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Abstract-The problem of designing nonuniformly spaced 
arrays is formulated as one of constrained optimization in which 
the cost function is chosen to select the array with the minimum 
number of elements. The response of the array is controlled by a 
set of inequality point response constraints. It is shown that a 
suitable cost function for this problem is the I,, quasi-norm for 
0 < p < 1 and that there exists a number pl such that for all 
0 < p < p 1  the resulting array is maximally sparse. Furthermore 
it is shown that a solution to the problem lies at an extreme 
point of the simplex formed by the point constraints. A simplex 
search algorithm is described which will converge to a local 
minimum of the cost function on this simplex. The algorithm is 
illustrated in application to the design of sparse linear and 
planar arrays. 

I. INTRODUCTION 

HE problem of designing antenna arrays in which the T elements are not equally spaced has been studied widely 
over the last 30 years. A prime motivation for this work is 
the potential for improved resolution or reduced sidelobe 
levels compared to an equispaced array with the same num- 
ber of elements. In this paper we describe a new method for 
designing sparse, unequally spaced arrays. This result is 
achieved by optimizing a nonlinear cost function over a set of 
linear inequality response constraints to select the minimum 
number of array elements, their locations and the gain factors 
necessary to meet a given response criterion. The use of an 
optimization theoretic approach is made possible by a sim- 
plex search algorithm based on an I ,  quasi-norm which 
serves as a sparseness objective function. 

Consider a P element arbitrarily shaped three-dimensional 
(3-D) array of matched omnidirectional sensors located at 
positions z,, i = 1,2;-.,  P .  For a far-field, narrow-band 
source, with wavenumber k = 27r/X, impinging on the ar- 
ray from direction ( 8 ,  $) the array factor or beamformer 
spatial response is given by 

P 

F ( 8 ,  $) = c A,exp s o , + ) }  (1) 
i =  1 

where A , ,  i = 1,2;. a ,  N, are a set of complex weights, 
the unit vector so, ll. = (sin $ cos 19, sin 4 sin 8 ,  cos $) and ( e )  

denotes the vector inner product. 
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The problem addressed in this paper is that of finding an 
optimal set of array weights, A;, such that 1) the spatial 
response, F(0 ,  $), is held within a specified tolerance limit 
of a desired response, F’(8, $), and 2) the maximum possi- 
ble number of weights, A , ,  are zero valued. By removing 
the zero weighted elements from the array we then produce a 
maximally sparse array for the given set of initial positions, 
zi, and the desired response. 

It will be shown that this problem is related to the nonlin- 
ear program 

N 
ming(x) = I a, I subject to H x  = b 

for some 0 < p < 1, and a locally optimal solution may be 
found using the algorithm presented in Section IV. 

The design of maximally sparse arrays beiongs to the class 
of related nonuniformly spaced array problems. It has long 
been known that element placements and shadings exist that 
exhibit one or more of the following advantages over uniform 
arrays. 

x 2 0  i =  1 

Significantly increased resolution (decreased main lobe 
width) when compared to a uniform array of the same 
number of elements [l]. The array aperture may be 
increased using nonuniformly spaced elements without 
generating the grating lobes found with evenly spaced 
elements at greater that X/2 separation. 
Sidelobe level control by element placement in lieu of 
element shading [2]. For example, in applications 
where both maximum energy output and sidelobe con- 
trol are desired for a transmitting array, each element 
may be operated at maximum power with the side- 
lobes controlled by element placement rather than 
“tapering” the array with reduced power in the outer 
elements. 
Placement and shading of elements when physical 
constraints restrict potential sites [3]. For example, 
conformal arrays which must follow the surface of a 
supporting body, such as a ships hull, and arrays in 
which minimum spacing is limited by mutual coupling 
or element size. In this case the most favorable ele- 
ment locations are often nonintuitive and unaided 
placement can lead to using far more elements than 
necessary. 

To place the algorithm described in this paper in context we 
will briefly review the alternative approaches to the design of 
nonuniformly spaced arrays. However, it is not our intention 
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here to give a comprehensive review of the many fine articles 
on this subject. For example, see [1]-[14], [16]. 

Many early attempts at designing nonuniform arrays were 
based on series expansions of the array factor. Equating the 
truncated series with the desired response, one may then 
solve for element gain [4] or location [5]. Others have 
addressed the problem using spatial tapering of the array 
elements [l], [2] to reduce sidelobe levels. While these 
methods were successful in achieving nonuniform designs 
which exhibit favorable properties in comparison to equis- 
paced arrays, the optimality of the resulting designs is doubt- 
ful [6]. An alternative approach based on random element 
placement was investigated by Lo [7] and others [8]. The 
array patterns are selected as samples from a probability 
distribution which exhibit optimal statistical properties. How- 
ever, any particular realization of the array will not in 
general share these properties. Furthermore, this technique is 
generally applied to uniformly illuminated arrays and is not 
easily modified to allow variable illumination. 

More closely related to our technique are the various 
optimization schemes which have been proposed. The gen- 
eral form involves a solution of the problem: 

where CY denotes the vector of complex weights, z the vector 
of element positions, Q and Z the respective feasible sets and 
f is some function of the array response parameterized in 
terms of CY and z .  Typically f is either an 1, or 1, measure 
on the difference between the desired and actual array factor 
summed over a finite set of point responses. Direct minimiza- 
tion of this functional over all possible values of CY and z is 
infeasible. Consequently, the set of potential element posi- 
tions 2 is normally restricted to a finite set of points. 

Skolnik et al. [9] use dynamic programming to search a 
grid of potential element placements for a uniformly illumi- 
nated, linear symmetric array with the objective of minimiz- 
ing peak sidelobe level. This work was extended by Bratkovic 
[lo] who used a combination of analytical and dynamic 
programming techniques, with the constraint of monotoni- 
cally increasing element spacing away from the array center, 
to achieve the minimax solution with guaranteed optimality . 
Redlich [ l  11 and others describe algorithms for the design of 
nonuniform arrays which minimize the 1, error between the 
desired and actual array factors, using the derivative of the 
cost function. The major deficiency of these and the many 
related optimization techniques is that, with a few exceptions, 
the number of elements in the array is fixed. Thus, they may 
not be used directly for the design of optimally sparse arrays. 

Mitrou [12] and Kishi et al. [13] have investigated mini- 
mum squared error array synthesis by adding one element at 
a time and reoptimizing the weights and/or positions with 
each iteration. By repositioning each element and reweighting 
at each iteration, Mitrou's technique is guaranteed to con- 
verge to a local minimum of the cost as a function of element 
position, but no global measure of sparseness is applied. A 
problem with this approach is that the 1, cost function used 
here does not permit precise control of maximum sidelobe 
level or main lobe beamwidth. In many practical data inde- 

pendent beamforming design problems these are the parame- 
ters of greatest interest, and 1, optimization is used to reduce 
the peak sidelobe level [ 151, [30]. Peak sidelobe level control 
is particularly important in sparse array design because of the 
potential for narrow, large, grating lobes when spacing is 
greater than one half-wavelength [16]. An alternative ap- 
proach due to Jarske et al. [14] begins with a uniform array 
and with each iteration removes the pair of elements which 
after weighting optimization would leave the lowest peak 
sidelobe level. In this case, however, one must optimize the 
response for each potential configuration and the method 
becomes impractical for large arrays. 

In summary, while a large number of techniques exist for 
the design of nonuniformly spaced arrays, we have found no 
computationally feasible method for designing optimally 
sparse arrays in which both the element location and gain 
may be simultaneously varied to meet a desired response. In 
Sections 11, 111, and IV we present a problem formulation and 
propose an algorithm which minimizes a cost function that 
directly reflects the degree of sparseness of the array. The 
relationship between the desired and actual response is con- 
trolled by a set of point constraints. 

11. PROBLEM FORMULATION 
The response of the array given in (1) can be controlled by 

choosing the order P and the pairs ( A i , z i ) ,  i = 1,2;.*,  P 
to meet a given desired response FD(e, $) within a specified 
tolerance + € ( e ,  $). These parameters remain as variables in 
the method described here, however we adopt the following 
design constraints in order to achieve computational tractabil- 
ity. 

1) The response is controlled using a finite set of point 
constraints: 

1 ( F ( e / ,  grn) - F D ( e / ?  $m)) 1 E ( e / ?  qrn)? 

Placement and density of these point constraints is arbitrary. 
However, a sufficiently dense grid of response samples should 
be used in the critical regions to control sidelobe leakage 
between points. Some techniques used for frequency con- 
straint points in FIR filter design are applicable here [ 171. 

2) The element locations are confined to a large finite set 
of candidate locations z i ,  i = 1,2,  * - , K where K is cho- 
sen to be considerably larger than the expected order of the 
sparse array. For the remainder of this paper, K is assumed 
even with N = K/2.  The extension to K odd is accom- 
plished trivially by representing the center element as two 
co-located elements. 

3) The element locations are constrained to be symmetric 
about their center point and the associated weights to be 
conjugate symmetric. This ensures F(0 ,  $) will be real thus 
simplifying evaluation of (2). 

z . =  - z  2 N - i + l ,  i = 1 , 2 , . . . ,  N 

A i  = ATN- i+ l ,  i = 1 , 2 ; - . ,  N .  

I *  A denotes the complex conjugate of A .  

(3) 
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4) The array is presteered by element phasing for maxi- 
mum response in a desired direction, so. This leaves only a 
single real unknown weight, a,, at each element: 

A ,  = a, exp { -jk(zi so)} ,  i = 1 , 2 ,  - , N (4) 

where a, are a set of real coefficients. 
Substituting (3) and (4) in (1): 

N 

F ( e ,  $) = C 2aicos [ k ( z , .  ( s o , +  - so))]. ( 5 )  
i =  1 

Let aT  = ( a , ,  a2,  - * , a,) E RN denote the unknown weight 
vector. The constraints in (2) may then be written in matrix 
vector form: 

e , f D € R M ,  a E R N ,  F € R M x N  (6 )  

where f, = [Fd(Ol, $,) . * FD(OM,, $,,,,)IT is the desired 
response vector, E = [ € ( e , ,  $,) € ( O M , ,  gM,)IT is the tol- 
erance vector, and the matrix F has elements F(m, n) = 

2 cos [ k ( z ,  * + ) m  - so))], m = 1 ,  2 , .  - , M ,  n = 
1 ,2 ,  , N ,  where s ! ~ ,  $lm denotes the direction vector for 
the mth point constraint. 

The set Q of vectors a which satisfies the constraints in (6) 
form a potentially large set of feasible solutions. To achieve 
the desired sparseness in the design we adopt a cost function 
which favors sparse arrays and optimize this function over 
the feasible set Q. The appropriate cost function for this 
problem is the sum of indicator functions on each element of 
the weight vector, a,, i = 1; e ,  N ,  since minimization of 
this functional will result in the minimum number of nonzero 
weights. Since any zero weight implies that the correspond- 
ing array element is redundant, this optimization yields a 
maximally sparse array. 

The problem may now be precisely stated as the following 
nonlinear program: 

J F a  - f , l  I E ,  

N 
minf(a) = l (a , ) ,  subject to a E D  (7) 

a i =  1 

where l (a , )  denotes the indicator function on a,  defined as 

if a,  = 0 
otherwise. l ( a i >  = [ :: 

It should be noted that additional linear constraints other than 
directional response limits may be added to (6) without 
changing the form of the optimization problem. For example, 
we have applied a nonnegativity constraint, a,  1 0, i = 
1 , 2 , .  * a ,  N to improve stability of the solution, and a con- 
straint on the maximum allowable weight magnitudes, I a, I 
I c, i = 1 ,2 ,  - , N ,  to control the array response to inde- 
pendent element noise. 

111. MAXIMALLY SPARSE OPTIMIZATION 

The nonconvex optimization problem (7) is unattractive as 
the basis of an algorithm because it is particularly difficult to 
solve. The function f(a) is discontinuous and has zero gradi- 
ent except at the discontinuities. The discrete nature of the 
indicator function yields no information as to potential direc- 
tion of movement from one point in the solution space to one 

of lower cost since f(a) is constant until a solution with a 
different number of zero terms is encountered. Furthermore, 
accurate computational evaluation of the functional is difficult 
due to finite machine precision as elements of a approach 
zero. In this section we consider the relationship between 
maximally sparse optimization and generalized I, optimiza- 
tion for 0 < p < 1 and show the conditions under which a 
solution to the computationally simpler I, optimization prob- 
lem leads to a solution of (7). 

Consider the generalized linearly constrained 1, optimiza- 
tion problem: 

N 

a i =  1 
ming(a) = [ a i l P ,  subjecttoaeQ (8) 

for values of p in the range (0 < p < 1).  To show how this 
problem is related to (7) consider the unit ball surfaces in R2 
for the quasi-norm Ila 11 /, = [E: , I a, I = g(a)’/P for 
values of p in the range 0 5 p I m as illustrated in Fig. 1.  
For p 1 1 we have the conventional I, norm, which is a 
convex functional and obeys the triangle inequality. Since the 
linear constraints in (2) form a convex set it is well known 
that any local minimum of Ila 11 /, satisfying the constraints is 
a global optimum. Many efficient algorithms exist for solving 
such problems 1181, [ 191. Of particular interest are the cases 
for values of p = 1 ,  2, and 00, which form the basis of many 
widely used optimization procedures. However, the resulting 
solutions for these do not achieve the “sparse” results of 
interest in this paper. 

For 0 < p < 1, I ,  is only a quasi-norm [20], since the 
triangle inequality does not hold, and in fact the inequality is 
reversed for positive a,. Over R N ,  \(a (1 ,, is neither convex 
nor concave, containing many strong local minima and pre- 
senting a difficult optimization problem. Large values of p 
result in smooth solutions, however, as p -+ 0 the solutions 
tend to become more “spiked,” or sparse [21]. The reason 
for this can be seen in Fig. 1 .  As p + 0, the curves in Fig. 1 
approach the x,,  x2 axes, on which the unit ball lies for f(a) 
in (7). We observe that 

for x # 0 
p-0  for x = 0. 
l i m l x l p =  I o :  1 

This suggests that we may identify minimum order optimiza- 
tion as a special case of generalized I, optimization: 

N N 

The utility of this observation is that for p > 0, g(a) elimi- 
nates some of the handicaps of f(a); g(a) is continuous 
everywhere and differentiable except at the axes. 

If, however, we must allow p + 0 before (8) leads to a 
solution of (7), then we cannot benefit from the practical 
advantages of g(a) mentioned above. Theorem 4 (see Ap- 
pendix) provides justification for minimum order optimiza- 
tion based on minimizing g(a) by demonstrating that for a 
bounded basic feasible solution set there exists a finite p ,  > 0 
such that for all 0 < p < p , ,  any solution to (8) is a solution 
to (7). The optimization problem in (8) therefore defines a 
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Fig. 1. Unit balls in R2 for the /, quasinorm for various values of p .  
Note that as p -+ 0 ,  the unit ball collapses onto the x ,  and x 2  axes. 

class of problems, indexed by p ,  whose global solutions are 
increasingly sparse as p decreases, until p < pl, at which 
point an optimally sparse solution is given. For p L 1 the 
optimal x changes continuously as a function of p ,  but as p 
varies over the range 0 < p < 1 only a finite number of 
unique globally optimum solutions are encountered [22]. A 
given aopr will remain optimal over a range of p values, and 
as p decreases, we step from one solution to another in a 
discrete fashion [22]. 

It should be noted that since solutions to (7) are not 
necessarily unique, and lacking any justification for accepting 
one over another, we are satisfied with any algorithm which 
will select one from the optimal set. Theorem 4 proves that 
solutions to (8), for p < p l ,  form a subset of solutions to 
(7), so we accept any 1, optimum provided 0 < p < p l .  In 
order to improve the computational stability of an algorithm, 
we wish to use the largest value of p which reasonably 
approximates f(a). The p1 as computed in Appendix I is a 
conservative upper bound, and we have found that in practice 
a much larger value may often be used. 

Fig. 2 is an illustrative example of the effect of changing p 
on the minimum I ,  solution to the following set of underde- 
tennined linear equality constraints: 

[: :.2 -:1[:j = [:I 
The solution space to this system is given by the line passing 
through the points ( a l ,  a2,  a,) = (1,0, 1)  and (0, 10,O). The 
optimal solutions for various p lie along this line and have 
been computed and tabulated in Table I. It is interesting to 
note that for this example the bound p1 from Theorem 4 is 
correctly predicted with I' = 10, \k = 1, and r = 1 to be 
p, = log[(r + l)/r]/log[I'/\k] = 0.3012 since for 0 < p  
< 0.3012 we obtain the minimum-order solution. 

Although to the best of our knowledge the above approach 
to minimum order optimization has not been previously 
suggested, a number of investigators have studied related 
problems. In [22] Barrowdale discusses the behavior of lin- 

t a3 I ,Solution 301 2<p<1 

Solutlon p=2 
M a x i m a l l y  Sparse 
Solut ion O < p <  301 2 

I 0  

'Y . A I I  solutions t o  eauation 110) 

Fig. 2. An example of the effect of varying p in linearly constrained I ,  
optimization for the linear system defined in (10). All feasible solutions to 
the constraints in (10) lie on a line through R 3 ;  varying the value of p in the 
cost function selects different optimal solutions lying on this line. Optimal 
solutions for various values of p are given in Table I. 

TABLE 1 

CONSTRAINTS IN (10). NOTE THAT FOR p > 1 ,  THE OFTIMAL SOLUTION 
CHANGES CONTINUOUSLY WITH p BUT FOR 0 < p < 1 A SOLUTION 

OFTIMAL SOLUTIONS TO THE 1, OFTIMIZATION PROBLEM FOR THE LINEAR 

REMAINS OPTIMAL FOR A FINITE RANGE OF p 

p values solution type x ,  x2 x3 

p = w  min I ,  0.91 0.91 0.91 
p = 2  min 1, 0.98 0.20 0.98 

0 < D < 0.3012 maxsparse 0.00 10.00 0.00 
0.3012 s p 5 1 min I ,  1.00 0.00 1.00 

early constrained 1, optimization for 0 < p < 1 and demon- 
strates the stepwise fashion in which the optimal solutions 
change with p .  Pham and De Figueiredo discuss optimal 
estimation of sparse random distributions using 1, quasi-norm 
minimization [23]. As we shall see in Section IV, problem 
(8) is closely related to the problem of concave minimization 
over linear constraints. A number of techniques have been 
proposed for global optimization for problems of this type 
based on collapsing polytopes and branch and bound proce- 
dures [24]-[26]. These methods, however, make a number of 
assumptions not appropriate to our problem. In addition, due 
to the use of multiple nested linear programming subprob- 
lems, are probably computationally infeasible for the type of 
problem considered in this paper. 

IV. A SIMPLEX SEARCH ALGORITHM 

Having established the connection between maximally 
sparse optimization and 1, optimization, we now proceed to 
develop an algorithm for solving these problems. In Section 
IV-A three theorems are given which show that an optimal 
solution to (8) may be found using a simplex search. A 
suitable algorithm for solving (8) is therefore related to the 
well-known simplex method for linear programming (LP) 
[19]. The new algorithm differs from LP since the cost is 
nonlinear and must therefore be specifically computed rather 
than using a reduced cost row in the simplex tableau. 
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A .  Theorems 
To facilitate the solution of (8) we borrow a well-known 

result from linear programming, namely that any set of linear 
inequality constraints in which the solution vector may con- 
tain both negative and positive values may be rewritten as a 
set of linear equality constraints, with a nonnegative solution 
vector, by the introduction of slack and surplus variables and 
doubling the length of the solution vector [19]. As shown in 
Theorems 1 and 2, the following two problems are equivalent 
f o r O < p <  1: 

found from the solution to (12). Theorems 1 and 2 show that 
the search for a global optimum may be confined to the set of 
basic feasible solutions of (12). Since for linear equality 
constraints the basic feasible solutions correspond to the 
extreme points or vertices of a convex polytope 1191, it then 
follows that a global optimum may be found using a finite 
search of these extreme points. Furthermore, the simplex 
method for linear programming gives us a well-known tech- 
nique for searching these points using successive pivoting 
operations. The method differs from the linear programming 
simplex algorithm only in the form of the cost function, 

N which in our case is nonlinear. 
a In summary, Theorems 1, 2, and 3 show that a global ming(a) = 1 a,  I ,, subject to 1Fa - f, I I E ,  

i =  1 

E , f D E R M , a E R N , F E R M x N , O < p <  1,  (11) 

and 
2 N  

X i= 1 
minh(x) = (xi)', subjecttoHx = b ,  x 2 0 

(12) 

a + ,  a-€ RN, s + ,  S-E R', x E R N ,  b E Rw , 
N' = 2 N + 2 M ,  M' = 2 M  

and I is the M x M identity matrix. 
The following statement and theorems show the equiva- 

lence between problems (11) and (12) and hence that an 

minimum of the 1, minimization problem (1 1) may be found 
by a simplex search of the basic feasible solutions associated 
with the linear constraint equation in (12). Theorem 4 shows 
that there exists a value of p ,  0 < p < 1, such that a global 
minimum of the I, problem (1 1) is also a global minimum of 
the sparse optimization problem (7), and hence a maximally 
sparse array meeting the desired response constraints may be 
found by a simplex search algorithm which solves (12). 

B.  A Simplex Algorithm 
The algorithm described in this section is a modification of 

the LP simplex algorithm. Emphasis is placed on the differ- 
ences in the two algorithms. For a comprehensive description 
of the LP algorithm see [19], [28]. 

As in linear programming, we begin by forming a tableau 
for ease of notation and computation. H may be partioned as 

[A ID] = H ,  whereAER2Mx2M ' (13) 
optimal solution to (11) can be found from an optimal 
solution to (12). These results are also the basis for the 
algorithm described in Section IV-B. 

Multiplying by At, the left pseudo-inverse of A, leads di- 
rectly to the basic solution x B  

The following definitions are commonly used in the devel- 
opment of the simplex method for linear programming: 

Definition: A feasible solution to problems (11) or (12) 
is any solution vector which satisfies the constraints. 

Definition: A basic feasible solution to (12) is any x 
which is feasible and has at most 2 M  nonzero components. 
The following statement follows from the construction of 
(12). 

Statement: If x t  = [a,' ', a; ', s,' ', s; '1 is a feasible so- 
lution to (12) then a,, = (a,' - a;) is a feasible solution to 
(11). Furthermore, if a, is a feasible solution to (11) then 
there exists an x r  = [a,' ', a; ', so' ', SO '1, such that (a,' - 
a,) = a, and a,"a, = 0, which is a feasible solution to 

Proofs of the following theorems are given in the Appendix. 
Theorem 1: If a feasible solution to (12) exists then a 

basic feasible solution exists. 
Theorem 2: If there exists a globally optimal feasible 

solution to (12) then there exists a basic feasible solution 
which is globally optimal. 

Theorem 3: If x r  = (a,", a; ', s i T ,  s i T )  is a globally 
optimal basic feasible solution to (12) then a,, = (a,' - a,) 
is a globally optimal solution to (11). 

Theorem 3 shows that the the solution to (11) may be 

(12). 

[IIAtD]x = Atb, x B  = [ A t b , 0 ; . * , 0 ] ' .  (14) 

The tableau is then formed by augmenting the matrix with the 
right-hand side 

Y = [I lAtD IAtb]. (15) 

To compute (15) a standard linear programming phase one 
procedure [ 191 may be used to find a nonnegative initial basic 
solution and corresponding tableau. 

The variables xi associated with columns of A are termed 
basic variables and A the basis. As in the standard LP 
simplex algorithm, an adjacent tableau is formed by moving 
(pivoting) one variable out of the basis and one nonbasic 
variable into the basis by swapping a column in A with one 
in D, adjusting x indices, and updating At. 

For the I ,  simplex search algorithm, the reduced cost row 
of the LP tableau does not appear in Y due to the nonlinear 
cost functional which must be explicitly computed at each 
potential adjacency before the best pivot is identified. 

For the I ,  simplex algorithm, we may view the set of 
tableaus as a connected graph with a node for each tableau 
satisfying (14) and (15). 

Let S = the set of all basic feasible solutions (BFS) to (12) 
Let T = the set of all tableaus, Y', associated with S. 
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Define a graph, G = (T, U) where U consists of pairs 
(Y i ,  Y') E U if and only if tableau Y J  can be generated 
from Y by a single pivot operation (or vice versa). 

Each element of T maps onto an element of S. This graph is 
connected and has properties discussed in depth in [29]. 
Theorems 1-3 imply that we may find an optimal solution to 
(1 1) or (12) by searching the graph G .  The algorithm per- 
forms this search by generating a sequence, { Y i  I i = 

1 ,2 ,  - a ,  i,,,) , which traverses the graph along a path of 
monotonically nonincreasing I ,  cost, halting when all adja- 
cent solutions are of greater cost. The steps of the algorithm 
are as follows: 

1) Find any initial basic feasible solution. 
2) Compute the cost of the bounded feasible solutions 

from adjacent tableaus. 
3) If no adjacent tableau is of equal or lower cost, 

terminate, optimum found. Otherwise, if any lower 
cost tableaus exists, select one and pivot to it. Other- 
wise, perform an anticycling procedure [19], [29] to 
pivot to an equal cost tableau. 
Repeat 2) and 3) to termination. 4) 

This algorithm is similar to one described in [22] for I ,  
optimization for 0 < p C 1; however, we have not seen it 
applied to the minimum order problem. As with linear pro- 
gramming, a practical computer algorithm must deal with 
accumulated error from pivoting, find an initial solution, 
include an anticycling procedure, and handle systems of large 
order. 

Our experiments have shown that the nonlinear simplex 
algorithm converges in approximately the same number of 
iterations as the linear algorithm would for a similar sized 
system. Since the cost at adjacent tableaus can be computed 
without pivoting the entire tableau, the processing load in- 
volved in computing costs at all adjacencies in step 2) above 
is equivalent to a single pivot operation. Thus computation 
time is approximately twice that of the LP simplex algorithm 
overall. With a convergence time comparable to the O(5N)  
iterations of the LP simplex, this algorithm is dramatically 
more efficient than an exhaustive search. 

The major difference between the I ,  and LP simplex 
algorithms is that convergence to a global minimum is guar- 
anteed in the latter case but not in the former. Since the set of 
basic feasible solutions contains the global minimum and is 
finite, it is theoretically possible to find the global minimum 
in a finite number of iterations. Techniques for global mini- 
mization for related concave minimization problems have 
been developed elsewhere [24]- [26], however, the computa- 
tional cost would be prohibitive for problems of the size 
treated in this paper. For this reason we have restricted 
attention here to finding a local minimum on the graph G .  
For the applications described in Section V, we have found 
that in most cases acceptably sparse solutions were found. 
We have however demonstrated in [27] that applying the 
global optimization method of simulated annealing to this 
simplex search algorithm can yield some improvement in 
sparseness of the resulting beamforming array. 

As a final comment on this algorithm, we note that there 
are two mechanisms by which sparse solutions may be found: 
1) degeneracy and 2) the presence of slack and surplus 
variables in the basis. A basic feasible solution to (12) with 
fewer than 2 M  nonzero components is termed a degenerate 
solution [ 181. While degeneracy implies the presence of zero 
valued variables in the basis and hence may lead to sparse 
solutions, in practice degeneracy rarely occurs. The domi- 
nant mechanism by which a sparse solution is obtained is 
through the presence of a large number of slack and surplus 
variables in the basis. Since there are a total of 2 M  variables 
in the basis and there are 2 M  slack and surplus variables, it 
follows that if the tolerance interval f E is sufficiently large, 
it is possible to have all the slack and surplus variables and 
none of the weight vectors, a+ and a-, in the basis. As the 
tolerance interval is reduced the system becomes more tightly 
constrained and the weight vectors must then enter the basis 
in order to satisfy the constraints. One can, therefore, view 
our simplex algorithm as a technique for forcing the maxi- 
mum number of slack and surplus variables into the basis 
thus minimizing the number of nonzero weights. 

V. DESIGN EXAMPLES 
In this section we show the results of design experiments 

for linear and planar arrays performed using the above 
algorithm. The linear constraints were set up according to 
(12). An additional pair of constraints and corresponding 
slack and surplus variables were also introduced to constrain 
the absolute sum of the array weight vector, i.e., 

N 

The effect of this constraint is to control the white noise gain 
of the array by avoiding large weights in the solution vector. 

A .  A Sparse Linear Array 

array with the following specifications was designed: 
To demonstrate the use of the simplex method, a sparse 

Steered maximum response angle: 15". 
Main lobe width: 5' at the - 13.4 dB point. 
Peak sidelobe lever of - 13.4 dB for - 32.5" 5 8 5 
90". 
A - 26.9 dB null over the range 35 5 8 I 45". 
Sidelobe level I 0 dB for -90" 5 8 I -33",  i.e., 
no rejection required in this region due to the assump- 
tion of no interferers in this region. 

For comparison, the Dolph-Chebyshev weighting for equi- 
spaced arrays was used to design an array using the above 
constraints [30]. Using the Remez exchange algorithm, a 
symmetric array of 35 elements, equispaced by X/2, was 
found which met the above constraints, as shown in Fig 3. 
Note the additional null over - 11 O I 8 I - 3' due to the 
symmetric construction and weighting, with phase steering of 
the MRA to 15". Starting with a grid of 117 elements, 
equispaced by X/5, the simplex method found an array of 26 
elements which met these constraints, as shown in Fig. 4.  
The positions of the elements for these two cases are shown 
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Fig. 3. Response of linear 35 element, equispaced array with constraints 
defined in (17) designed using the Dolph-Chebyshev technique. 
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Fig. 4. Response of linear 26 element, nonequispaced array with con- 
straints defined in (17) designed using the simplex search technique. 

in Fig. 5. This result indicates the ability of the simplex 
method to design sparse arrays with fewer elements than an 
equivalent equispaced Dolph-Chebyshev array under the 
same constraints. 

B.  Sparse Circular Arrays 
This example demonstrates the ability of the simplex 

method to design planar arrays. Consider the 60-element 
transparent concentric ring array of Fig. 6. We wish to form 
beams, steered horizontally, in the plane containing the ar- 
ray, i.e., s = (cos 8, sin 8 , O ) .  This is similar to the configu- 
ration used by some "dipping" sonar systems which suspend 
a cylindrical ring array in the water from a helicopter and 
form horizontal search beams. Fig. 7 shows the beam re- 
sponse for the full array using unit magnitude shading, with 
complex phase shifting at each element to steer the maximum 
response angle (MRA) to a bearing of 0". A sinusoidal signal 
at 1 kHz is assumed, which gives an average element to 
element spacing of just over X/4. 

The constraints for the simplex algorithm are that the main 
lobe width is the same as for the unity weighting of the full 
array and the maximum sidelobe level is allowed to be no 
higher than the first sidelobe in Fig. 7. Allowing some of the 
secondary sidelobes to come up to the level of the first 
introduces some degrees of freedom which are exploited by 
the algorithm to thin the array. Fig. 8 shows the remaining 
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Fig. 6.  Sixty element concentric ring array designed to operate at 1 KHz in 
seawater. 
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Fig. 7.  In plane beam response for the array in Fig. 6 for unity magnitude 
shading and phase steering at bearing 0". 

elements of the array after thinning by the simplex search 
algorithm, and Fig. 9 shows the corresponding response 
pattern. Only 16 of the original elements are needed to 
maintain the original main lobe shape and maximum sidelobe 
level. 

.... 
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Fig. 8. Thinned array of 16 elements obtained using the simplex search on 
the configuration in Fig. 6 under the constraint that the mainlobe width and 
peak sidelobe level are no larger than for the full, unity weighted array 
response in Fig. 7.  
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Fig. 9. Response of the thinned array of Fig. 8. 

VI. CONCLUSION 

The design of sparse beamfonning arrays was formulated 
as a constrained optimization problem using a set of linear 
constraints on the array response and a cost function which 
favors sparse arrays. Theorems 1-4 show that under certain 
conditions the solution to this problem may be found using I, 
optimization, for values of p in the range 0 < p < 1. Using 
the properties of the I, cost function, we show that the 
maximally sparse array (and its corresponding weight vector) 
must then lie at an extreme point of the simplex defined by 
the constraints, and thus the search may be restricted to a 
finite set of possible optimal solution vectors. An algorithm 
for finding a local minimum on the graph defined by the 
simplex tableaus and their adjacencies is described. 

In Section V, examples of sparse linear and planar arrays 
obtained using the simplex method are given. These results 

indicate that good practical results may be obtained using this 
approach. As described above, this method may also be 
applied to the design of 3-D or conformal arrays. 

There are a number of limitations to this algorithm which 
must be discussed. Firstly, there is no guarantee of a global 
optimum since the algorithm will terminate on reaching a 
local minimum of the graph formed by the simplex tableaus 
and their adjacencies. The results in Section V indicate, 
however, that the local minima found by this algorithm are 
indeed sparse, and hence that a guaranteed global conver- 
gence is not essential for obtaining useful solutions. A second 
limitation of this method is that the array must be symmetric 
and the set of potential element locations is finite. Since there 
is no constraint on the number of candidate positions, the 
latter constraint is not too restrictive. Using a very large 
number of potential locations will however result in a large 
simplex tableau and hence computation time will increase. 
The requirement for symmetry in the array is necessary to 
reduce the problem to the estimation of a real set of coeffi- 
cients. It is possible to modify the above formulation to 
incorporate complex variables, however, in this case the 
theorems given in the Appendix do not apply and hence the 
solution may not be found using the simplex method 

Application of this method is not restricted to the design of 
beamforming arrays. It can also be applied to any linearly 
constrained problem in which the dominant cost is the total 
number of “units” required in the solution vector. Thus we 
anticipate potential applications in operations research, the 
design of reduced-multiplier FIR filters and sparse deconvo- 
lution [31], [32]. 

APPENDIX 
Theorem I :  If a feasible solution to (12) exists then a 

basic feasible solution exists. 
Proof of Theorem I :  This theorem is well known and 

is the basis for the simplex algorithm for linear program- 
0 

Theorem 2: If there exists a globally optimal feasible 
solution to (12) then there exists a basic feasible solution 
which is globally optimal. 

Proof of Theorem 2: It is easily shown that h(x) in 
(12) is a concave functional over the set S = {x E R 2 N + 2 M ,  
x 2 0} for any p I 1 .  It is well known that there exists an 
extreme point of the constraint set which is a global minimum 
of a concave functional over a set of linear constraints [19]. 
Since a feasible solution to a set of linear constraints is an 

0 
Theorem 3: If x i  = (aiT,  a i T ,  .siT, .siT) is a globally 

optimal basic feasible solution to (12) then a. = (a,’ - a,) 
is a globally optimal solution to (1 1). 

Proof of Theorem 3: Let x z  = { a,+T, a; T ,  s i  T ,  so ’} 
be a globally optimal basic feasible solution to (12). Then: 

ming. A proof may be found in [ 191. 

extreme point iff it is basic, theorem 2 is proven. 

N 

h ( x o )  = 1 a J ( i )  1 + 1 u i ( i )  I ,. (17) 
i =  1 

I f for  any i ~ { 1 , 2 ; . . , N } ,  al( i )a;( i )  #Othenreplacing 

aJ(i)  with { a , + ( i )  - min[a,+(i) ,a;(i)])  
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a ; ( i )  with ( a i ( i )  - min[a,+(i) ,a;(i)]} 

would produce a new basic feasible solution of lower cost. 
Since x o  is a global optimum this is not possible, hence 

From Statement 1, if IT = {i5+T,i5-T,i+T,i-T} is a 
feasible solution to (12), then 1 = (a+-- G - )  is a feasible 
solution to (1 1). For any % such that 

g(1) = I G ( i ) (  = IC+(i)I p +  I G - ( i ) I  = h(%).  

a + T  - _  a - 0. 

= 0: 
N N 

i =  1 i =  1 

(18) 

If there exists a feasible solution a , ,  to (11) such that 
g(al) < h(ao), then from Statement 1, one could construct a 
feasible solution x 1  such that aTTa; = 0. But then from 
(18), h(x,)  < h(xo),  which is not possible if x o  is a global 
minimum of (12). If follows that if x o  is a global minimum 

U 
Theorem 4: Let V be the set of all globally optimal 

solutions to (7) with { f (a) = r for all a E V }  . Let U be the 
set of all globally optimal solutions to (1 1). Let S ,  be the set 
of basic feasible solutions to (12) such that: 

S ,  = ( x T =  [ a + r , a - T , ~ + T , ~ - T ]  E R ” ,  

Let: 

of (12) then a, is a global minimum of (1 1). 

such that x is basic and a+ ‘a- = 0} . 

and 

Then, if I‘ < 03, U is a subset of V for all 0 < p < p 1  
where 

Proof of Theorem 4: If a is feasible for (7) then a is 
feasible for (1 1) since the constraints are identical. Statement 
1 establishes that for each a E U and a E V there exists an 
x E S,. Consequently: 

g(a) 5 r r P ,  for all a E V .  (19) 

Let denote the set of feasible solutions not in V .  ThenJhe 
minimum number of nonzero elements in all vectors a E V is 
( r  + 1). Consequently: 

g(a) 2 ( r  + I)*P, for all a E  V .  (20) 

Thus, to ensure that a global minimum of (1 1) lies in the set 
V ,  it is sufficient that: 

g ( a l )  < g(a , ) ,  for all a1 E V and a2 E v. 
From (19) and (20), this condition is guaranteed provided p 
satisfies the inequality 

rrP < ( r  + 1)qP 

or equivalently 

U 
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