions. In these cases, the single-dipole
model is a poor match [5], [6] and we are motivated to
treat the problem as one of image reconstruction. Our ap-
proach then emphasizes solutions to the inverse problem
(current field from magnetic measurements) using image
reconstruction algorithms and techniques which one might
encounter in computed tomography or other medical im-
aging applications.

Neuromagnetic imaging on a single reconstruction plane
in the brain was first demonstrated by Singh et al. [7].
Their approach used discrete samples of the evoked mag-
netic field to reconstruct a current field modeled as dis-
crete current dipole cells all lying in a single plane with
either one- or two-constrained dipole orientations. The
depth of this single plane was adjusted for best fit with
the measured data. We propose an extension to this model
which will include three-dimensional reconstructed im-
ages and multiple-dipole orientations. This allows the es-
timation of dipole distributions in depth as well as lateral
position and orientation.

The paper is organized as follows. In Section II, we
introduce the basic physical model we will use for NMI
and develop the mathematical formulation of this model.
We then discuss possible constraints on the solution and
how these may be included in the formulation. In Section
III, the fundamental limits on image resolution due to
background noise, the SQUID response, and the ill-con-
ditioned nature of the system matrix are discussed. In Sec-
tion IV, we present several algorithms which can be ap-
plied to the NMI reconstruction problem and evaluate their
effectiveness. Results of computer model evaluation of
these algorithms are also included.
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II. MoDELS FOR NEUROMAGNETIC IMAGING
A. Basic Formulation

For NMI reconstruction, we adopt the simple physical
model of Fig. 1. A spheroid shaped reconstruction vol-
ume represents the interior of the skull which will contain
a 3-D distribution of neuron currents. Measurements of
the external magnetic field are taken at points on the sam-
pling surface represented by the hemispherical shell.
These points correspond to the positions on the skull
where measurements with the SQUID gradiometer are
taken. Our goal is to infer the current distribution from
these measurements.

The relationship between a continuous vector current
field and its induced magnetic field at a point r in space
is given by the vector integral form of the Biot-Savart
Law

4w |r —r'|

where J(r') denotes the vector current density at r’ and
u the magnetic permiability of the medium, which we ap-
proximate with pg, the permiability of free space. Al-
though the brain’s current field consists of discrete firings
of individual neuron cells, the high density of neurons in
brain tissue and the inability of present instrumentation to
resolve single cell current flow make this continuous field
model an accurate one. However, we can take only a fi-
nite number of magnetic field measurements, and in order
to reduce the dimensionality of the problem and express
this nonlinear relationship as a set of linear equations we
approximate (1) with a discrete sum. The vector current
field is replaced by a finite number of current dipoles,
Q(r;) located in a three-dimensional grid where a di-
pole’s orientation and magnitude are determined by inte-
grating the current field over the volume cell (voxel) sur-
rounding the dipole. Equation (1) becomes

Ho S Q‘(Zn) X (fm - fn)
47 n=1

B(rn) = (2)

3
‘rm - £n|
where N is the total number of dipole cells and m and n
are the indexes on the discrete sample points in space.
This equation can be rewritten in vector-matrix form as

the linear system
B =WQ

where
T
ﬁ = BxM’ ByM’ BzM]

B,,, = x component of B(r,,)
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a (3M X 3N) block matrix
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Fig. 1. Basic physical model for neuromagnetic imaging.
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With the addition of an independent noise term to repre-
sent measurement error, the system is expressed in a form
suitable for applying digital image reconstruction tech-
niques, i.e., we may solve the inverse problem of finding
Q given the measurement vector B where

B=WQ+N. (4)

The formulation of the entries in matrix W can be adjusted
to compensate for the fact that a SQUID gradiometer does
not provide an exact measurement of the point flux den-
sity. Methods for doing so are discussed in Section III-B.

B. Source Model and Constraints

In practical applications of NMI, the system of (4) is
highly underdetermined (see Section III) with many more
degrees of freedom in the solution space that can be re-
solved by the sampled data. It is clear from this ambiguity
that we cannot produce a meaningful reconstruction of a
current dipole distribution without introducing a restric-
tive model based on the physiology of the brain. Any con-
straints imposed by this model can be used to reduce the
dimensionality of the solution space and direct our selec-
tion from the infinite set of possible solutions to one that
is useful. It should be stressed however that in using such
a prior model to obtain reconstructions, the resulting im-
ages should be interpreted with the understanding that they
are valid only to the extent that the model assumptions are
correct.

It has been common to model the brain and skull as a
nonconductive sphere or spheroid casing filled with a ho-
mogeneous conductive medium in which current dipole
activity exists [1], [8]. Use of the spherical model enables
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the introduction of several simplifications and constraints.
Volume currents which are induced in the conducting me-
dium by a current dipole source do not contribute to the
external magnetic field normal to the sphere surface, but
may contribute to the tangential field components [1], [9].
Also, dipoles aligned with the sphere’s radii, and radially
symmetric dipole distributions produce no measurable ex-
ternal magnetic field [8]. The ‘‘invisibility’’ of these
sources makes their inclusion in a reconstruction solution
meaningless, so we may exclude such dipoles from our
solution. The skull is not a perfect sphere, however, Barth
et al. [10] have shown that field measurements of dipoles
implanted in a human skull, even with gross cranial dis-
tortions, show little deviation from that predicted by a
spherical model. Also, most areas of the skull can be fit
“to a spherical segment with a local radial center. These
considerations enable us to utilize the constraints offered
by the spherical conductor model even when our recon-
struction space is not exactly spherical.

The brain region of primary interest for NMI is the cor-
tex. Neurons within the cortex, and thus the current paths,
are arranged predominantly normal to the local surface of
the cortex [11]. Thus, given its shape, it is possible to
constrain the orientation of the current dipoles which
model the neuron activity. The cortex is highly convo-
luted [11], so if the orientation of the current dipole is to
be constrained, the true shape of the cortex must be em-
ployed to estimate the direction. However, given the lim-
ited resolution of the system, we believe a model using
the major features and landmarks of the cortex shape is
sufficient for an initial study.

In [12], the shape of the cortex in slices of a human
brain was digitized and stored as a brain atlas. Using var-
ious geometrical warping transforms, the shape could be
adapted to different brain sizes with reasonable accuracy.
Data of this kind could be employed in our model as an
initial estimate of current dipole orientations near the ma-
jor fissures and features of the brain. Individual brain ge-
ometry data for each patient could be obtained from mag-
netic resonance or X-ray computed tomography if more
resolution is needed.

We propose the following simple model for the cortex
which allows us to incorporate the above constraints (see
Fig. 2). This model describes how the reconstruction vol-
ume of Fig. 1 is to be discretized. A series of horizontal
slices represent planar slab sections through the brain; the
cortex is then constrained to lie in a region spanned by
concentric ellipses. By adjusting the major and minor axes
of these ellipses it is possible to adapt the model to dif-
fering brain sizes. To digitize the problem, we segment
each of the elliptical slabs into a set of voxels in each of
which we allow a single equivalent current dipole. The
spatial orientation of each dipole can be constrained to a
specific direction. The number of voxels in each ring is
reduced as distance from the skull surface increases. This
reduction in resolution coincides with the loss of resolu-
tion at depth implied by the Biot-Savart law which is dis-
cussed in Section ITI-A.
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HEAD CROSS SECTION, TOP VIEW
MODEL FOR DISCRETE CURRENT
DIPOLE CELLS

SQUID

Vector magnetic field measurements
taken at M discrete locations

Orientation of dipole in each
of N celis Is constrained

Fig. 2. Cortex sample grid and model showing constrained dipole orien-
tation.

The above constraints are incorporated in the system by
modifying (2) as follows:

LL_O_ i IQn‘ Zn(fn) X (.’:m —In)
|3

B(r,) =

47 n=1 |L‘m—£n

where z,,(z,) denotes the unit vector representing the ori-
entation of the nth current dipole of magnitude | Q,|. Ex-
pressing this as a vector-matrix equation, we modify (4)
as follows. Let @ = D Q' where D is a tridiagonal matrix
of the known direction cosines of constrained dipole ori-
entations and Q' is an N element vector of the dipole mag-
nitudes.
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Note that (5) includes the measured data in B for all three
vector components of the field at each sample point. If
only normal measurements are taken, then the projection
of the normal field onto these rectangular vector compo-
nents is used. This formulation and model permit signif-
icant reduction in the dimensionality of the problem, but
in general, still do not lead to a unique solution.

III. RESOLUTION LIMITS AND SOLUTION AMBIGUITY

Though NMI is, we feel, a feasible and promising tech-
nology, there are underlying physical limitations which
must be considered. The resolution in our system and the
ability to come to a single unique solution are limited by
several factors. We will consider the following three
problems.

1) The “‘ill-posed’’ nature of the system equations.

2) The resolution characteristics of the SQUID gradi-
ometer.

3) Noise, i.e., the magnitude of the background mag-
netic fields compared to the neuromagnetic field.

A. System Equation Considerations

Consider the linear problem B = HQ' + N of (5) where
the system matrix H is of dimension 3M X N. We will
investigate the properties of this matrix. We may expand
H using the singular value decomposition [13]:

H=UA"V"

where A!/? is a diagonal matrix of singular values, ranked
in order of descending magnitude, equal to the square root
of the eigenvalues of HH” or H'H. U and V are ma-
trices with columns equal to the eigenvectors of HH” and
H"H, respectively. From the orthogonality of the col-
umns U; and V; of U and V we can rewrite the expansion
as [13]:

(6)

where R is the rank of H, i.e., the number of nonzero
eigenvalues in HH” or HT H. We can form the pseudoin-
verse H' of H and write the least squares minimum norm
solution of (5) as

1

V.U;B.
5172 VLUTB.

(7)

].Mx

Q' =

In (6), the component of B due to the pro /]CCthﬂ of Q'
through U, VT is weighted by A172 thus if N}/2 is small, the
resultmg contribution to the data is small. In the pseudo
inverse however, 1/\}/? will be large and hence the com-
ponent of the noise vector projected through V; U7 will be
disproportionately amplified. To avoid this problem, it is
common to truncate the summation in (7) to sum over P
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< R values so as to reduce the error in Q" due to mea-
surement noise. This truncation however, produces an-
other type of error in the solution image by reducing the
resolution and fine detail available from the small singular
values. An optimal truncated pseudoinverse solution is
obtained when P is chosen to minimize the sum of noise
error plus resolution error [13]. This optimal truncation
index, under the assumption that Q and N are indepen-
dent, white Gaussian vectors, is given by:

HEM @

Py = m?x [i |)\,- = E{QTB}
The number of terms P used in the summation of (7) de-
termines the possible dimension of the solution. As P is
increased towards R, the dimension of the solution, and
hence potential resolution, is increased, but at the cost of
increased sensitivity to noise.

This development of an optimum truncated pseudoin-
verse solution suggests that much can be learned about
the stability, attainable resolution, and dimensionality of
an image solution by analyzing the singular values of the
system matrix H. We have analyzed H obtained from sev-
eral configurations of reconstruction volume and sampling
surfaces. Fig. 3(b) is a plot of the square of the ordered
singular values for H obtained from a sampling surface
and a reconstruction space as shown in Fig. 3(a). It can
be seen that \; drops off rapidly, that H is not of full rank,
and that 90 percent of the ‘‘power’’ is contained in the
first 10 values. Even if we include 99 percent, we need
only 40 values. This implies that for a signal to noise ratio
of 20 dB, we should expect to be able to recover an image
consisting of at most 40 mutually orthogonal components
and hence it is not possible to resolve more than 40 in-
dependent features in the solution. Consequently, it would
be unwise to attempt reconstructing more than 40 dipoles.
We stress that there is no direct correspondence between
the basis vectors of the SVD and a set of dipoles. How-
ever, we have attempted to give a qualitative argument
concerning the limitation on the amount of information
we can recover from the data. These conclusions are jus-

tified in the simulations presented in Section IV.

Analysis of different configurations for H show that in-
creasing the number of sample points past some limit
yields little improvement in resolution. Fig. 3(c) shows a
plot of the squared magnitude of singular values of H for
the same system as in Fig. 3(a), but with a second layer
of hemispherically spaced sample points with a 6 cm ra-
dius. More than doubling the number of data samples in
this configuration results in virtually no change in the rel-
ative magnitudes of the singular values [(compare Fig.

3(b) to 3(c)] indicating that the additional measurements
contain virtually no useful information, i.e., the dimen-
sion of the solution is still restricted to about 40 basis
vectors.

In another experiment, the spacing between dipole vox-
els was doubled, reducing the number of voxels in the
reconstruction (or equivalently the number of elements in
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Fig. 3. (a) Geometry of reconstruction space and sample surface used for
SVD analysis of system matrix. (b) Plot of squared singular values for
geometry of (a). (c) Plot of squared singular values for double layer
sampling hemisphere surface. (d) Plot of squared singular values for re-
duced resolution (2 cm® voxels) in reconstruction space.

Q) by a factor of eight, while the sample points of Fig.
3(b) were retained: This produced an H with singular val-
ues as shown in Fig. 3(d). Though lower resolution and
fewer cells were used, the number of large singular values
dropped by a factor of two as compared to the 8 to 1 drop
in voxels. Thus, we can produce a less ill-conditioned
system at the expense of forming a lower resolution so-
lution.

The Biot-Savart equation describes a system which is
increasingly ‘‘low-pass’’ to spatial frequencies as the dis-
tance from detectors increases. This is due to the vector
cross product relationship between the dipole and the dis-
tance vector to the magnetic field measurement. As
(rm — r,) increases, the ability to resolve two distinct
dipoles decreases, while at the same time the signal

strength drops off as 1 /7 until the measurement precision
needed for resolution is lost in noise.

In conclusion, an exact reconstruction is not in general
possible for all current distributions, even in the case
where we have many more magnetic samples than dipole
voxels. We have found, however, that the imposition of
prior constraints on the solution enables reconstruction of
certain classes of images.

B. SQUID Resolution

Present neuromagnetic research uses biomagnetometer
instrumentation -based on SQUID technology. A typical
system consists of a set of magnetic pickup coils wound
in a second-order gradiometer configuration, the SQUID
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detector, associated electronics, and a dewer to encase the
coils and SQUID in liquid helium in order to keep them
at superconducting temperatures. In a closed supercon-
ducting coil, the magnetic flux through the coil is con-
stant, so any external magnetic field threading the coils
causes a current to flow to oppose the external field. This
current is coupled to the SQUID detector which serves as
a low-noise, high-gain current to voltage amplifier. The
SQUID biomagnetometer using second-order detection
coils provides sufficient sensitivity and noise immunity to
‘make neuromagnetic measurements in an unshielded lab-
oratory environment possible. SQUID systems are com-
mercially available in several configurations including
single channel and five or seven channel array devices.

There are several practical limitations to the system
spatial resolution which are introduced by the SQUID
biomagnetometer. We will discuss three of these: pickup
coil size, gradiometer sensitivity as a function of dis-
tance, and data acquisition time.

The SQUID pickup coil used in our experiments is rep-
resentative of those common in neuromagnetic research
and is 2.0 cm in diameter. The magnetic flux at a point is
estimated by the average flux through this pickup coil,
and its diameter can have a significant effect on resolution
[14]. This effect is most evident at close ranges as shown
in Fig. 4 which plots the gradiometer response compared
to the point flux density from a single tangential dipole at
a depth of 0.25 cm as the dipole is moved tangentially
across the SQUID’s field of view. The smoothed curve
from the gradiometer can be interpreted as its spatial im-
pulse response to a point dipole source. Deconvolution of
this impulse response in the data can restore the original
resolution, but in the presence of measurement noise, this
approach is limited and the recoverable resolution is re-
lated to the coil diameter. We have chosen a 1 cm cube
voxel size which agrees with Okada’s [5] finding that di-
poles separated by 1-2 cm are resolvable.

The second-order spatial gradiometer configuration of
the SQUID pickup coils is used to suppress large uniform
fields such as the earth’s magnetic field. It is this arrange-
ment which allows the collection of data in a nonshielded
environment. As stated above, the measured field strength
drops off as the inverse square of the distance to the
source, however the gradiometer increases the rate of this
attenuation resulting in poor detection of the field due to
dipoles located at larger distances from the detector.

Figs. 5 and 6 demonstrate the attenuation as a function
of distance due to the second-order gradiometer configu-
ration. At 2 cm depth, the response is a fair approximation
to the point flux density. Moving from 2 cm to 16 cm
depth causes the response to drop 10 dB more than pre-
dicted from the inverse square reduction in flux density.
Also, the peaks in the response are shifted toward the cen-
ter line. In the range of 2-6 cm depth, which is our pri-
mary range of interest for cortical activity, the gradiome-
ter gives a reasonable approximation to the point flux
through the center of the coil.

The system matrix W of (3) should be modified to ac-
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Fig. 4. Gradiometer response and flux density versus lateral position for a
single current dipole at 0.25 cm axial.
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count for the effects of coil size and gradiometer config-
uration in order to accurately represent the physical sys-
tem. A usable approximation is obtained if coil diameter
is neglected and W is formed as a sum of matrices cor-
responding to the different coil positions in the gradiome-
ter. In our device there are three coils with axial spacing
between them of 50 mm; the center one is counter-wound
and contains twice as many turns as the other two. With
this configuration, W is computed as follows:

W=Ww —2W+ W (9)

where W', W2, and W? are matrices computed separately
as in (3) but using the centers of the three coils respec-
tively when computing the position vectors r,,. A more
accurate expression can be found by integrating the ma-
trix form of the Biot-Savart equation found in (3) over the
cross section area of each coil, i.e.,

Won = Ll W, dr,,
where ¢}, the integration surface, corresponds to the disk
enclosed by the front pickup coil. This method was used
in obtaining the plots of Figs. 4, 5, and 6. We have found,
however, that as suggested by Fig. 5, at the depth range
corresponding to the cortex, the simple point measure-
ment model of (3) is sufficient and using (9) or (10) pro-
duces little noticeable improvement in the reconstructed
image.

The logistics of data acquisition also impose a practical
limit on the number of data points which can be gathered.
Functional neuromagnetic fields of the brain are weak
enough that it is essential to perform time averaging be-
tween successive sets of data for noise suppression. For
measurements from evoked responses, ten or more sam-
ple windows, each approximately one second long and
synchronized to the patient stimulus, are needed at each
sample point. With a single channel SQUID, this acqui-
sition time and the time required to reposition the SQUID
detector imply that data from a small 17 X 17 cell grid
could take on the order of hours to gather. The seven
channel array devices are an improvement, but we look
to large array of SQUID detectors in the future to elimi-
nate this restriction on resolution.

(10)

C. Noise and Background Magnetic Fields

The functional neuromagnetic fields of the brain which
are of interest in neuromagnetic imaging are on the low
end of the detectable scale. Somatically, visually, and au-
ditory evoked fields have been measured at levels near 0.1
pico Tesla [8]. It is presumed that fields generated by
higher level thought processes would have an even smaller
field strength. This can be compared to magnetic fields
from the alpha and delta rhythms which are at 1 pT, the
steady field of the eye at 10 pT, and the magnetocar-
diogram at 40-50 pT [8]. Many of these biologically gen-
erated fields are present and larger than the field of inter-
est in neuromagnetic measurements and so must be fil-
tered out before usable results can be obtained.
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The self noise spectral level of our SQUID detector is
specified to be below 20 f T /Hz 172 This is sufficiently
low to permit detection of the fields of interest, thus the
limiting factor is the noise from background magnetic
fields. The earth’s steady-state magnetic field has an am-
plitude at 40 degrees latitude of approximately 50 1 T and
interference from commercial power can reach 100 nT
[15]. Nearby feromagnetic objects can introduce gra-
dients into these fields and nearby machinery can cause
additional interference. The maximum noise spectral level
above 1 Hz can range from 10 f T /Hz'/? for magnetically
shielded rooms to 10 nT /Hz'/? for noisier hospital and
laboratory locations [15]. The second-order gradiometer
configuration of the pickup coils can attenuate the zero-
and first-order gradients of these fields to acceptable lev-
els, but care must still be taken to reduce local interfer-
ence. This background noise level will set a limit on the
system sensitivity, and thus on the achievable resolution
when dealing with the weak signals of interest. Even with
the apparently overwhelming problems with noise, re-
searchers have successfully made neuromagnetic mea-
surements of brain signals in common laboratory environ-
ments [1], [2], [3], however the additional precision re-
quired for high-resolution imaging makes the use of
shielded rooms and a large array of sensors, for reduced
data acquisition time, the most attractive arrangement for
NMI.

IV. ESTIMATION ALGORITHMS

There are several well known algorithms used in image
reconstruction problems where solutions to ill-posed un-
derdetermined linear systems are required [16]. These al-
gorithms use a cost criterion to select a single solution
from the infinite possible solutions to B = HQ.

In the following discussion of algorithms we assume
noiseless data. Algorithm performance with noisy data is
discussed in Section IV-C. Sections IV-A and -B. present
the algorithms and their implementations, the results of
the simulated comparisons are presented in Section
IV-C.

A. N-Dipole Solutions

Given the data vector B and assuming there is no noise,
then a single solution can be obtained by solving the gen-
eral problem

nin [8(2)

QeRN

B = HQ}
subjectto Q=0
where g (Q) denotes some functional on the solution vec-
tor. The choice of the cost function will determine the
class of solutions. .

The most common cost function is the minimum norm
solution, with g(Q) = Q"Q, which can be found by nu-
merous pseudoinversion techniques. We have used the al-
gebraic reconstruction technique (ART) which is an iter-
ative algorithm popular in medical imaging that converges
to the minimum norm solution [16].
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The algorithm steps are as follows: Let H! be the iy,
row of H, then for iteration step k:

B; — HTQ*
k+1 k i 220
— 4+ ——= i
L 2 HH =
fork=0,1, -k, i=kpoy + 1
|B - HQ'[’
e = ———x .
‘ |BJ’

Iterations terminate at k, when the error ¢; drops below a
predetermined limit. The minimum norm approach favors
smooth solutions; we have found it will tend to force the
solution dipoles as close as possible to the SQUID detec-
tors since the field falls off as the inverse square of the
distance between the detector and source. g(Q) is mini-
mized when smaller current dipole magnitudes are located
near the detectors to yield equivalent magnetic field mea-
surements. The bias toward a solution near the detector
and the underdetermined nature of the system make depth
resolution difficult with a straightforward minimum norm
solution. This problem may be overcome by forming a
weighted minimum norm solution, g(Q) = Q'C’CQ
where C is a weighting matrix which compensates for the
inverse square bias. Our experiments, however, show that
a workable value for C is difficult to predict theoretically
and is highly dependent on the detailed measurement ge-
‘ometry. Even though depth bias may be removed with
proper selection of C, the reconstructed images are very
smooth tending to smear single dipole sources over the
entire 3-D reconstruction volume.

An alternative formulation was proposed by Dallas [8]
based on Maxwells’ equations

VXB=yuJ,V-B=0. (11)

Taking the Fourier transforms of (11) yields a set of linear
equations relating the current and magnetic fields. By
sampling the Fourier transform of the two fields and de-
composing the magnetic field into two regions, the mea-
surement region and a ‘‘forbidden region’’ over which the
field cannot be measured, a large set of linear equations
can be formed. The unknowns in the equation are the
samples of the Fourier transforms of the current field and
the magnetic field in the forbidden region. In the algo-
rithm, the reconstruction volume and measurement region
are discretized into sample cells as in our model. This
formulation has the advantage that it provides simulta-
neous reconstruction of the internal current and magnetic
fields. Dallas has demonstrated successful two-dimen-
sional reconstructions of simulated data. The Fourier
space solution approach, however, does not eliminate the
ill-posed nature of the problem or reduce the null space
of the system matrix H which leads to the infinite set of
possible solutions. Given measurements B, any solution
to (3) is also a solution to (11). The reconstructed images
using the Fourier domain approach appear to be of mini-
mum norm type. This implies that problems of smearing
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and bias toward detector surfaces would also arise here
with three-dimensional reconstructions.
Another technique is to produce the maximum entropy
solution where we minimize the functional
N
0 o

= 2 ’
8@ = 2o el

N
Q"Ll = Z Q.

i=1

Qi20’|

This technique is favored by many researchers [18], [19]
as it yields the maximally uniform image consistent with
the data.

There are a number of algorithms for maximum entropy
restoration. Most require the elements of H to be non-
negative [16], [20], which does not meet our needs. Non-
normalized algorithms are unacceptable due to the nonlin-
ear effect on the solution caused by scaling the data. We
have used an algorithm based on techniques described in
[20] for a normalized maximum entropy reconstruction
with a general system matrix H. The iterative steps are as
follows:

0°=1[10,10, -]
51 = Qb exp [w(HTNY)]

T

N _ (B~ HQY
- el .,
fork=0,1, - ,k, i=Kkpoay+ 1.

w is a relaxation constant to control convergence. As
above, iterations are terminated when e, drops below an
acceptable limit. The entropy expression is defined only
for QF = 0, so we are required to use our dipole orien-
tation constraint model (5) so that Q becomes a vector of
nonnegative magnitudes. This maximum entropy ap-
proach has shown in our simulation experiments to suffer
from the same bias toward near detector solutions as the
minimum norm image.

B. Minimum Dipole Solutions

An alternative class of solutions can be found by at-
tempting to minimize the number of dipoles in the solu-
tion. This may be written as:

. . . _ -
min P [ in, [gig |2 = HQ] such tha 0 = 0]]
where Hgis an M X P matrix relating to a set of P dipoles
from S”, a P-dimensional subspace of R", and N is the
total number of dipole cells. A solution to this expression
gives the minimum norm solution which simultaneously
minimizes the number P of nonzero dipoles over all pos-
sible combinations of dipoles. This formulation is ap-
pealing since the system is underdetermined and thus
choosing the minimum number of dipoles is maximally
noncomittal in the sense that unless we have good reason

‘to believe otherwise, the minimum-order solution is the
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least activity which could have given rise to the data. If
the minimum dipole representation is a reasonable model
of the actual current distribution, then this approach also
enables resolving current dipoles in depth by removing
the underdetermination in the system.

The disadvantage of this approach is that the optimi-
zation problem is nondifferentiable, thus conventional
gradient search algorithms cannot be employed. Initial
simulations were performed using an exhaustive search as
follows:

1) Order P = 1.

2) Find least squares solutions for all possible combi-
nations of P dipoles; choose solution with least error.

3) If error is greater than predetermined confidence
limit, then P = P + 1.

4) Repeat steps 2) and 3) as necessary.

This approach is impractical for anything but small re-
construction spaces, but provides excellent resolution lat-
erally and in depth. Some speed improvement has been
obtained by using directed or pattern search techniques
[21] to structure the search to select combinations of non-
zero dipoles which progressively reduce the error. From
a random starting position dipoles are moved step-wise
only in directions which decrease error until a stable po-
sition is found. The number of dipoles P is then in-
creased, and for a new search, until increasing the number
of dipoles does not lead to reduced error.

C. Comparison of Algorithm Performance

1) Noiseless Data Reconstructions: Simulated mag-
netic field point measurements were used in a comparison
of the algorithms discussed above. Three disjoint current
dipoles of differing magnitude within a sphere were mod-
eled, and noiseless measurements on a hemispherical sur-
face surrounding them were computed. The sphere was 3
cm in radius centered at (0, 0, 0) and divided into 1 cm®
voxels. The simulated magnetic samples were taken on a
hemisphere of radius 4 cm with z = 0. In reconstruction,
all dipoles were constrained to be in the +x direction. The
three dipoles were located at (x, y, z) coordinates (1, —1,
1), (1, =1, —2), and (1, 2, 0) with magnitudes 1.0, 1.5,
and 2.0, respectively. This set of sources was chosen to
demonstrate problems associated with the minimum norm
and maximum entropy solutions, i.e., their inability to
resolve depth from the measurement surface.

A single plane (x = 1) of the reconstructed 3-D images
from the ART, maximum entropy, and minimum dipole
algorithms are shown in Fig. 7. The magnetic sample
hemisphere surface surrounds the left half of the images.
Since all three sources are located in the x = 1 plane, this
allows a comparison of the depth resolution for each al-
gorithm. It can be seen that the minimum norm and the
maximum entropy images shift energy toward the sphere
surface and blur the dipole locations. The maximum en-
tropy entirely misses the deeper lying dipoles. The ART
image produced a smoothed cluster of intensity near the
(1, 2, 0) dipole, but the maximum voxel, not shown, is
at (2, 2, 0) which is near the sphere edge. The maximum

121

(b)

Fig. 7. Noiseless image reconstruction for a three dipole source. x = 1
plane shown. Intensity is +x component of dipole field; (a) ART (min-
imum norm) solution, (b) maximum entropy solution, and (c) exhaustive
search minimum dipole solution.

entropy approach produced a slightly less disperse solu-
tion, but still had a smoothed cluster around (1, 3, 0). It
did, however, produce a more uniform field of near zero
values away from this cluster than did the ART algorithm.
The minimum dipole search algorithm produced the cor-
rect solution. The number of dipoles, their depth, and rel-
ative positions were estimated exactly, and their magni-
tudes were accurate to three decimal places. It is important
to note that each of these three images represents an ac-
curate solution vector Q to B = HQ for the measured
data. The fact that they differ so dramatically confirms the
need to select the model and algorithm best suited to our
current knowledge of the physical processes involved in
neural activity.

2) Reconstruction with Noisy Data: The experiment
was repeated with independent Gaussian noise added to
the magnetic measurement vector at a 20 dB signal to
noise ratio. Fig. 8(a) and (b) shows the results of ART
and Max. Entropy reconstructions, respectively. Fig. 8(c)
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(b)

E B

(© (d)

Fig. 8. Reconstruction of a three dipole source with 20 dB measurement
signal to noise ratio. (a) ART (minimum norm) solution, (b) maximum
entropy solution, (c) exhaustive search minimum dipole solution, (d) di-
rected search minimum dipole solution.

shows an exhaustive search minimum dipole solution
~while Fig. 8(d) is from a directed pattern search minimum
dipole algorithm which reduces search time but in general
does not guarantee a solution. With noisy data, the ART,
and Max. Entropy algorithms iterate until the error term
is approximately equal to the measurement noise level.
Further iterations fail to reduce error and cycle through
various approximate solutions. The inability to reduce er-
ror further is due to the noise component in B not lying
in the range space of H. It can be seen that as in Fig. 8(a)
and (c) the depth resolution problems persist and the im-
ages are less smooth. With noise the exhaustive search
algorithm will generally terminate with a solution of fewer
dipoles than in the source, but with an error component
about equal to the measurement noise. The solution di-
poles lie at or near the largest of the source dipoles and
the weaker dipoles are masked by noise and do not appear
in the solution. In noise, the directed search algorithm
may over estimate the minimum number of dipoles due to
finding stable local minimum error dipole positions which
are not the true minimum for a given number of dipoles.

3) Larger Source Distributions: Fig. 9 shows results
of reconstructing a larger, more complex source distri-
bution. The image sphere is 13 c¢cm in diameter and the
measurement hemisphere is in the z > 0 half-plane with
radius 8 cm. Fig. 9 shows planar slices through the orig-
inal source while 9(b) and (c) give the corresponding min-
imum norm ART and Max. Entropy reconstructions. The
source contains a 2 by 2 by 20 cell bar of current running
diagonally through the sphere and a seven cell diameter
solid disk of current lying in the z = 2 plane. Note the
complete loss of internal detail in the reconstructions. Due
to the large size of the reconstruction space it was not
possible to compute the minimum dipoles solution with

(b)

(©
Fig. 9. Reconstruction of bar and disk source in a 13 cm diameter sphere,
(@) x = —1 (left) and Z = 2 (right) planes of source distribution, (b)
ART reconstruction, and (c) maximum entropy reconstruction.

these data. The effectiveness of the minimum dipoles so-
lution for the simple three dipole source cannot guarantee
that larger distributions like this would produce similarly
successful images. A complex source would not be cor-
rectly reconstructed as a minimum dipole image if a sim-
pler equivalent to the source exists (in the sense of pro-
ducing the same magnetic measurements). It can be
argued though, that without prior knowledge it is unrea-
sonable to select a more complex reconstruction (more
dipoles) over a simple one. It is, however, clear from Fig.
9 that the common minimum norm or maximum entropy
methods result in unacceptable solutions. This conclusion
motivates our continued effort to develop more efficient
algorithms to compute higher order minimum dipole re-
constructions.

V. CONCLUSIONS

We have investigated some of the fundamental limita-
tions on the resolution which may be achieved in a neu-
romagnetic imaging system. While it has been demon-
strated that neuromagnetic data may be used to accurately
locate the position of a single current dipole implanted in
a human skull [1], [4], [5], it is clear from the results
presented in Sections II and III that the resolution of the
system for distributed sources is severely limited by the
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ill-posed nature of (5). It therefore appears unlikely that
high resolution volume images of brain activity, compa-
rable to images obtained from an emission tomography
system for example, can be reconstructed using SQUID-
based magnetic measurements. However, the use of re-
stricted models, such as those used by Singh et al. [7] or
those presented in Section II-B, in conjunction with a
minimum dipole approach should lead to clinically useful
results. From the results obtained using the minimum
norm and maximum entropy methods, we conclude that
these approaches are not suitable for neuromagnetic im-
aging if the sources are actually distributed in three-di-
mensions.

Further work is needed to develop an efficient algorithm
which can produce a minimum dipole image for larger re-
construction spaces and more dipole sources. One aspect
of the problem currently under investigation is the use of
statistical models for the dipole activity with parameters
estimated using standard techniques from estimation the-
ory. This approach allows us to specifically include the
presence of noise in the data and should also lead to com-
putationally tractable solutions to the minimum dipole
problem.
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