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ABSTRACT 

A new model adaptive method is presented for restoration 
of blurred and noise corrupted images by exploiting infor- 
mation available from observed data to  choose the apprc- 
priate optimization criterion. The derived maximum like- 
lihood solution is based on the 1, minimization criterion 
that naturally arises from the adoption of the generalized 
p-Gaussian family of probability distributions as an addi- 
tive noise model. A fast and efficient iterative algorithm 
for this adaptive method is developed and analyzed. Ex- 
perimental results indicate that this method adapts to the 
non-Gaussian nature of the noise process and outperforms 
the least squares method, which lacks the flexibility of the 
former method. 

1. INTRODUCTION 

Image restoration is the process of attempting to recon- 
struct a degraded image using some prior knowledge of the 
degradatiqn phenomenon. Over the years, algorithms such 
as constrained least squares [l], maximum entropy [2], min- 
imum norm [3, 41, etc. have been developed to solve this 
problem. The choice of a particular deterministic algorithm 
is often equivalent to applying a specific prior model on 
the noise process or image itself, expressing the restora- 
tion as an optimization problem with an optimality crite- 
rion that dictates the form of the algorithm. For example, 
the least squares solution is optimum in the maximum like- 
lihood sense when the image is deterministic, and the addi- 
tive noise is independent and identically distributed (i.i.d.) 
Gaussian at each pixel. 

In this paper, we propose a model adaptive method that 
uses information available from the observed image data to 
select the best restoration method based on the maximum 
likelihood principle. Rather than making an explicit or im- 
plicit assumption of the noise process, this method adapts 
itself to the observed data to  achieve optimum results. 

The basic idea behind the model adaptive method is that 
when precise knowledge of the noise process is absent, a 
parameter distribution family is used. This family must 
be chosen such that it includes (at least approximately) 
any probability distribution likely to be encountered in the 
image noise field. Selection of a particular noise model from 
the family is accomplished by adjusting a relatively small set 
of shape parameters, which are estimated from the observed 
data. From this statistical model, a maximum likelihood 

estimater is applied to recover the original image. 

2. ADAPTIVE 1, RESTORATION 
2.1. Generalized p-Gaussian Distribution 
The generalized p-Gaussian (gpG) distribution family, also 
known as Box-Tim or power exponential distribution [5], is 
used to model the unknown noise process because it has a 
wide range of shapes. The probability density function of 
the generalized Gaussian distribution family is defined as 

where r(.) is the standard gamma function. This is a two- 
sided symmetric density with two distributional parame- 
ters, p and P, which control the shape and standard de- 
viation of the density respectively. As shown in Figure l, 
this family is very flexible. For example, with p = 2, and 
P = A, it becomes a standard normal distribution. For 
p = 1, we have a double exponential, and for 0 < p < 1, 
we have heavy tailed distributions, while as p -+ 00, the 
uniform distribution is approximated. 

2.2. Maximum Likelihood Solution 
Consider the image degradation model y = H x  - n. As- 
suming the image data, x, are deterministic and the noise 
n comes from an i.i.d. generalized p-Gaussian process, the 
fully adaptive maximum likelihood solution is given by 

where 

The noise vector element ni can be replaced by yi - h r x  
where H = [hl, h2, .  . . , h N ] .  Equivalently, the solution can 
be obtained by solving 

(4) h L  = A v {  max C(x, P ,  P ) } ,  
X9P.P 

where C(x, p ,  P )  is the log-likelihood function. However, 
equation (4) still poses a difficult nonlinear optimization 
problem in the high dimensionality environment of image 
restoration. A more practical approach, used in our work, 
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can be minimized by the following iterative procedure: 

Qk 

P 
Xk+1 = X k  - -vx@(X)l~k 

N 

= X k  + a k  x ( y t  - h T x k ) l y l  - h r X k  lpP2ht 
1=1 

= Xk + akUkHT(y - HXk), (6) 

where CYL regulates the step size and Uk is a diagonal ma- 
trix of the same size as H and its diagonal elements are 
uzl. = l y l  - h T X k  lP-’. This iteration assumes the form of 
the generalized Landweber iteration with the noise covari- 
ance matrix equal I and U& as the preconditioning matrix 

3.2. Convergence Analysis 
Two major concerns of using an iterative algorithm, such 
as equation (6), are I) The convergence criteria, and 2) The 
limiting solution if the algorithm converges. To investigate 
these problems, let w z  and A, denote the normalized eigen- 
vectors and eigenvalues associated with the system matrix 
H and assume that both H and HT have the same set of 
eigenvectors. Using the recursive relation of equation (6), 
the estimate xk+1 can be represented as follows: 

191. 

0.8 

Figure 1. Generalized p-Gaussian density function with zero 
mean , u n i t  variance and various values of p .  

is to form a prior estimate of p from image data, then com- 
pute the maximum likelihood restoration of x given that 
p .  A heuristic approach for estimation of p can be found 
in [6]. Since the parameter ,B can be absorbed into the 
restoration process as a scaling factor, once the estimate of 
p is obtained, equation (4) reduces to 

N 

xML = A r g { m i n x  X Iy, - hrxJP}.  ( 5 )  
,=l 

Notice that the term E,”=, I y, - h:x 1’ is monotonically re- 
lated to the I ,  vector norm IIy - Hxllp. Thus 1, norm mini- 
mization yields the maximum likelihood solution to the im- 
age restoration problem under the assumption that the ob- 
servation error can be modeled as a generalized p-Gaussian 
distribution for some value of p [7]. If p = 2, which corre- 
sponds to a Gaussian noise case, the maximum likelihood 
solution becomes the least squares solution. 

3. ALGORITHM IMPLEMENTATION 
3.1. Iterative Solution 
Although the solution given by equation ( 5 )  is straight for- 
ward, closed form solutions are not known, and solving the 
problem using general purpose nonlinear optimization algo- 
rithms involves a tremendous computational load and im- 
practical in many cases. The alternative solution presented 
here is a new iterative algorithm based on steepest descent, 
which offers the advantage of fast processing speed. In addi- 
tion, by terminating the iterations prior to convergence, the 
restoration process can be regularized so that the trade-off 
between deblurring the image and noise amplification can 
be managed [8]. 

Using the steepest descent approach, the objective func- 
tion, @(x) = E,”=, lyt - h r x k  I p ,  as given in equation ( 5 )  

P 

= ~ ( X L  + akUkHT(y - HXk) ,vZ)v t  

= {(I - Q k ~ k ~ T ~ ) ( ~ k ,  w 2 )  + 
P 

~ U k H ~ ( y , v ~ ) }  v,, ( 7) 

where (a ,b )  denotes the inner product between a and b. 
Using the eigenvalue and eigenvector relation and by careful 
examination of the recursion in equation (7) ,  this iteration 
can be written as: 

X k + l  = { ( I  - Q k U k )  Az I2)(Xk, w,) + 
1 

(Y ,  vi )vz, (8) 

where S k  is the set {UO,U~,..’,U~} with U, = 
dzag[u,l,Uia,...,u,,], uLEn = Iy, -hExzlp-2, and [ y ]  is 
the general combination operator defined as the sum of the 
product of j unique elements out of the set Sk. One can 
easily show that the term ~ ~ ? ~ ( - l ) J a j k  [ y ]  [A,  1’’ in equa- 
tion (8) converges to 0 E Etnx” as IC + 00 if the following 
condition is satisfied: 

2 

O < Q k <  U,,,,, I A,,,, I ’ (9) 

where u,,,~ is the maximum value among all the diagonal 
elements of the matrix Uk,VIC, and A,,, is the maximum 
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eigenvalue among all the eigenvalues of H. Thus, according 
to equation ( 8 ) ,  the limiting solution is the inverse filtered 
solution. Note that if p = 2 (corresponding to a Gaussian 
noise case) in equation (6), then the set Sk = { I ,  I,. I . ,  I}, 
and u,,,:,~ = 1. The convergence condition reduces to 0 < 
( ~ k  < 2/IXn,,,12 as given by Biemond et a1 for the least 
squares method [8]. In this case, the adaptive method turns 
into a least squares method. 

3.3. Computational Efficiency 
For images of typical size, the iteration of equation (6) be- 
comes computationally impractical. Assuming x and y cor- 
respond to square images of size M x M ,  each iteration of (6) 
involves O{ 2(hf4 + M ~ ) }  operations. Significant improve- 
ment in computational efficiency is possible if we recognize 
the 2-D convolution and correlation operations implicit in 
equation (6), which may then be rewritten as 

s2gn”Y - R * A i }  (10) 

where 2, y and R are the 2-D image matrices correspond- 
ing to x, y and H, @ and * indicate 2-D deterministic cor- 
relation, and convolution respectively, and where 0, 1 .  I,-’, 
and signum{ } are element by element matrix operations of 
multiplication, absolute exponentiation, and sign retrieval 
respectively. We assume that ‘H is N x N ,  and that convo- 
lution and correlation operations are truncated to M x M .  
Under these conditions, (10) involves 0 { 2 ( M 2 N Z  + M 2 ) }  
operations. Since the point spread function usually has a 
small finite region of support, we note that N << M ,  so 
the computational load for equation (10) c m  be many or- 
ders of magnitude less than for equation (6). Results pre- 
sented in Section 4 were computed using equation (lo), and 
we have found this algorithm to be sufficiently efficient for 
restoration of 1024 by 1024 pixel images on a modest desk- 
top workstation computer in a few minutes. 

4. RESULTS 
The performance of the model adaptive restoration method 
is illustrated by an example on an artificially blurred image 
in this section. This result is compared with one obtained 
using the least squares restoration method. 

This example considers the restoration of a blurred image 
with additive generalized p-Gaussian noise. The original 
image was artificially blurred by diagonal linear motion over 
8 pixels. The discrete point spread function has a 4 x 8 
region of support and the respective coefficients are: 

1 0  0 0 0 0 0 2 11 

The noise was generated by a generalized p-Gaussian pro- 
cess with shape parameter p = 8 and then added to the 
blurred image, resulting in a 30dB signal-to-noise ratio. Be- 
fore the restoration was carried out, the shape parameter 
p was estimated to be 3. The difference between this esti- 
mate and the actual value is due to the relatively high SNR 
value in this experiment; however, this value appropriately 
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Figure 2. Average pixel power of the error image for least 
squares method and model adaptive method as a function of 
the iteration number. 

represents the observable character of the noise data. In ex- 
periments (not shown) with higher SNR (15dB) p was cor- 
rectly estimated at p = 8. With this estimate, the iterative 
procedure outlined in section 3 was applied to restore the 
image. Figure 2 shows how the performances of the adap- 
tive method and least squares method vary as the number of 
iterations varies. The model adaptive method achieves the 
best solution with an average pixel error power of 170 af- 
ter 27 iterations whereas the least squares method achieves 
its best solution with error power of 293 after 28 itera- 
tions. The adaptive method attains an SNR improvement of 
5.44dB over that of the least squares method in this exper- 
iment. Figure 3 shows the restored images using the model 
adaptive method and the least squares method respectively. 
Notice that the restored image using least squares has ob- 
jectionable ringing artifacts near edges where the intensity 
transitions are steep. On the other hand, the restored image 
using the adaptive method shows better quality, indicating 
that the model adaptive method is a better alternative al- 
gorithm than the least squares method. 

5. CONCLUSIONS 

We have shown the development and implementation of the 
model adaptive image restoration algorithm based on the 1, 
norm minimization criterion. An efficient iterative proce- 
dure is derived to simplify the computation process. In 
addition, the convergence criterion is also established. Re- 
sults show that this method outperforms the least squares 
method when the implicit assumptions taken by the later 
fail to match the true nature of the observed data. The 
major advantage of the model adaptive approach lies in its 
ability to adapt itself to the observed data and make use of 
the information available from the data to yield an optimum 
solution. 
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(a) Original 256 by 240 image (b) Blurred and noisy image 

(c) Model adaptive restoration (d) Least squares restoration 

Figure 3. Results of model adaptive and least squares restoration. 
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