### Interference Cancellation and Sensitivity Optimization using an L-Band Focal Plane Array on the Green Bank 20m Telescope

Jonathan Landon<sup>1</sup>, Karl Warnick<sup>1</sup>, Brian Jeffs<sup>1</sup>, David Jones<sup>1</sup> Roger Norrod<sup>2</sup>, Rick Fisher<sup>3</sup>



<sup>1</sup>Brigham Young University, Provo, UT

<sup>2</sup>National Radio Astronomy Observatory, Green Bank, WV <sup>3</sup>National Radio Astronomy Observatory, Charlottesville, VA



Brigham Young University Electrical and Computer Engineering

# Outline

- System Description
  - Antennas primary and auxiliary
  - Focal Plane Array
  - Analog front-end, digital backend
  - Mutual coupling and element radiation patterns
- Preliminary Results
  - OH source detection
  - Adaptive spillover noise control
  - RFI mitigation

## NRAO – Green Bank, WV



### Antennas

- Primary antenna
  - 20m NRAO Green Bank telescope re-commissioned for this project
- Auxiliary antenna
  - 3.6m dish receives high-gain copy of interferer for better nulling



## Focal Plane Array

- 19 L-band dipoles over ground plane in hexagonal pattern
  - Electrically small elements, fully sampled array (0.6λ spacing)
  - Narrowband array
  - Proof-of-concept platform for RFI mitigation



## IF/Digital Backend

- IF cables run along feed support arm to telescope base
  - □ 2.8125MHz IF  $\rightarrow$  low cable loss, inexpensive cables, smaller size
- 20 channel synchronous sampling at 1.25Msamp/sec
  - Stream continuously to disk for nearly 2 hours
  - □ 15000rpm SCSI 4 drive Raid 0 array (striping); PCI bus limited,



## Analog Frontend Electronics

- Downconversion to IF in front-end box behind array
  - 2-stage analog receivers; 19 room-temperature receivers
  - Remotely tunable RF from 1200-2000MHz; IF bandwidths~0.5,1,5MHz
  - COTS components; connectorized system easier maintenance



### System Overview

Receiving System Block Diagram



# Mutual Coupling

- Pattern variations are due to mutual coupling
  - Reradiated signal and LNA noise introduces non-ideal signal correlation
  - Affects beamformer design, noise level, sensitivity optimization





# Active Interference-canceling Beamformers

- Active adaptive beamforming vs. fixed beamformer
  - Adapt to changing spillover region, mitigate RFI
  - Optimizing fixed beamformer; periodic recalibration; need appropriate weights for mutual coupling situation; requires optimal beamformer

#### Examples of adaptive beamformers

- LCMV/MVDR
  - Optimizes beampattern for noise structure; drive down overall power subject to constraint, i.e., unity mainlobe response
- Subspace Projection
  - Zero forcing algorithm places deeper nulls than LCMV
  - Can use LCMV as initial weight to shape noise response

## RFI Mitigation

#### Experimental data collected on 20m

 20m tracking CygA while we broadcasted CW tone from bed of moving truck



### Detection

#### OH maser W49N detection

Phase and gain stability over multiple days (calibration data from different day)



### Dish illumination control

Center element vs. fixed beamformer

Array can taper illumination to give good spillover response



## Spillover Noise Adaptation

- Tipping dish changes spillover region
  - At lower elevation angle, large part of spillover is cold sky
  - Tradeoff hot ground sidelobes for cold sky sidelobes for lower overall noise power



### Beam Sensitivity

- Signal of interest: CygA
  - Source flux density: 1380 Jy
  - 24 arcmin steps (half beamwidth)
  - 20 seconds per pointing
- Beamformer:
  - Maximum SNR
- Using preliminary Tsys calibration:
  - Gain: 0.06 ± 0.005 K/Jy
  - Aperture efficiency:  $53\% \pm 5\%$
  - Signal processing sensitivity improvement: 36%



# Conclusion





Brigham Young University Electrical and Computer Engineering

- Successful detection of astronomical sources using COTS components
- Mutual coupling affects element beampatterns
- Adaptive beamforming can shape illumination and improve spillover noise response
- Future Work
  - Pattern rumble control -- variation in beampattern due to adaptive interference cancellation
  - Looking at array matching networks to deal with mutual coupling for optimal sensitivity
  - Improving interference null depth