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Correspondence 

Adaptive Image Restoration Using a Generalized 
Gaussian Model for Unknown Noise 

Wai Ho Pun and Brian D. Jeffs 

Abstracr-A model adaptive method is proposed for restorating blurred 
and noise corrupted images. The generalized p-Gaussian family of prob- 
ability density functions is used as the approximating parametric noise 
model. Distribution shape parameters are estimated from the image, 
and the resulting maximum likelihood optimization problem is solved. 
An iterative algorithm for data-directed restoration is presented and 
analyzed. 

I. INTRODUCTION 
Restoring a degraded image is one of the fundamental problems 

in image processing. Some of the classical approaches include such 
widely used algorithms as constrained least squares [ 1 J, maximum 
entropy [ 2 ] ,  minimum norm (31, [4], and other related methods. 
These problems, like the one presented here, are readily solved with 
simple iterative algorithms that minimize some objective function 
of the image [3], [7 ] ,  [lo]. However, any given restoration method 
usually performs best for a particular class of images only. This 
limitation usually arises from the implicit or explicit assumptions 
regarding image formation and degradation which are associated with 
a particular algorithm. The choice of a deterministic algorithm is often 
equivalent to applying a specific prior model to the noise process or 
image itself. For example, a least squares restoration is optimal (in the 
maximum likelihood sense) in the presence of i.i.d. Gaussian noise. 
In practice, however, these implied image model assumptions are 
often ignored, and an algorithm is chosen for its convenience. In this 
correspondence, we propose a method that relaxes these constraining 
assumptions by adapting a parametric noise model to fit the observed 
data. This yields improved restorations even when noise statistics are 
unknown. 

Consider the following commonly used linear model for an image 
degradation process 

y = H x + n  ( 1 )  

where 
H doubly block Toeplitz system matrix corresponding to a 2-D 

shift invariant convolutional blur [4]; 
n additive noise vector; 
x original image; 
y observed image of length :V. 

The vectors x. y, and n are obtained from row or column scanning 
the original 2-D images. 

Given this model, the well-known maximum likelihood (ML) 
estimate of x is X x j l ,  = Arg{niax,f,(ylx)), where fy(ylx) is 
the the conditional probability density of y given true image x. 
The proposed adaptive method uses information from the observed 
image to form a constrained parametric estimate of fy(yIx) as a 
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Fig. 1. PDF of the gpG dstribution family as a function of p. ,j = 1. 

member of the generalized p-Gaussian (gpG) distribution family. 
The ML solution is then found to be the I, norm minimization of 
the error residual, where p is the shape parameter associated with 
fy(y(x)  161. The gpG family of symmetric distributions includes 
many commonly encountered ones, and even when the noise is not 
gpG, an approximate gpG model can often be found that yields 
improved restoration. 

The gpG family has been used successfully as a noise model in 
robust detection and estimation [9] and as an image prior to control 
edge and region structure in Bayesian estimation of images [SI. The 
proposed adaptive approach is more closely related to the work of Mc- 
Donald in partially adaptive estimation for overdetermined regression 
problems (51. We extend the approach to the underdetermined, high- 
dimensionality case of image restoration and introduce a new efficient 
iterative algorithm to solve the associated optimization problem. This 
work is also related to the problem of regularized robust image 
restoration in the presence of outliers, which has been addressed by 
Zervakis and Kwon and others [ll].  

11. THEORETICAL DEVELOPMENT 
The probability density function of the generalized Gaussian dis- 

tribution family is defined as [6] 

where r ( .)  is the standard gamma function. This is a two-sided 
symmetric density with two distributional parameters p and that 
control the shape and standard deviation of the density, respectively. 
As shown in Fig. 1 ,  this family is very flexible. For example, with 
p = 2. d = a, it becomes a standard normal distribution. Forp = 1, 
we have a double exponential, and for 0 < p < 1, we have heavy 
tailed distributions, while as p -+ 30, the uniform distribution is 
approximated. Since this distribution family has only two parameters, 
their estimation can be carried out without extreme difficulties, as 
shown in Section 111-A. 
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Assuming the image data x are deterministic and the noise n comes 
from an i.i.d. generalized Gaussian process with unknown parameters, 
the maximum likelihood solution to (1 )  is given by 

x~11. = .;\rg{iiiitxf,(ylx:p. ,j!} ( 3 )  
X.,’, i 

where the posterior distribution of y is given by 

The noise vector element i t ,  can be replaced by y, - hy‘x, where 
h, is the vector corresponding to the ith column of H. In addition, 
taking the logarithm of (4), (3) can be expressed as a minimization 
of the negative log-likelihood function in terms of x. ,i, and 11 

\ \ \  

,I/ 

If both 11 and .I are known, then the maximum likelihood estimate 
of the original image can be found as [6] 

Notice that the term E,:, ly, - h,! XI,’ is monotonically related 
to the I,, norm IIy - Hx/(,,. Thus, l,, norm minimization yields 
the maximum likelihood solution to the image restoration problem 
under the assumption that the observation error can be modeled as a 
generalized Gaussian distribution for some value of 11 [6].  Note that 
11 I’ = 2, which corresponds to a Gaussian noise case, the maximum 
likelihood solution becomes the least squares solution. 

. .  

111. ALGORITHM IMPLEMENTATION 

A. Purumeter Estimcttion 

The maximum likelihood estimate of the image depends on shape 
parameter 11 and standard deviation parameter , i. For data-directed 
restoration, 11 must be estimated from the image. and the ideal 
approach would be a joint maximum likelihood estimation of x. 
11. and ,i as in ( 5 ) .  However, ( 5 )  poses a difficult nonlinear opti- 
mization problem. We have found that in image restoration, the high 
dimensionality of the problem makes joint optimization intractable. 

The practical approach presented here separates the problems, 
forming a prior estimate of 11 from image data, then computing the 
maximum likelihood restoration of x given that p. In practice. ,i can 
be absorbed into the restoration process as a scale factor. Note that 
when it is assumed 11 and i are known (or separately estimated). 
, j  does not appear as part of the ML solution of (6). The method 
proposed in this section normalizes the noise data sample to unit 
variance so that estimates of / j  are independent of , i .  On the other 
hand, knowing the value of p is fundamental to the model adaptive 
approach. In fact, choosing a value for p is equivalent to choosing 
a particular restoration method. 
x and 11 are coupled in the optimization problem of ( 5 ) .  Therefore, 

this separate estimation is a suboptimal approach that is, in general, 
not equivalent to joint estimation, but that has proven to be effective. 
The algorithm attempts to reduce interaction between x and p by 
estimating 11 from a noise sample n extracted from y. A pixel masking 
operation is used to reduce influence from significant features of Hx. 
In images with moderate signal-to-noise ratios (SNR’s). the low- 
variance regions often correspond to constant image values where 1 

fluctuations are due to additive noise rather dominant edge activity. 
A localized sample estimate of the variance is formed, and pixels 
whose local variance falls below a threshold are extracted from the 
image. The difference between these pixels and the corresponding 
local means of their constant surround serves as the extracted noise 
estimate, which is computed as follows: 

n = { q ,  - k , / J  i E .\I}. (7)  

where 
11; set of indices for all pixels contained in a local 2-D, Z< pixel 

window centered on the ith pixel y,; 
T variance threshold; 
.\I noise mask set containing the indices of all pixels to be 

included in n, which is the extracted vector of approximate 
noise samples. 

IT-, is usually chosen to be a 3 x 3 or 5 x 5 window centered on 
the /th pixel. and T is set to be some percentage of the median pixel 
variance in y. 

An estimate f C k )  of the probability density for n is formed as 
follows: 

n is normalized to unit variance and zero mean to remove 
dependence on ,i. 
A histogram hi k )  of the normalized n is computed. 
Each bin k of the histogram is normalized so that the total area 
under the curve is I .  

M ~ ) / ( ~ ~ = ~  / i ( j ! l  - ii,.) 
j’( A.) = (8) 

fl i, 

where 

/J (  I . )  
.J length of n; 
l width of the bin; 
/ I , <  sample mean of n: 
cr,J 
f ‘ i k )  kth normalized bin. 

number of counts in the kth bin of the histogram; 

sample standard deviation of n; 

Since n may not be gpG and could be nonzero mean or skewed, 
the gpG density function provides a better approximation if the 
mode of the sample distribution f“ ( l i )  is aligned to the mode 
of the gpG model as follows: f^ (  k )  = j ’ (  I. - k~ ) ,  where ko is 
the index of the maximum bin in f ’ ( k ) .  

A minimum distance estimator is used to estimate the shape parameter 
I’ 

where j ’ ( . r k :  11. ,i) is the gpG density function evaluated at the .\- 

histogram bin midpoints .rk with ,j = ,,~:~,,~~ (yielding unit 
variance.) Since (9) is convex in p and AV is typically small, I; can be 
computed efficiently with any standard nonlinear optimization code. 
It can be shown that if in (7),  b,,< = [Hx], (i.e., the window mean is 
equal to the noise free blurred pixel), then (9) provides an unbiased 
estimate of p .  Clearly, this will not be the case in general, so the 
estimate is biased. To minimize this effect, we seek pixels where 
[Hx], is constant over the local window. To address this problem, 
T is kept as small as possible while still retaining enough pixels in 
mask -11 to provide a low-variance estimate of 1 1 .  

F 
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(c ) 

Fig. 2. (a) Original 2.56 x 24(1 unblurred image: (b) 1-D horizontal motion blurred image with additive gpG noise ( p  = 8) at l j  dB SNR; ( c )  pixel 
mask used for extraction of n with threshold T = 1 . G :  (d) best result obtained using adaptive restoration method on Fig. 2(b) with estimated i, = J.0; 
( e )  best result obtained using least square? method [ p  = 2) on Fig. 2(b) 

B. Iterative Solution 

Using the steepest descent approach, the objective function @(x) = 
E,:, I!/, - hi  XL I", as given in (61, can be minimized by the 
following iterative procedure: 

(1 !, 
, , + I  = XI. - 7 T X @ ( X ) l X k  

I' 

, = I  

= x c + n ! , ~ " ~ k ( y - ~ j c r )  i , > i  (10) 

where is a constant that regulates the step size, and uh. is 
a diagonal matrix of the same size as H with diagonal elements 
I / L , ~  = - h ~ x ~ l " p ' 2 .  The algorithm may be initialized with 
xc, = H'y .  

The iterative algorithm of (10) is much better suited to image 
restoration than general-purpose nonlinear optimization codes or the 
deconvolution approach presented in the work of Pham and De 
Figueiredo [6]. Their method optimizes with respect to one element 
of x at a time and performs a 1-D line search at each iteration. Each 
element is visited repeatedly until reduction in the objective is no 
longer realized. This approach is effective but entirely intractable for 
the high-dimensional problem of image restoration where there are 
often on the order of lo5 pixels in x. Equation ( IO)  operates on the 
entire vector in each iteration. 

C. Computational Efficiency 

Assuming x and y correspond to square images of size M x M, 
each iteration of (10) involves O{2(.lf4 + M ' ) }  operations. An 
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(d) 

Fig. 2. 

improvement in computational efficiency and a reduction in memory 
usage are possible if we recognize that H is not an arbitrary matrix 
and that multiplication by H and H7 represent 2-D convolution and 
correlation, respectively. Equation (10) may be rewritten as 

,i?k+l = '+k- +ox, .'ly - * . - t j i l f i - '  - ~ s i g n i i n i { ~  - R * , ~ k  1 (11) 

where X, 3;, and 'Ft are the 2-D image matrices corresponding to 
x. y, and H, respectively; ;.: and * indicate 2-D deterministic space 
domain correlation and convolution and . , l.lp-', and signum{ } 
are element-by-element matrix operations of multiplication, absolute 
exponentiation, and sign retrieval, respectively. Assuming 'Ft is 
A' x .V, ( 1 1 )  involves O { ~ ( M ' ~ V '  + W)}  operations. Since the 
point-spread function usually has a small finite region of support, we 
note that (< M ;  therefore, the computational load for (1 1) can be 
many orders of magnitude less than for a direct implementation of 
(10). Results presented in Section IV were computed using (1 I ) ,  and 
we have found this algorithm to be sufficiently efficient for restoration 
of 1024 x 1024 pixel images on a modest desktop workstation 
computer (e.g., a Macintosh Quadra 700 running MATLAB) in a 
few minutes. 

D. Convergence Analysis 

the iteration from ( IO)  g ( x )  = x + rr(H'Uy - HI UHx). 
Consider the following mapping based on the 12 vector-matrix of 

Ildxi ) - ! I ( x L ) I I  = 11x1 + tr(H7Uy - HTUHx1) 
- x g  - n.(H'Uy - HIUHxr)((  

5 111 - aH' UHll 11x1 - ~211.  (12) 

If 0 5 111 - (xH' UH(I 5 1, then y(x)  is a contraction mapping, and 
thus (10) is convergent under this constraint. Applying the definition 
of the matrix norm to ((I - oHTUHll yields an equivalent condition 
for convergence 

0 5 max{ll - c k X , I }  5 1 (13) 

where X,'s are the eigenvalues of the matrix H' UH. Furthermore, 
the inequalities in (13) are always satisfied if 0 < t k  < *. We 

2 
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Fig. 3. Error curves (Frobenius norm of the error image I(x - X k l I p )  as 
a function of the number of iterations for restoring Fig. 2(b) using different 
values of p .  

may obtain a more useful bound on m by noting that (rriax, [ A , [ )  = 
IIH7'UHI( 5 IIHT11211UII. Recalling that N and U are updated each 
iteration and that U is diagonal so that its norm is equal to the largest 
diagonal term, we have assured convergence for O k  in the range 

(14) 
2 

IIHTI12 maxz 1 ~ : ~  I ' 0 < lkh < 

We now consider the form of the solution at convergence. At 
this point, the gradient term of (10) is equal to zero, yielding 
H"U(y - HX) = 0, which leads to 

j ,  = (H'~'uH)-'H~uY. (15) 

We note that for p = 2, U = I, and the solution is the familiar inverse 
filter x = Hty. This is known to suffer from noise amplification 
problems due to small eigenvalues of H. For p # 2, the elements of 
y are weighted by U, but the (H"UH)-' term still leads to noise 
amplification. 
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(a) (b) 

Fig. 4. 
adaptive restoration method on Fig. 4(a) with estimated p = 1.2. 

(a) One-dimensional horizontal motion blurred image of Fig. 2(a) with additive shape noise at 15 dB SNR; (b) best result obtained using 

4800 r I 
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Fig. 5.  Error curves (Frobenius nom of the error image I(x - x k l l b  ) as 
a function of the number of iterations for restoring Fig. 4(a) using adaptive 
method and least squares method, respectively. 

As in other iterative restoration techniques, termination of the 
sequence prior to convergence yields the best compromise between 
minimizing the cost function and regularizing the noise amplification 
effect of the inverse filter [7 ] .  The desired solution is at the minimum 
error point, but unfortunately, we do not usually have a copy of the 
true image to permit computation of the error as a function of k. 
We find that a simple manual procedure works well. The operator 
observes x k  at regular intervals until the onset of subjective image 
degradation by increased “graininess” is visually noted. This manual 
stopping point is usually close to the minimum error point solution. 

IV. RESULTS 

In this section, we illustrate algorithm performance by presenting 
restoration results of several synthetic examples. Fig. 2(a) shows the 
original 256 x 240 pixel uncorrupted image. In all of the examples 

presented here, this image was blurred by the point spread function 
h [ r r r .  n ]  = &[l 2 2 2 2 2 2 2 11, which corresponds to a 1-D 
horizontal motion blur. 

Fig. 2(b) shows the blurred image with gpG noise p = 8 at 
an SNR of 15 dB. A threshold setting of T = 1.6 yields 1; = 
5.0 zt 0.1. Fig. 2:c) shows noise mask A4 and illustrates how (7) 
ensures that n consists only of pixels from relatively flat intensity 
regions. Fig. 2(d) is the resulting adaptive (1; = 5.0) restoration 
of Fig. 2(b), whereas 2(e) is a least squares result presented here 
for comparison. Both approaches reduce blur and noise level, but 
the adaptive algorithm (Fig. 2(d)) exhibits lower noise level in flat 
regions and some improvement in edge preservation. 

Though the visual differences between Fig. 2(d) and 2(e) are subtle, 
Fig. 3 presents a quantitative performance comparison that more 
clearly shows the improvement obtained by the adaptive approach. 
Fig. 2(b) was used as the image data source in computing each of the 
curves. Fig. 2(d) and 2(e) correspond to the minimum error points of 
the 1’ = 5 and p = 2 curves, respectively. Terminating the algorithms 
near the minimiim provides the needed regularization to avoid noise 
amplification. 

Fig. 3 also illustrates algorithm sensitivity to estimation error in 1; 
and suggests the possible range of improvement over a simple least 
squares approach. It is notable that though the true value was p = 8, 
the minimum point on the p = 5.0 curve is the lowest error result. The 
small difference between it and results for p = 8 or p = 10 indicates 
less sensitivity in this region and agrees with the observation that the 
shape of the gpG density function changes little between large values 
of p (see Fig. 1). We note that in our experiments with Gaussian 
noise, p was always estimated to be p = 2 , f O . l ;  therefore, the 
adaptive method had no performance penalty if the unknown noise 
happened to be Gaussian. 

The following results are from a number of experiments designed 
to evaluate parameter estimation performance. Tables I and II show 
how the estimated value @ is affected by changes in SNR and mask 
threshold level for the cases of gpG noise with p = 4 and y = 8. 
These results suggest that very high SNR levels hamper estimating 
noise distribution parameters. This is likely due to the difficulty in 
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SNR li 

TABLE I 
ESTIMATED VALUES OF P USING (7)49) FOR 

VARIOUS SNR AND THRESHOLD T ,  TRUE P = 4 

0.4 

0.8 

1.2 

1.6 

1.8 1.6 2.8 2.4 

2.8 3.0 3.2 2.2 

3.4 3.4 3.2 2.0 

3.6 3.4 3.0 1.8 

11 T I3dB l0dB 20dB 30dB 1 1  

0.4 

0.8 

1.2 

1.6 

2.0 1.4 3.4 1.6 

3.6 3.8 4.6 1.2 

5.2 4.8 4.2 1.2 

5.6 5.0 3.8 1.2 

TABLE I1 

VARIOUS SNR AND THRESHOLD T ,  TRUE P = S 
ESTIMATED VALUES OF 1’ USING (7)-(9) FOR 

SNR n 
1 1  T I3dB 10dB 20dB 30dB 1 1  

extracting a representative noise sample n, which is not dominated 
by image components. There is also a bias in the estimates, but for 
this image, a threshold level between 1.2 and 1.6 provides the best 
performance. Considering the implications of Fig. 3, this bias is not 
serious for 11 larger than about 3. 

Another important consideration is whether improvement is possi- 
ble when the noise distribution is not a member of the gpG family. 
The following example illustrates that flexibility provided by the 
shape parameter enables the gpG model to approximate the noise 
distribution. In this case, the noise was distributed 1‘ (Chi squared) 
with three degrees of freedom, which is neither gpG nor symmetric. 
Noise data was scaled such that the resulting corrupted image had 
a 15-dB SNR. The estimated value for 11 using the method outlined 
in Section 111-A is 1.2. Fig. 4(a) shows the blurred image with 1’ 
noise, whereas Fig. 4(b) shows the restored image. Fig. 5 presents 
a comparison of the error curves for the adaptive restoration and 
least squares. Note that the minimum error point for 11 = 1.2 is 
significantly below that of 11 = 2. The encouraging observation here 
is that even in the presence of noise clearly not well modeled by a 
gpG distribution, the adaptive approach offers an improvement over 
methods that implicitly assume a strict Gaussian model. 

i 
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Scalable Data Parallel Algorithms for Texture 
Synthesis Using Gibbs Random Fields 

David A. Bader, Joseph Jug, and Rama Chellappa 

Abstract-This correspondence introduces scalable data parallel algo- 
rithms for image processing. Focusing on Gibbs and Markov random 
field model representation for textures, we present parallel algorithms 
for texture synthesis, compression, and maximum likelihood parameter 
estimation, currently implemented on Thinking Machines CM-2 and CM- 
5. Use of fine-grained, data parallel processing techniques yields real-time 
algorithms for texture synthesis and compression that are substantially 
faster than the previously known sequential implementations. Although 
current implementations are on Connection Machines, the methodology 
presented here enables machine-independent scalable algorithms for a 
number of problems in image processing and analysis. 

I. INTRODUCTION 

Random fields have been successfully used to sample and synthe- 
size textured images [4]-[7], [9]. Texture analysis has applications 
in image segmentation and classification, biomedical image analysis, 
and automatic detection of surface defects. Of particular interest are 
the models that specify the statistical dependence of the gray level 
at a pixel on those of its neighborhood. There are several well- 
known algorithms describing the sampling process for generating 
synthetic textured images and algorithms that yield an estimate of the 
parameters of the assumed random process given a textured image. 
Impressive results related to real-world imagery have appeared in 
the literature [3] ,  [5 ] - [8 ] .  However, all these algorithms are quite 
computationally demanding because they typically require on the 
order of Gv2 arithmetic operations per iteration for an image of size 
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