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ABSTRACT 
An important problem in the design of some array beam- 
formers is to find the number of array elements and their 
spatial locations necessary to  meet a given response. In 
this paper we present a new technique for simultaneous 
determination of the minimum number of array elements, 
their locations and the shading weights necessary to  meet 
some response specified in terms of a set of linear inequal- 
ity constraints. Results are presented for the design of 
optimally sparse linear and circular arrays for narrow 
band applications. 

Introduction 
In this paper we consider the problem of array element 
shading and placement for symmetric linear, planar and 
arbitrarily shaped 3D-arrays in narrow-band phased 
beamformer operation. To solve this problem we constrain 
the response of the beamformer using a set of linear ine- 
qualities. Using a large number of candidate array ele- 
ment locations and minimizing a cost function (which 
decreases as the number of nonzero weights, and hence 
array elements, decreases) over the constraint set yields 
the optimally sparse array. 
Although a number of line array thinning approaches 
have been proposed [1,2], they are not applicable to  arbi- 
trary 3-D arrays, and do not guarantee optimally sparse 
arrays even in the 1-D case. The literature contains 
analysis of a number of unusually shaped arrays, includ- 
ing circular, spherical, cylindrical, and conformal 
configurations which follow the the shape of a supporting 
vehicle [3,4,5,6]. With these configurations it is often very 
difficult t o  determine efficient element placement; attempt- 
ing to approximate equal spacing can cluster elements in 
areas which contribute little t o  array response, and thin- 
ning can become a trial and error proposition. Maximiz- 
ing the target signal to noise ratio with respect to  a 
known noise field (71, linear programming methods, or 
using a pattern search algorithm [6,8] can yield useful 
shadings for these arbitrary arrays, but can give no infor- 
mation on how many elements we need, or where they 
should be placed. 
In the following we describe a design algorithm which can 
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be applied to any symmetric array problem and will find 
the minimum number of necessary elements. The problem 
is formulated in section 2; in section 3 we state two 
theorems on which our algorithm is based and briefly 
describe the algorithm. The method is then demonstrated 
in application to the design of linear and planar arrays, 
the method extends directly to  the design of symmetric 
3D arrays. 

Optimal Design of Narrowband Arrays 

To set up a system for beamforming design we take M 
samples of the upper and lower response bounds from a 
dense enough grid on an enclosing sphere to control 
sidelobe leakage. Let si be the vector of direction cosines 
to the point on the sphere where the upper and lower 
response constraints, bus and b,,, are sampled and let so be 
the vector direction cosines of the desired maximum 
response angle (MRA). A large number of potential array 
element locations, rj, j = l , . . N ,  are defined with unknown 
shading weights a j .  We require symmetry about the ori- 
gin to  ensure a real response value: 

rj = -rN-j- l ,  and a j  = aN-j-l (1) 

therefore we need only solve for N / 2  + 1 coefficients in a. 
The response, d ,  at the constraint points is then given by 
the cosine transform, d = h ,  where the matrix A has ele- 
ments: 

i =l;..M 
(2) 

2 
N 4j = --COS [rj ' ( s i - ~ d ~ / ~ ]  , for j Z l . . . N / 2  + 1 

where w is the band center radian frequency and c is the 
wave propagation speed. The final complex element 
weight for the beamformer is then 

(3) 

As we shall see below, the algorithm is based on a simplex 
search performed over a non-negative set. Let a, be the 
computed shade for the j t h  element, with ai = aj+-aj- 

where .?,aj- 2 0; we may then obtain positive or negative 
shade values while using the non-negative vectors a+ and 
a- in the algorithm. We use a similar formulation to tha t  
applied in linear programming 19) and replace the set of 
inequality constraints with equality constraints by intro- 
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ducing non-negative slack and surplus vectors 1' and 2- 
of length M. The constraints may then be rewritten in the 
form: 

Any vector which is a feasible solution to (4) yields a 
feasible solution to the constraint 4<An9" ,  with 
a=(a'-a-). The last row of H is added to constrain the 
sum of shade absolute values where c can be adjusted to  
improve beamformer stability and array gain relative to a 
noise field. 

To find the optimally sparse solution we must optimize a 
suitable cost function over the set of linear constraints. 
The problem can be expressed as the nonlinear mathemat- 
ical program: 

The cost function f (a) penalizes any array element requir- 
ing a nonzero shading. Clearly an element with zero shade 
is not necessary and hence minimization of ( 5 )  will yield 
an optimally sparse array. This procedure may be viewed 
as either array thinning or element placement, depending 
on how densely the original elements are arranged. 
As an optimization problem, ( 5 )  is particularly difficult to 
solve. We are plagued with numerous local minima, and 
,(a) is discontinuous and has zero gradient except at the 
discontinuities. In an effort to overcome these limitations, 
we propose an approach to  the minimum order problem 
based on generalized, linearly constrained 1 optimization. 
The algorithms for minimum order optimization discussed 
below are based on the related nonlinear program 

P 

a 

The problem may be rewritten in canonical form using (4) 
as 

1 N L  - 
rnin gq'(z) = la iAq +I  a i q q  s.t. Hz = h ,  q > 1 (6b) 
220 i -1 &.+Ta-= 0 

Note tha t  the cost function in (sa) is the sum of the q f n  
roots of each element of the vector a. Since the q'* root of 
any positive number converges towards unity as q 
increases and any root of zero is zero, it follows that in 
the limit as q+co ,  gq(a)+f(a) .  The motivation for using 
g,(a) in place of f (a)  is to develop a numerically stable 
algorithm. A theorem is given below stating conditions 
under which an optimal solution to (68) is also an optimal 
solution to  ( 5 ) .  

Theorems 
To motivate the algorithm development we give two 
theorems, proofs may be found in [10,11]. We borrow the 
following definition from the related problem of linear 
programming: a basic feasible solution (BFS) to a set of 
IC equality constraints is one which satisfies those con- 
straints and has at most K non-zero components. 

Theorem 1A 
If a solution to (6b) exists, then a basic feasible solu- 
tion exists. 

Theorem 1B 
If a globally optimal solution to (6b) exists, then a 
globally optimal basic feasible solution exists. Furth- 
ermore, this solution is a globally optimal solution to 

The important consequence of this theorem, is that  prob- 
lems (sa) and (6b) are equivalent and hence the optimal 
solution may be found by searching the set of BFSs to  
(6b). Note tha t  this result is very similar to the funda- 
mental theorem of linear programming, and results from 
the concave nature of g,(a) for a a .  Since the optimal 
solution must be a BFS of the constraints in (6b), we can 
restrict our search to this finite set of points, i.e. the solu- 
tion may be found using a simplex algorithm. 
The second theorem gives a theoretical bound on the 
value of q for which an optimal solution to (6a) is an 
optimal solution to (5). 
Theorem 2 

( W .  

Let S denote the set of all BFSs to  (Fb). If all BFSs 
are bounded, then let R denote the maximum and e 
the minimum (non-zero) values of all elements from 
the vectors in S.  If V is the set of all globally 
optimal solutions to (5) with r = f(x) for any x E V, 
and I/ is the set of all globally optimal solutions to  
(6a), then U c V if q 2 q1 where 

(7) 

This result gives us a conservative upper bound on q for 
any problem for which the BFSs are bounded. This bound 
is difficult to compute and in practice a value of q is 
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chosen using estimates of s2 and E based on the physical 
limits of the system. 

A full description of the optimization algorithms is given 
in [IO]. In the following we will briefly outline the pro- 
cedures. 
An initial BFS may be found using an initializing algo- 
rithm identical t o  the first stage of the conventional linear 
programming algorithm 191. Associated with this is a 
'simplex tableau' which may be found by performing suc- 
cessive pivoting operations on the original constraint 
tableau. We label the iiidices of the BFS vector as either 
'in' or 'out' of the basis, depending on whether the 
corresponding element is zero or not. The situation 
becomes somewhat more complex for degenerate systems 
[12], discussion of this case is omitted here for reasons of 
space. 
One can move from one BFS to another by pivoting 
operations which move one variable into, and another 
variable out of, the basis. Two BFSs are said to  be adja- 
cent if one can move from one to the other using a single 
pivot. Using this definition we can construct a connected 
graph from the BFSs. The goal of our algorithm is then 
to find the global minimum of the cost function on this 
graph. Thus at  each stage of the algorithm one performs a 
single pivot, moving from one BFS to another so that the 
cost at each iteration is monotonically decreasing by 
selecting an adjacent BFS of lower cost. Convergence is 
then defined as the point in the sequence of BFSs for 
which no adjacent BFS is of equal or lower cost. 
This algorithm has been demonstrated to  yield sparse 
solutions as shown below. The effective mechanisms by 
which this achieved are (i) to have as many of the slack 
and surplus variables in the basis as possible, since then 

I O 0  6 0  2 0  20 6 0  100 

Bearing, degrees 

Figure 1: Response of 120 element linear 
equispaced array with unit magnitude shading. 

the minimum number of components of a will be non- 
zero; and (ii) to  find degenerate solutions in which ele- 
ments of a are i n  the basis but have zero values. 
Although the algorithm usually produces acceptably 
sparse solutions, it cannot ensure a globally optimal result 
and may terminate a t  a local optimum on the graph of 
BFSs. A global optimization can only be found if the 
algorithm allows one to escape from local minima. To see 
how this may be achieved, consider the sequence of BFSs 
obtained using the algoritlini above. Each step is depen- 
dent only on the most recent element in the sequence. 
Thus if one chooses the next element of the sequence ran- 
domly from the adjacent BFSs of the current element, the 
resulting sequence must be a Markov chain defined on the 
graph of BFSs. The key to obtaining global convergence is 
to  define an appropriate updating rule such that one can 
obtain a homogeneous Markov chain [13]. Using this con- 
cept, we have developed a simulated annealing algorithm 
which has guaranteed asymptotic convergence to a global 
minimum provided an appropriate annealing schedule [13] 
is employed. As shown below, in practice one can obtain 
solutions of lower order than the local search algorithm in 
finite time using simulated annealing. 

Computed results 

As an example of the design of sparse arrays we compare 
our algorithm with a linear equispaced array designed 
using Chebyschev approximation. The maximally sparse 
arrays were desiglled starting with 120 array elements 
equispaced with .Im separation for a sonar system operat- 
ing at  a wavelength of 1 . 5 ~ ~  The response of this array, 
using unity magnitude shading (see equ (3)) is shown i n  
Fig. 1. The simplex algorithm was then applied to the 
system with the constraint that  the niainlobe width and 

. I O 0  0 I O 0  

Figure 2: Response of linear array after thin- 
ning from 120 to  11 elements using local simplex 
search. 
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maximum sidelobes were identical to  those of Fig. 1. The 
simplex search reduced the number of elements necessary 
for these constraints to 11. Using the same constraints 
with the stochastic search reduced the number of elements 
to  9. The resulting rzsponses are shown in Figs. 2 and 3. 
For comparison, an array with half wavelength spacing 
was designed using Chebyschev approximation with ident- 
ical constraints t o  those for Figs. 2 and 3. In this case a 
total of 15 elements were necessary to meet the constraint, 
Fig. 4. The resulting element locations for Figs. 2-4 are 
shown in Fig. 5 .  

These results clearly indicate the ability of the algorithm 
to design sparse linear arrays, where the use of unequal 
element spacing results in a reduction in the required 
number of array elements. 

0 

A 1 
I \  

- 1 0 0  - 6 0  . 2 0  PO 50 110 

Figure 3: Response of linear array after thin- 
ning from 120 to  9 elements using stochastic 
simplex search. 

100 8 0  6 0  40 2 0  0 2 0  4 0  6 0  10 100 

Figure 4: Response of 15 element linear 
equispaced array designed using Chebyshev 
approximation with identical constraints as for 
Figs. 2 and 3. 

a . . .  D . . . . . . . . . .  I A  
I B  

X Position, meters 

Figure 5: Array element locations for a) 15 ele- 
ment equispaced array (Fig. 5); b) 11 element 
thinned array (fig. 2); c) 9 element thinned array 
(fig. 3). 

Consider the 60 element transparent concentric ring array 
of Figure 6. We wish to form beams, steered horizontally, 
in the plane containing the array. This is similar to the 
configuration used by some "dipping" sonar systems which 
suspend a cylindrical ring array in the water from a hel- 
icopter and form horizontal search beams. Figure 7 shows 
the beam response for the full array using unity magni- 
tude shading, with complex phase shifting at each element 
equal to the conjugate of the elemental propagation phase 
delay for a plane wave arriving from the maximum 
response angle ( M U )  of zero degrees. A sinusoidal signal 
at 1 kHz  is assumed, which gives an average element to 
element spacing of just over X/4. We require the element 
positions to be symmetric about the origin. 
For the thinned array design, we use the same element 
phasing as in Figure 7 ,  but let the algorithm adjust the 
real amplitude shading. T h e  mainlobe width is con- 
strained to be the same as Figure 7, with sidelobes no 
larger than  the first sidelobe. Allowing some of the secon- 
dary sidelobes to come up to the level of the first allows 
some degree of freedom which is exploited by the algo- 
rithm to thin the array. The shaded boxes in Fig. 6 show 
the elements remaining after thinning using the simplex 
search algorithm. Fig. 8 shows the corresponding response 
pattern. Only 16 of the original elements are needed to 
maintain the original mainlobe shape and maximum 
sidelobe level. This result agrees with earlier observations 
tha t  the outer elements of a ring array are the primary 
contributors to beam response. 
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Figure 6: Spatial locations for GO element circu- 
lar array (Fig. 7). Shaded boxes indicate the 16 
elements remaining after thinning (Fig. 8). 
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