
Shape Parameter Estimation for Generalized Gaussian Markov 
Random Field Models used in MAP Image 

Wai Ho Pun and Brian D. Jeffs 
Department of Electrical and Computer Engineering, Brigham Young University 

459 CB, Provo, UT 84602, USA. E-mail: bjeffs@ee.byu.edu 

n 

1 

Abstra et 
In this paper, we propose using the Generalized 

Gaussian Markov Random Field (GGMRF) image 
model with MAP estimation t o  solve the problem 
of restoration for  a blurred and noise corrupted im- 
age.  The restoration algorithm is adap ted  to spe- 
cific characteristics of the true image b y  estimating 
the GGMRF shape parameter used in computing the 
MAP estimation. This shape parameter, p ,  is esti- 
mated based on the sample kurtosis of the image. It 
is shown that higher quality restorations are obtained 
when the estimated p value is used, rather than some 
arbitrary choice as other investigators have used. 

I. INTRODUCTION 
N this paper we introduce a Bayesian approach to  I image restoration that uses the observed image data 

to  control the form of the image prior model. The im- 
age is modeled as a Generalized Gauss Markov random 
field (GGMRF) [l] , but unlike previous approaches, 
we assume the corresponding shape parameter is un- 
known. Both the true image, and the image prior 
shape parameter are estimated from the degraded ob- 
servation. This joint estimation is difficult because the 
blurring process masks the structure of the true image 
and can bias the shape parameter estimate towards a 
model that favors smoother images with less edge de- 
tail. The proposed approach overcomes this problem, 
and can yield better results than other Bayesian meth- 
ods where the image prior model is fixed arbitrarily. 
Such methods cannot adapt to  the wide range of im- 
age structural forms regularly encountered in restora- 
tion applications. The adaptive shape parameter rep- 
resents a degree of uncertainty about the true image 
structure, which we resolve using information from the 
observed degraded image alone. 

We adopt the following familiar linear observation 
model 

where y is the row scanned degraded image vector, H 
is the convolutional blur matrix, x is the true image 
vector, and n is additive noise. We seek an estimate 
of x that maximizes the posterior distribution. 

y = H x + n ,  (1) 

&(z) function Authors 

1x1 J .  Besag [3] 

represents a probability density function, 
and where p is 9 t e deterministic shape parameters which af- 
fect the distribution of x. 

I 

2 2  - if x 2  5 
otherwise 

11. IMAGE PRIOR MODEL 
To model an image x as a Markov random field 

(MRF), the prior distribution is usually specified 
through the use of a Gibb’s distribution, whose en- 
ergy function has the general form [a] 

U ( X )  = 4(xs - 4, (3) 
( s , t ) E C  

where 4(.) is the potential function and C is the set of 
all cliques defined for the neighborhood system of the 
Markov field. Many potential functions have been pro- 
posed in the literature to  be applied to  various prob- 
lems. Table I gives a representative sample of these 
functions. Figure 1 shows the shape of each function. 
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The potential function 48(x) = x 2  corresponds to  
a Gauss-Markov random field (GMRF). When used 
as an image prior for MAP restoration, this model is 
known to produce results that are over-smoothed or 
excessively noisy [l]. The other listed potential func- 
tions were devised to  overcome these problems, usu- 
ally putting higher emphasis on edges in the image 
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Fig. 1. Plots of different energy functions. a) 1 1 1 ,  b) z2 - 1 if 
x2 5 1, 0 otherwise, c )  A, d) &, e) logcosh(z), f )  
log(1 + z2), g )  0 if 111 = 0, 1 if 1x1 > 0 ,  h) x2. 

1t14 

they model to  reduce over-smoothing. However, each 
function is tailored to  fit a particular clam; of images 
and none can guarantee to give the best performance 
for all real-life images. Therefore, we seek a flexible 
prior model that will fit a variety of image structures 
and can adapt itself to  the observed image data to pro- 
duce the best possible results under the assumptions 
of that model. The generalized Gaussian M.arkov ran- 
dom field introduced by Bouman and Sauer [l] is a 
family of MRF’s with a single parameter p controlling 
the shape of its distribution. Adopting thlz GGMRF 
as an image prior model, we have 

where A = [wl”z and n is the standard devia- 
tion parametkr. If 8, represents the neighborhood o f t  
and S represents the entire set of lattice points in the 
image, then the conditional distribution of x, given all 
other pixel values in S depends only on &, and can 
be expressed as 

These priors are improper because the exponent is 
negative semi-definite instead of negative dehi te ,  cou- 
pled with the fact that the partition function or nor- 
malizing term is difficult to  compute due to high di- 
mensionality. However, the posterior distribution, on 
which we base our inferences, is typically proper for 
any reasonable choice of the potential function. 

The potential of the GGMRF has the form 4(x) = 
]ZIP. Figure 2 shows plots of the potential for various 
values of p .  Notice that by changing p ,  the poten- 
tial assumes different shapes. This dictates what the 
structure of the image should be. For example, small 
value of p models images that are dominated by abrupt 
edges whereas large value of p models images that are 
dominated by smooth areas. 
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Fig. 2. Potential function of GGMRF for different values of p .  

Also note that when p = 0’1, or 2, the respec- 
tive GGMRF’s correspond to  the potential functions 
&,&, ~$8 in Table I; and for some values of p ,  the po- 
tential of the GGMRF resembles the shape of other 
potentials in the same table. Thus the shape param- 
eter p can be used to cover a wide range of possible 
distributions. 

111. SOLUTION FORMULATION 
Given an observed image y, and assuming the addi- 

tive noise is Gaussian, a general energy function family 
for estimating the original image x is as follows 

(6) 
where C contains all nearest neighbor pairs, and 
$(Z,,Q;P) = 12, - z ~ I P  for the GGMRF image prior 
model. y is then the regularization parameter control- 
ling the relative influence on the solution from the im- 
age prior model relative to  the restoration error term. 
The adaptive MAP estimate of x is the minimizer of 
@(x,Y;P); thus 

x = arg{min@(x, y ; p ) } ,  (7) K P  

which is essentially equation (2). 

IV. PARAMETER ESTIMATION 
The utility of the GGMRF image prior model lies in 

its ability to change the shape of its distribution, and 
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thus the regularization structural form, by changing 
only the parameter p .  In order to exploit this flexibil- 
ity however, we must be able to  estimate p from our 
observation. In this section, we establish a key rela- 
tionship between a GGMRF and the generalized Gaus- 
sian (GG) distribution, and present a viable method 
based on this relationship to  estimate p for any given 
GGMRF image. 

An inspection of (4) suggests that direct estimation 
of p from an observed GGMRF x would be difficult. 
The distribution is highly non-linear in p and depen- 
dence on p is through the neighborhood structure of C. 
A direct maximum likelihood estimate is also difficult 
because the partition function (the constant of pro- 
portionality not shown in (4)) is unknown, though it 
is also a function of p .  The problem can be simplified 
by noting similarities between the conditional distri- 
bution of x, in Eqn. (5), and the density function for 
a single zero mean GG random variable d ,  

These similarities suggest the following hypothesis: 

Hypothesis. Let ds,a be the difference between near- 
est neighbor pixels s and a of a GGMRF,i.e. dS,, = 
x, - xu, where a is restricted to  be a neighbor in one 
direction (e.g. a is always the left nearest neighbor) 
then (neglecting boundary cases) ds,a is distributed as 
i.i.d. generalized Gaussian Vs E S and has the same 
shape parameter as the GGMRF. 

Observations. Assume that xt E 8, where d ,  is the 
set of the four nearest neighbors of a pixel x,, i.e. 
d ,  = {xu, xb, x,, xd}. Replacing x, - xt by ds,t in.(5), 
the conditional distribution of a particular site s is 

where K is the partition function. Comparison of (9) 
with (8) reveals that fzs (x, 1zt E 8,) has the same form 
as the joint probability distribution function of four 
i.i.d. generalized Gaussian random variables. Since 
both (9) and (8) must integrate to 1, we see that 

= [&] . If we compute fz,,(x,llxt E 8,1) and 

fzsa(x,21~t E a,,) for two neighboring pixels sl and 
s2, one of the difference terms will be common, and 
thus x,1 is clearly not independent of x,2. However, 
if we restrict ourselves to  one directional differences, 
e.g. d,,,, there is no repetition and the ds,a are inde- 
pendent. Thus d = [dl,,, dz,,, . . , dlsl,.IT is an i.i.d. 

4 

GG field. We note that Besag argued similarly that 
the conditional distribution of a Gaussian Markov ran- 
dom field is Gaussian [3]. The hypothesis has also been 
confirmed experimentally over a wide range of p val- 
ues by accurately estimating p for GGMRF’s through 
d, using estimation methods designed for GG random 
variables. 0 

Given d we can form a simple estimate for p based 
on kurtosis. Several authors have used kurtosis to  es- 
timate p for GG random data [4] [5], but they have 
used only an approximate relationship and therefor 
have produced biased estimates. 

It can be shown that the exact relationship between 
kurtosis and shape parameter p is 

The sample kurtosis can be computed as 

LsES J 

where a (as above) is the one directional nearest neigh- 
bor of s, IS1 is the cardinal number of the set of pixels 
on the lattice, and 2 = & CsES d,,,. After an  esti- 
mate of kurtosis is obtained, 6 is computed by solving 
equation (10 No closed form solution for p in known, 

is easily computed. In practice we have done this ef- 
ficiently by sampling equation (10) for a number of 
values of p ,  and then using cubic spline interpolation 
between the nearest table entries to  approximate the 
value of p that corresponds to 6. 

however a t a  1. le look-up approximate inversion of (10) 

V. AN ITERATIVE ADAPTIVE ALGORITHM 

The shape parameter estimator introduced above 
requires that the GGMRF, x, be uncorrupted by blur 
or noise. The algorithm presented in this section en- 
ables us to apply these estimation methods even in 
the case of a corrupted GGMRF and thus to jointly 
estimate x and p .  The approach is based and an 
EM-algorithm-like bootstrap procedure which alter- 
nates between estimates of p and x until convergence 
is achieved. An estimate of the image is first com- 
puted as the MAP solution for a fixed starting value 
of p (usually chosen arbitrarily as p = 2, correspond- 
ing to a Gauss-Markov field). This image estimate is 
then used to compute a new estimate of p ,  which is 
then applied to  the image prior model for the follow- 
ing image estimation step. These two steps are carried 
out repeatedly until the iteration converges. Thus, we 
have the following algorithm 
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Adaptive GGMRF Algorithm 

I .  Choose an initial shape parameter estimate, e('), and a image estimate, k('), for the GGMRF 
prior model. 
2. Fix p = p k  and compute 

where @(x,y;p) is the energy function of the 
GGMRF prior model as given in equation (6). 
3. Using k(k+'), compute a new estimate fi('++t) 
by forming the nearest neighbor difference image, 
d and solving equations (11) and (10). 
4. If @('+l) M @(k), terminate, otherwise incre- 
ment k and go to  step 2. 

The optimization called for in step 2 represents a con- 
ventional MAP restoration, and can be accomplished 
in a number of ways. We have used the Metropolis 
algorithm [6] [2], though other approaches such as the 
Gibbs Sampler should work as well. 

VI.  RESULTS 
Our experiments have shown that the adaptive al- 

gorithm works well in estimating both x arid p when 
x is truly a (synthetic) GGMRF. Chen's algorithm 
[7] was used to  generate GGMRF's for a variety of p 
values. These images were blurred and then restored 
using the adaptive GGMRF algorithm. Esiimates of 
p were acceptably accurate (e.g. f0 .2)  

The more interesting question however is whether 
the algorithm performs well with more realistic im- 
ages. The following experiments were designed to test 
the performance for more typical images, which are 
clearly not exactly modeled by a GGMRF. 

A .  Experzment 1 
A 32-by-32 synthetic image, x, with two different 

geometric shapes was created for this experiment. The 
synthetic image, shown in Figure 3a, is dominated by 
two local characteristics, flat regions and edges. This 
image was convolved with a 5-by-5 pixel uniform blur 
and Gaussian noise was added to  achieve an SNR of 
20dB. Figure 3b shows the resulting observed image, 
y. The Frobenius norm of the error image, 3: - y, was 
309. Figure 3c shows the restoration result, ) ~ G G M R F ,  
obtained using the adaptive GGMRF method. The 
algorithm converged after 10 iterations and the final 
value for p was 1.0. The value of p estimated from 
Figure 3a directly using the kurtosis method outlined 
above was 0.7. The Frobenius norm of the error im- 
age, x - X G G M R F ,  was 114. For comparison purposes, 
Figure 3d shows the result, XGMRF, obtained by us- 
ing the GMRF prior model in the MAP restoration; 

the Frobenius norm of the error image, x - X G M R F ,  
was 303. In addition to  the lower error result obtained 
by the adaptive GGMRF method, the visual quality 
is also better than that of the GMRF MAP method, 
which is clearly over-smoothed, as shown in Figure 3d. 
The error images from both methods are shown in Fig- 
ure 3e and 3f. 

Fig. 3. Images for Experiment 1 of the fully-adaptive GGMRF 
method. a) [top 1.1 Original 32-by-32 synthetic image, b) 
[top r.] Blurred and noisy observation, c) [mid 1.1 Restora- 
tion result of (b) by the fully-adaptive GGMRF method, 
d) [mid r.] Restoration result of (b) by the GMRF MAP 
estimation, e) [bot. 1.1 Error image from (c), f )  [bot. r.] 
Error image from (d). Prominent edges in the error image 
mean serious errors resulted form the restoration process. 

B. Experiment 2 
A 128-by-128 image, shown in Figure 4a, was 

blurred by a 25-by-1 PSF = [l 1 . . . 11, representing 
a 1D horizontal motion blur. White Gaussian noise 
a t  an SNR of 30dB was added to  the blurred image 
to produce figure 4b. The shape parameter estimated 
directly from the uncorrupted Figure 4a was 0.8. 

The adaptive algorithm was applied to Figure 4b 
to jointly estimate x and p .  Ten iterations were used 
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Fig. 4. Images from the experiment of the adaptive algorithm. 
a) [top 1.1 Original 128-by-128 image, b) [top r.] Blurred 
noisy image, c) [bot. 1.1 Adaptive GGMRF MAP restora- 
tion of a, d) [bot. r.] GMRF model restoration of a. 

to  generate Figure 4c. The starting value of p was 
2;  the ending estimate of p was 0.61. This is not ex- 
actly 0.8, however, the shape of the distribution at 
p = 0.61 is a good approximation for the shape a t  
p = 0.8. For comparison, a MAP restoration using a 
GMRF p = 2) was computed and shown in Figure 4d. 

(Figure 4a minus 4d) is twice that of the error in Fig- 
ure 4c. Though some of the blurring due to  horizontal 
motion is reduced in Figure 4d, the result still looks 
over-smoothed. On the other hand, Figure 4c is both 
visually and numerically better because the edges were 
preserved as a result of adapting the model to the im- 
age. 

C. Experiment 3 
For the sake of completeness, we would like to carry 

out an experiment on images which can be modeled by 
the GGMRF prior with p > 2.0. However, our search 
for such real-life images was unsuccessful. The diverse 
patterns in images which are of interest to  humans 
almost always have edges which are best modeled by 
a shape parameter value lower than 2. Consequently, 
we resort to synthetic images generated as a GGMRF 
for this experiment. 

The synthetic GGMRF image shown in Figure 5a 
was generated using Chen’s algorithm [7] with p = 3.0. 
This image was convolved with a 3 by 3 pixel uni- 
form blur and Gaussian noise was added to produce 
an SNR of 20dB.  Figure 5b shows the observed im- 
age, which has a corresponding error image with a 
Frobenius norm of 57. Figure 5c shows the result ob- 
tained by the fully-adaptive GGMRF method. The 

The Fro G enius norm of the corresponding error image 

Frobenius norm of the error image from this result is 
51. Figure 5d shows the result obtained by a GMRF 
MAP estimation for comparison. The Frobenius norm 
of the error image from this result is 60, which offers 
no improvement over that of the observed image. 

These experiments demonstrate the effectiveness of 
the adaptive GGMRF algorithm and suggest it will 
be particularly useful when there is not enough known 
about the true image to  choose a good prior model. 

Fig. 5. Images for the Experiment 3 of the adaptive algorithm. 
a) [top 1.1 Original 128-by-128 image, b) [top r.] Blurred 
noisy image, c) bo t .  1.1 Fully-adaptive restoration of a, d) 
[bot. r.] GMRF model restoration of a. 
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