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ABSTRACT 
onlinear simplex algorithm is developed for solving a spe- 
class of linearly constrained optimization problems The  
for this class of problem IS a sequence of functionals 

xed by the positive integers P such that  for P= l  we 
standard linear programming problem and for P+w 
t function selects the solution with the minimum 
of non-zero elements in the solution vector. T w o  

analogous to  the fundamental theorem of linear pro- 
, are given as the basis for the nonlinear simplex 
Applications of thls technique are discussed for sys- 

gn and signal processing problems in which an 
optimally sparse solution vector is desired Examples of such 
problems include FIR filter design, placement of beamformer 
arrays and seismic deconvolution 

. Introduction 
rithm for solving the linearly 

) s.t B = H Q ,  Q 2 %  
(1) 8 E R N  

where HER define a set of linear equality 
constraints and gp (Q ) denotes the sequence of functionals, 
indexed by the integers P 21, defined as: 

and B ER 

extension to  inequality constraints is also addressed 
ased on the interesting property tha t  the 
always lie in the set S of basic feasible 

(3) 

Equivalently, any optimal feasible solution to  (1) will have at  
most M nonzero components. This  property is well known for 
the cme P =1 since then (1) is a standard linear programming 
problem and the property described above results from the 
well known fundamental theorem of linear programming [l]. 

cently shown, 121, that  an equivalent theorem holds 
integer values of P with P=1 as a special case. 

his result is that ,  as in the case of linear 
programmlng, we can confine our search for the solution to 
problem (1) t o  the finite set S .  A procedure for performing 
this kind of search is the well known simplex algorithm dis- 
cussed below. 
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Our interest in the sequen was motivated by a prob- 
lem in which we wish to  fin ion to  a set of linear con- 
straints with the minimum number of non-zero elements in the 
solution vector Since t 
number converges to  unity as and all roots of zero are 
zero it follows tha t  as 
approaches the desired z 

(4) 

T h e  reasons for using a finite value of P rather than the limit 
of the sequence lies in the convergence and stability of the 
algorithm. 

the minimum number of layers for 
which there is 

in (1) is digital filter design. The  computational cost of imple- 
menting a digital FIR filter is determined primarily by the 
number of non-zero coefficients [4] rather than the order of the 
filter, thus  it is desirable in some applications to  design a filter 
which meets a given specification and has the minimum 

Q 20 a 'feasible solution'. re-index the elements of 
Q and corresponding col as to select any M 
columns and group them ' of H. We shall 
call this first M X M  su 
ments of Q are called th  
the equation as: 

[ A l D ] Q  = B ,  where [ A ( D ] = H  ( 5 )  
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Any negative element of Jj and the corresponding row of H is 
multiplied by -1 t o  make 20. Multiplying by A-’ (we may 
use any left pseudoinverse if A is singular) we can find a feasi- 
ble solut,ion directly 

H 1-1 1 0  

[ -HTD7I- ]  E:-= 

l o  J 
We call QB a ‘basic’ solution and it contains a t  least N-M 
zero terms, i.e. it belongs to  the set 5’ defined in equ (3).  An 
adjacent basic solution is one that  is formed by moving one 
variable out of the basis and one non-basic variable into the 
basis. This is accomplished by permuting the columns of H 
and corresponding elements of Q so as to swap a column in A 
with one in D and recomputing A-’ or equivalently by pivot- 
ing the matrix and measurement vector B .  
The  following two theorems are the basis for the nonlinear 
simplex algorithm used in solving (1). They are equivalent t o  
the fundamental theorem of linear programming, differing only 
in the form of the cost function. 

Theorem 1: If there i s  a feasible solution to  the 
problem (1) then there is a basic feasible solution to 

The  existence of feasible and basic feasible solutions is depen- 
dent only on the constraint equation HQ = Jj, not on the 
cost functional. Therefore, this portion of the proof is identical 
t o  the linear programming case for which a proof is available 
in many texts [I]. 

T h e o y m  2: If there e@s an  optimal feasible solu- 
t ion Q i s  also a basic feasible solu- 
tion. 

(1). 

t o  (l), then Q 

The  proof of this theorem differs from that  for the linear case 
and is given in [2]. 
With the justification provided by the above theorems, we 
may solve problem (1) using an approach similar to the linear 
programming simplex algorithm which searches only the basic 
solutions to  find the optimal solution. I t  is noteworthy that  
the ability to take this approach is entirely dependent on the 
particular cost function chosen. Although g (Q ) is neither 
linear nor convex, and has numerous local minima which 
would make most gradient based optimization techniques 
ineffective, the fundamental theorems above imply that  it is 
particularly suited to  a simplex search approach. 
The  modified simplex algorithm is very similar t o  the linear 
case. The  major difference is in the rule for choosing the 
entering and leaving variables. In the linear case, a simplex 
tableau is formed which contains an additional row to  allow 
efficient computation of the cost of any basic solution. Since 
our cost is nonlinear i t  must be specifically computed a t  each 
iteration. The  choice of the entering and leaving variables is 
based on the computed cost. A move is made in a direction 
such that  the cost is decreased monotonically. Thus  if a solu- 
tion is reached such tha t  all adjacent solutions are of higher 
cost then we accept this solution as the optimal solution. With 
the exception of the case P=1, the solution is not globally 
optimal but locally optimal with respect t o  the adjacent basic 
soh tions. 
Our experiments have shown that  the 1/P simplex algorithm 
converges in approximately the same number of iterations as 
the linear algorithm would for a similar sized system, which 
implies that  the 1/P simplex algorithm will converge in about 
twice the computer time required by a linear program due to 
the increased complexity in calculating the change in the cost. 
With a convergence time comparable to the O ( 5 N )  iterations 
of the LP simplex, this algorithm is dramatically more efficient 

E;;] (7) 

The  final solution is given by Q =Q+-Q-. Due to  the nature 
of the cost functions, Qi’ and Qi- cannot simultaneously be 
nonzero. 

4. Minimum Computation Order FIR Filter Design 
The  Remez exchange algorithm is an efficient technique for 
computing equiripple approximat.ions of finite order FIR filters 
t o  a desired frequency response [5]. The  resulting filter has the 
minimum L o3 error norm for any filter of fixed order and tran- 
sition bandwidth. In the related fields of multidimensional 
filter and beamformer array design, the equiripple error cri- 
terion can also be used for optimal design, but algorithms for 
exact optimal solutions do  not always exist, particularly for 
non-uniformly spaced samples or array elements [6,7]. 
A minimum length filter however may not be the most efficient 
filter from the point of view of the processor computat.ional 
load. Symmetry in the filter coefficients can often be exploited 
to  save processing time, and any filter tap with a zero 
coefficient eliminates a multiply and accumulate operation. 
Considering only savings due to  zero valued taps, the 
minimum computation order filter would be that  filter, of any 
length, which meets the response criteria and has the fewest 
non-zero tap weights. For beamforming arrays this would be 
equivalent t o  the optimally sparse array, the array with fewest 
elements. Since the response constraints can be expressed as a 
set of linear inequalities [5,8], this optimization problem can be 



ted as a 1/P program and is well suited for the 1/P 
algorithm. This algorithm has been implemented for 

gn of linear phase real symmetric FIR filters. 
we sample the desired spectral response a t  M equal spaced 

equencies then the real, symmetric FIR filter coefficients 
hich achieve the desired response at these points are related 

the linear system _H = W h where h is half of the sym- 
impulse response (the other half being redundant), 

ctor of half of the desired frequency response sam- 
is the discrete Cosine transform (DCT) kernel: 

The  number of spectral samples, M, is chosen to  be larger than 
The  ripple constraint for each 

ressed by setting an upper and a lower bound at 
ncy sample, which yields the simultaneous linear 

allowable filter. 

5 Wh j B+hi (10) 

_S and _6’ are the maximum allowable lower and upper 
iations, respectively, from the desired response. We may 

press this in a form suitable for the 1/P simplex algorithm 
with a variation of the basic tableau to  allow for the dual ine- 
qualities and positive or negative h values, as follows: 

ires 21 delay taps,  but has only 15 non-zero 
coefficients. Fig. 2 shows an equiripple filter designed to  the 
same response constraints which requires 17 non-zero 
coefficients. This example is typical of design cases for simple 
filters; the minimum computation order filter reduces the 
number of non-zero taps by 2 to  4. This validates the concept 

that  would demonstrate large improvements over the equirip- 
ple design, but we have found no cases where any such spec- 
tral response would be of any practical value. One must also 

have found no cases where it was worse than tha t  of an 

is anticipated that  the 1/P programming approach will more 
propriately be applied to  related problems where optimal 

algorithms do  not exist. A common approach t o  line array 
beamformer design is the Chebyshev weighting which produces 
equal ripple sidelobe levels [lo]. Many of the same techniques 
and algorithms are used in line array and multidimensional 
filter design as in 1-D FIR filter design. For two dimensional 
arrays and filters, the problem is more difficult since no factor- 
ization theorem exists t o  allow polynomial approximation 

iripple filter with the same number of non-zero taps. 
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Fig. 1 Frequency respons e bandpass FIR filter 
designed using the 1/P simplex algorithm. The  filter is of 
order 21 with 15 nonzero CO nts,  The  specification is 
marked with a dotted line. 
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Fig. 2 Frequency r of the bandpass FIR filter 
designed to the spe of Fig. 2 using the equiripple 
design algorithm in 

In particular, the 1/P solution 
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1. Seismic Deconvolution 
The  1/P simplex algorithm was also applied to  the seismic 
deconvolution problem. A seismic signal was simulated by 
convolving a reflectivity sequence with a causal wavelet gen- 
erated by sampling the impulse response of a 4th order ARMA 
filter, Fig. 3. The  resulting signal was corrupted with 20dB 
additive Gaussian noise. 
The  linear system was set  up to include slack variables in a 
similar manner to tha t  described in section 5 to  allow for noise 
in the data.  The  formulation differs slightly since rather than 
constraining each error in the error vector, \Ir=(B -HQ ), the 
sum of the magnitude of the components of \Ir was bounded 
using a single additional constraint equation. The effect of this 
modification is t o  allow larger errors a t  a few sample points 
provided the total error is not too large. The result of applying 
the nonlinear simplex algorithm to  this problem is shown in 
Fig. 4. Note that  all of the main events are recovered a t  the 
correct locations and a t  almost the correct amplitude. 
The  second test used an identical source wavelet and 
reflectivity sequence as above but was modified to  include an 
additional backscatter term by adding white Gaussian noise, 
with a 20dB SNR, t o  the reflectivity prior to convolution with 
the wavelet. This is introduced to  model the effect of scatter- 
ing of the wavelet between layer boundaries [3]. I t  should be 
noted we are primarily interested in recovering the major 
events only. The  resulting da ta  was then corrupted with a 
20dB white Gaussian noise. The  result of applying the new 
algorithm to  this da t a  is shown in Fig. 5. Again all of the 
main events are detected in the correct location with approxi- 
mately the correct amplitude Note also that  a large number of 
the remaining elements of the sequence arc zcro as expected. 
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Source wavelet 

Fig. 3 Impulse response of the 4th order ARh’lA wavelet 
used in the seismic deconvolution example. 
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Fig. 4 Reconstruction of the reflectivity sequence from the 
da t a  in Fig. 5 using the l /P  algorithm. Note that  all the 
events are recovered 
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Fig. 5 Reconstruction of the reflectivity sequence from a 
second set of data  in which a lOdB SNR backscatter 
sequence is added to  the reflectivity sequence before convolv- 
ing with the wavelet in Fig. 4. The  da ta  was also corrupted 
with 20dB SNR additive noise. 
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