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Abstract 

A new model adaptive method is proposed for 
restoration of blurred and noise corrupted images. 
This approach exploits information available from ob- 
served data to choose the appropriate optimization cri- 
terion and produce an approximate maximum likeli- 
hood solution. The generalized p-Gaussian family of 
probability distributions is used to model a wide range 
of observed noise classes. Distribution shape param- 
eters are estimated from the image, and the resulting 
maximum likelihood optimization problem is solved. A 
fast iterative algorithm for this method is presented 
and analyzed. Experimental results indicate that this 
method outperforms the least squares method by taking 
advantage of the non- Gaussian characteristics of the 
noise data. 

1 Introduction 

Image restoration is the process of attempting to 
reconstruct a degraded image using some prior knowl- 
edge of the degradation phenomenon. Over the years, 
algorithms such as constrained least squares [l], max- 
imum entropy [2], minimum norm [3, 41, etc. have 
been developed to solve this problem. These methods 
usually involve formulating a criterion as a measure 
of goodness that will yield some optimal estimate of 
the original image. Oftentimes, the criterion of good- 
ness is chosen because of its computational simplicity 
instead of its optimal performance. 

The choice of a particular deterministic algorithm is 
often equivalent to applying a specific prior model on 
the noise process or image itself, leading to expression 
of the restoration in terms of an optimization problem 
with an optimality criterion that dictates the form of 
the algorithm. For example, the least squares solution 
is optimal in the maximum likelihood sense when the 

image is deterministic, and the additive noise is inde- 
pendent and identically distributed (i.i.d.) Gaussian 
at each pixel. 

In this paper, we propose a model adaptive method 
that uses information available from the observed im- 
age data to select the best restoration method based 
on the maximum likelihood principle. Rather than 
making an explicit or implicit assumption of Gaussian 
noise, this method exploits information in the image 
itself to achieve better results in the presence of ad- 
ditive non-Gaussian noise. When the additive noise 
is Gaussian, the performance of the model adaptive 
method is comparable with that of a least squares al- 
gori t hm. 

The basic idea behind the model adaptive method 
is that when precise knowledge of the noise process 
is absent, a distribution family is used to model the 
noise process. This distribution family must be cho- 
sen such that it includes (at least approximately) any 
probability distribution likely to be encountered in the 
image noise field. Selection of a particular noise model 
from the family is accomplished by adjusting a rela- 
tively small set of shape parameters, which are es- 
timated from the observed data, thus adapting the 
noise model to the actual image. From this statistical 
model, a maximum likelihood estimater is applied to 
recover the original image. 

2 Theoretical Development 

2.1 Generalized p-Gaussian Distribution 

Success of the model adaptive method depends on 
the accuracy of the noise model chosen. The distribu- 
tion family used in modeling the noise process should 
be general enough to include a wide range of impor- 
tant distributions. In addition, the model fitting pro- 
cess or estimation of model parameters should also be 
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Figure 1: Generalized Gaussian density function with 
zero mean , unit variance and various values of p .  

relatively easy and use only available information such 
as the observed image. 

One such distribution family is the generalized p- 
Gaussian (gpG) distribution, also known as Box-Tiao 
[5] or power exponential distribution, which includes a 
wide range of shapes and can be used to represent dis- 
tributions such as Gaussian, double exponential, uni- 
form, Laplacian, Cauchy, and others [6] .  

The probability density function of the generalized 
Gaussian distribution family is defined as 

where I?(.) is the standard gamma function. This 
is a two-sided symmetric density with two distribu- 
tional parameters, p and p, which control the shape 
and standard deviation of the density respectively. As 
shown in Figure 1, this family is very flexible. For 
example, with p = 2 ,p  = &, it becomes a standard 
normal distribution. For p = 1, we have a double ex- 
ponential, and for 0 < p < 1, we have heavy tailed 
distributions, while as p -+ 00, the uniform distribu- 
tion is approximated. Since this distribution family 
has only two parameters, their estimation can be car- 
ried out without difficulties, as shown in Section 3.1. 

2.2 Maximum Likelihood Solution 

The image degradation process being considered in 
this paper is given by the equation y = Hx - n. As- 
suming the image data, x, are deterministic and the 

noise n comes from an i.i.d. generalized p-Gaussian 
process, the maximum likelihood solution is given by 

2 M L  = Arscmx~fy(Ylx)), (2) 

where 

The noise vector element ni can be replaced by y; - 
hrx where H = [hl, ha, . . . , hN]. The log-likelihood 
function in terms of x, 0, and p is then 

If both p and p are known, then the maximum likeli- 
hood estimate of the original image can be found as 

Since the only unknown in equation (4) is x, the esti- 
mate can be found as [7] 

N 

k M L  = Arg{minC X ~ y i  - hrxlp). ( 6 )  
i = l  

Notice that the term I y i  - hTxIP is monotoni- 
cally related to the I ,  vector norm IJy - Hxll,. Thus 
I ,  norm minimization yields the maximum likelihood 
solution to the image restoration problem under the 
assumption that the observation error can be mod- 
eled as a generalized p-Gaussian distribution for some 
value of p [7]. Note that if p = 2, which corresponds 
to a Gaussian noise case, the maximum likelihood so- 
lution becomes the least squares solution. 

3 Algorithm Implementation 

3.1 Parameter Estimation 

Based on the assumption that the noise data can be 
modeled by the generalized p-Gaussian distribution, 
we have shown that the maximum likelihood estimate 
of the image depends on the shape parameter p ,  and 
the standard deviation parameter p. In practice, p 
can be absorbed into the restoration process as a scale 
factor and its estimation is not required. On the other 
hand, knowing the value of p is crucial to the model 
adaptive approach and the result of the restoration 
relies on using the correct value of p .  
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The maximum likelihood solution derived in the 
previous section assumed p was a deterministic known 
parameter. For a fully model adaptive restoration, the 
ideal approach would be a joint maximum likelihood 
estimation of x, p ,  and p 

Although this has been done successfully with overde- 
termined problems with only a few parameters [6], 
equation (7) poses a most difficult nonlinear optimiza- 
tion problem in the high dimensionality environment 
of image restoration. A more practical approach, used 
in our work, is to form a prior estimate of p from image 
data, then compute the maximum likelihood restora- 
tion of x given that p .  

To obtain an estimate of p ,  we first extract from the 
observed image a set of samples, n, representing noise 
data only. A heuristic approach for noise extraction 
can be found in [8]. Using the extracted noise vec- 
tor, a density estimate of ii, ffi, is constructed by the 
histogram method 191. Next, the sum of the squared 
distance between ffi and the density of the general- 
ized pGaussian distribution is computed for different 
values of p .  The value of p corresponding to the mini- 
mum distance is then taken as the estimate of p .  The 
minimum distance estimater yields a robust estimate 
of p if fn is a member of the generalized pGaussian 
distribution family [9]. 

3.2 Iterative Solution 

Although the solution given by equation (6 )  is 
straight forward, closed form solutions are not known, 
and solving the problem using general purpose non- 
linear optimization algorithms requires a tremendous 
computational load and in many cases impractical. 
The alternative solution presented here is a new it- 
erative algorithm based on steepest descent, which of- 
fers the advantage of fast processing speed. In ad- 
dition, by terminating the iterations prior to conver- 
gence, the restoration process can be regularized so 
that the trade-off between deblurring the image and 
noise magnification can be managed [lo]. 

Using the steepest descent approach, the objective 
function, @(x) = I yi - hrxk I p ,  as given in equa- 
tion (6) can be minimized by the following iterative 
procedure: 

N 

= kk + aUkHT(y - Hkk), (8) 

where a is a constant that regulates the step size and 
uk is a diagonal matrix of the same size as H and its 
diagonal elements are U,, = I 9, - hrxk l p - 2 .  This iter- 
ation assumes the form of the generalized Landweber 
iteration with the noise covariance matrix equal I and 
uk as the preconditioning matrix [ll]. 

3.3 Convergence Analysis 

Two major concerns of using an iterative algorithm, 
such as equation (8), are 1) The convergence crite- 
ria, and 2) The limiting solution if the algorithm con- 
verges. To investigate these problems, let 'U, and X i  

denote the normalized eigenvectors and eigenvalues as- 
sociated with the system matrix H and assume that 
both H and HT have the same set of eigenvectors. Us- 
ing the recursive relation of equation (8), the estimate 
f k + l  can be represented as follows: 

= C ( f k  + aUkHT(y - HXk), v ~ ) v ,  

= {(I - aUkHTH)(l ik,~;)  + 
i 

i 

QUkHT(Y, Vi)) V i ,  (9) 

where (a, b) denotes the inner product between a and 
b. Using the eigenvalue and eigenvector relation and 
by careful examination of the recursion in equation 
(9), this iteration can be written as: 

. (Y,'Ul)'Ui, (10) 

where sk is the set {UO,UI,...,U~} with Ui = 

[:] is the general combination operator defined as 
the sum of the product of j unique elements out 
of the set sk. One can easily show that the term 
~ ~ ~ ~ ( - 1 ) j a j  [:I I A; 12j in equation (10) converges to 
0 E E l n x n  as k -+ 0;) if the following condition is sat- 
isfied: 

O < a <  (11) 

diag [ ~ i l ,  ~ i 2 ,  . . *  in], Uin = I yn - hKf~; l p - 2 ,  and 

2 

%ax I A,, l2 ' 

575 

~ -_ 



4000 - 

$3800 - 
0)  

- 
L 

g 3600 - 
E 
53400- 

I3200- - E 

3 3000- 

2800 - 

I 
5 10 20 25 30 2600; 

Number ::iterations 

Figure 2: Frobenius or E2 norm of the error image for 
least squares method and model adaptive method as 
a function of the iteration number. 

where timax is the maximum value among all the di- 
agonal elements of the matrix U,,VlL, and Amax is the 
maximum eigenvalue among all the eigenvalues of H. 
Thus, according to equation (lo), the limiting solu- 
tion is the inverse filtered solution. Note that if p = 2 
(corresponding to a Gaussian noise case) in equation 
(8), then the set s k  = {I, I , .  . . , I } ,  and = 1. The 
convergence condition reduces to 0 < (Y < 2/1 A,,, I 
as given by Biemond et al for the least squares method 

2 

[lo]- 

4 Results 

The performance of the model adaptive restoration 
method is illustrated by an example on an artificially 
blurred image in this section. The result is compared 
with the one obtained using the least squares restora- 
tion method. 

This example considers the restoration of a blurred 
image with additive generalized p-Gaussian noise. 
The original image was artificially blurred by diag- 
onal linear motion blur over 8 pixels. The discrete 
point spread function has a 4 x 8 region of support 
and the respective coefficients are: 

r l  2 0 0 0 0 0 0 1  

t o  o o o o o 2 i J  

The noise was generated by a generalized Gaussian 

process with shape parameter p = 5 and then added 
to the blurred image, resulting with a 15dB signal- 
tenoise ratio. Before the restoration was carried out, 
the shape parameter was estimated by the procedure 
outlined in section 3.1. The estimated value for p was 
6. With this estimate, the iterative procedure out- 
line in section 3.2 was applied to restore the image. 
Figure 2 shows how the performances of the model 
adaptive method and least squares method vary as 
the number of iterations varies. The model adaptive 
method achieves the best solution with the Frobe- 
nius or 12 squared norm of the error image at 2703 
after 11 iterations whereas the least squares method 
achieves its best solution with the F’robenius norm 
at 2834 after 9 iterations. Figure 3 shows the re- 
stored images and their corresponding error images 
using the model adaptive method and the least squares 
method respectively. Note that the error image from 
the adaptive method has a smoother appearance with- 
out edge degradation when compared to that from the 
least squares method, showing that the model adap- 
tive method is a better alternative algorithm than the 
least squares method. 

5 Conclusions 

We have shown the development and implemen- 
tation of the model adaptive image restoration algo- 
rithm. An iterative procedure is also derived to sim- 
plify the computation process. In addition, the conver- 
gence criterion is also established. Results show that 
this method outperforms the least squares method 
when the implicit assumptions taken by the later fail 
to match the true nature of the observed data. The 
major advantage of the model adaptive approach lies 
in its ability to adapt itself to the observed data and 
make use of the information available from the data. 
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(a) Original 256 by 256 image ( c )  Model adaptive restoration (e) Error image of c 

(b) Blurred and noisy image (d) Least squares restoration (f) Error image of d 

Figure 3: Results of model adaptive and least squares restoration. 
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