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NRAO – Green Bank, WV 



Antennas 
  Primary antenna 

  20m NRAO Green Bank telescope re-commissioned for this project 

  Auxiliary antenna 
  3.6m dish receives high-gain copy of interferer for better nulling 



Focal Plane Array 
  19 L-band dipoles over ground plane in hexagonal pattern 

  Electrically small elements, fully sampled array (0.6λ spacing) 
  Narrowband array 
  Proof-of-concept platform for RFI mitigation 



IF/Digital Backend 
  IF cables run along feed support arm to telescope base 

  2.8125MHz IF  low cable loss, inexpensive cables, smaller size 

  20 channel synchronous sampling at 1.25Msamp/sec 
  Stream continuously to disk for nearly 2 hours 
  15000rpm SCSI 4 drive Raid 0 array (striping); PCI bus limited, 



Analog Frontend Electronics 
  Downconversion to IF in front-end box behind array 

  2-stage analog receivers; 19 room-temperature receivers 
  Remotely tunable RF from 1200-2000MHz; IF bandwidths~0.5,1,5MHz 
  COTS components; connectorized system – easier maintenance 



System Overview 



Mutual Coupling 
  Pattern variations are due to  
 mutual coupling 

  Reradiated signal and LNA noise  
 introduces non-ideal signal correlation 
  Affects beamformer design, noise  
 level, sensitivity optimization 



Active Interference-canceling 
Beamformers 
  Active adaptive beamforming vs. fixed beamformer 

  Adapt to changing spillover region, mitigate RFI 
  Optimizing fixed beamformer; periodic recalibration; need appropriate 

weights for mutual coupling situation; requires optimal beamformer 

  Examples of adaptive beamformers 
  LCMV/MVDR 

  Optimizes beampattern for noise structure; drive down overall power subject to 
constraint, i.e., unity mainlobe response 

  Subspace Projection 
  Zero forcing algorithm – places deeper nulls than LCMV 
  Can use LCMV as initial weight to shape noise response 



RFI Mitigation 

  Experimental data collected on 20m  
  20m tracking CygA while we broadcasted CW tone from bed of moving 

truck 



Detection  
  OH maser W49N detection 

  Phase and gain stability over multiple days (calibration data from 
different day) 



Dish illumination control 

  Center element vs. fixed beamformer 
  Array can taper illumination to give good spillover response 



Spillover Noise Adaptation 

  Tipping dish changes spillover region 
  At lower elevation angle, large part of spillover is cold sky 
  Tradeoff hot ground sidelobes for cold sky sidelobes for lower overall 

noise power 



Beam Sensitivity 

  Signal of interest: CygA 
  Source flux density: 1380 Jy 
  24 arcmin steps (half beamwidth) 
  20 seconds per pointing 

  Beamformer: 
  Maximum SNR 

  Using preliminary Tsys calibration: 
  Gain:  0.06 ± 0.005 K/Jy  
  Aperture efficiency:  53% ± 5% 
  Signal processing sensitivity

 improvement:  36% 



Conclusion 

  Successful detection of astronomical sources using COTS 
components 

  Mutual coupling affects element beampatterns 
  Adaptive beamforming can shape illumination and improve 

spillover noise response 
  Future Work 

  Pattern rumble control -- variation in beampattern due to adaptive 
interference cancellation 

  Looking at array matching networks to deal with mutual coupling 
for optimal sensitivity 

  Improving interference null depth 


