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ABSTRACT

An algorithm is presented for estimating complex transmit and re-
ceive array calibration gains in a MIMO communications system.
Calibration values are computed from a series of distinct chan-
nel transfer function matrix estimates over a time-varying chan-
nel. The new method, called RIMM, is an extension of a previous
algorithm proposed by Friedlander and Weiss [1]. Several signif-
icant weaknesses in the earlier algorithm are demonstrated, and
robust solutions are presented. An auto-calibration experiment is
presented using 2.43 GHz indoor channel probing data samples.

1. INTRODUCTION

In multiple-input-multiple-output (MIMO) wireless communica-
tions systems it is often desirable to understand properties of the
multipath propagation channel between transmit and receive ar-
rays of antennas. A number of researchers have reported on chan-
nel probing experiments to characterize MIMO channel statistics,
evaluating such physical characteristics as multipath ray structure,
angle spread, delay spread, raypath clustering, and array corre-
lation [2][3]. Estimating these channel features requires accurate
knowledge of array parameters such as element locations and com-
plex gain responses. This paper presents an improved method
for array auto-calibration to estimate these gains using a series
of channel transfer matrix estimates Ĥi. Though knowledge of
H alone (with unknown calibration gains) is sufficient for MIMO
space-time coding communication algorithms, channel probing and
physical property analysis require a calibrated array. The proposed
algorithm is also applicable in single-sided array DOA estimation
problems where it is desirable to perform array auto-calibration
using signals of opportunity.

The scenario examined in this paper assumes a MIMO chan-
nel where the antenna locations are known, but the antenna com-
plex gains (the array calibration) must be estimated. It will also
be assumed that estimates are available for M different channel
realizations, Hi, 1 ≤ i ≤ M , all with common transmitter and
receiver gains, γ, and κ respectively (see Figure 1). This situa-
tion might be realized, for example, in a mobile communications
application, or in a stationary communications platform where the
physical surroundings are changing over time.

This paper presents a MIMO auto-calibration algorithm that
is a modification of the iterative MUSIC (IM) method proposed
by Friedlander and Weiss [1]. The new Robust Iterative Multiple-
channel MUSIC (RIMM) method resolves convergence and bias
problems of the original algorithm and extends it to exploit the
additional information available in multiple channel realizations.
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Fig. 1. The ray model for the i-th MIMO channel realization, with
calibration perturbations on the transmitters and receivers.

The model adopted for the channel is based on ray parameters
for the Pi propagation paths, as illustrated in Figure 1. Horizontal
plane propagation, flat fading and specular scattering are assumed.
Thus for the i-th channel realization, the p-th ray, 1 ≤ p ≤ Pi,
can be identified by an angle for the direction of departure (DOD),
φp,i, an angle for the direction of arrival (DOA), θp,i, and a com-
plex scalar, δp,i, for the path amplitude and phase. Identical direc-
tional response is assumed for each element across the transmitter
array, and separately for the receiver array, so that the respective
gains, γ or κ, are independent of direction.

Each observed channel matrix, Hi = diag(κ)Hidiag(γ), in-
cludes unknown calibration gains and represents the effective lin-
ear transfer function from an Nt-long transmitted vector, x, to the
resulting Nr-long received vector, y, i.e., y = Hix. The auto-
calibration algorithm operates on estimates, Ĥi, of the this channel
which are typically obtained by probing with a known sequence of
training symbols, x[n], observing y[n], and solving the inverse
problem for Ĥi. The ideal (calibrated) channel matrix, Hi, is di-
rectly related to its ray parameters as follows

Hi = Ar(θi)diag(δi)A
H
t (φi), where (1)

Ar(θi) = [ar(θ1,i) . . . ar(θPi,i)] , (2)

At(φi) = [at(φ1,i) . . . at(φPi,i)] ,

and where ar(θ) and at(φ) are the array-response vectors for a



plane wave arriving from angle θ or φ respectively for the re-
ceivers and transmitters. These response vectors are evaluated at
Pi DOA angles and Pi DOD angles corresponding to the Pi rays.
For plane-wave signals the response vectors are defined by the ar-
ray geometry as follows:

ar(θ) = [ej ω
c

�r1·�sθ , . . . , ej ω
c

�rNr ·�sθ ]T , (3)

�sθ = î cos θ + ĵ sin θ ,

where �rl is the 3-D position vector for the l-th element of the re-
ceive array, and î and ĵ are unit vectors along x and y axes respec-
tively. at(φ) and �tl are defined similarly.

2. ROBUST ITERATIVE MULTIPLE-CHANNEL MUSIC

The problem addressed in this section is as follows: given observa-
tions Ĥi, i = 1 . . . M , estimate κ and γ. The proposed approach
will in the process estimate the θp,i’s and φp,i’s (though not nec-
essarily their pairings in the p-index, i.e. we will not determine
which estimated arrival angle belongs to a given departure angle
for a single ray) for each channel Hi.

As in IM [1], we will use a two-phase iterative procedure to
alternately estimate ray angles and calibration gains. This is done
by expressing each channel estimate in terms of its partitioned sin-
gular value decomposition,

Hi = [Us,i|Un,i]Σi[Vs,i|Vn,i]
H , (4)

where subscript ‘s’ indicates singular vectors corresponding to the
signal subspace, i.e. those with non-zero singular values in the
diagonal Σi. Subscript ‘n’ indicates the orthogonal subspace of
singular vectors corresponding to the zero singular values. When
a sample estimate, Ĥi, is used in the algorithm described below,
Un,i and Vn,i contain noise induced sample error components,
and will therefore be refered to as the ‘noise’ subspaces.

Diag(κ)Ar(θi) spans the same space as Us,i, and is orthog-
onal to Un,i. For the single-ended array DOA estimation problem
(as opposed to MIMO channel probing) Un,i would be formed as
the partitioned eigen decompositon of sample autocorrelation ma-
trix R̂yy . The following discussion focuses on estimating receive-
side parameters κ and θi from Ûn,i. Due to the symmetry of the
problem, developing a corresponding estimate of γ and φi from
V̂n,i is trivial.
Iteration Phase I

The first step of the k-th RIMM iteration is identical to that of
IM. The calibration gain estimate from the immediate past itera-
tion, κk−1, is used to form a MUSIC scan for the DOAs:

θk = arg local min
θ

V (θ, κk−1), where

V (θ, κ) = ‖ÛH
n,idiag(κ)ar(θ)‖2 , (5)

‖ · ‖2 is the vector l2 norm, and the angles in θk are selected as
the Pi smallest local minima. Superscripts ‘k’ indicate estimated
values which are dependent on the iteration number.
Iteration Phase II

In the second step of each iteration, θp,i estimates from phase I
are used to form a constrained cost function which is minimized to
estimate κ. The constraint is chosen to preclude the trivial solution
at κ = 0. The IM phase II estimate is

κk
IM = arg min

κ
‖v‖2

2, such that κ1 = 1, where (6)

v = [V (θk
1 , κ), . . . , V (θk

Pi
, κ)]T ,

and V (θ,κ) is defined in (5). The constraint, κ1 = 1, fixes the
first element of κ arbitrarily to enforce κ �= 0. This is permissible
since the gain vectors are ambiguous to within a constant common
factor across all terms. IM exhibits three (at least) problems due
to the form of (6) and iteration over a single channel realization:
1) calibration gains are biased low, 2) poor phase I DOA estimates
often dominate and lead to irrecoverably bad solutions for κ, and
3) any given single channel realization may not yield convergence
to a valid κ estimate.

The RIMM algorithm addresses these problems by iterating
over multiple distinct channel realizations and using the following
modified phase II optimization

κk
RIMM = arg min

κ
‖v‖0.4

0.4, such that ‖κ‖2 =
√

Nr, (7)

‖v‖0.4
0.4 =

Pi∑

p=1

v0.4
p

where ‖ · ‖0.4 is the l0.4 vector pseudo norm.
In IM, requiring κ1 = 1 does not prevent smaller magnitude

gains from being favored for κm, m = {2, . . . , Nr}, when mini-
mizing ‖v‖2

2. This is particularly true when false DOAs are picked
up in phase I so that no good κ match is available. In RIMM,
‖κ‖2 =

√
Nr constrains the vector length and does not suffer

from this problem. Figure 2 illustrates the bias from (6) and the im-
provement offered by (7). Scatter plots of calibration estimates for
1000 randomly generated complex gain vectors, κm. Estimated
calibration gains are shown relative to the true values (i.e. κ̂m/κm

is plotted). The random channel realizations were generated with
an accurate cluster-based multipath model [2]. It can be seen that
a bias towards zero in the gain magnitudes has been eliminated by
using the RIMM constraint.

RIMM also uses a different optimization metric based on an
l0.4 norm to calculate κk rather than the l2 norm in IM. This mod-
ification has the effect of making the gain estimate less sensitive to
outliers in V (θk

p , κ), i.e. MUSIC scan minima that deviate from
zero significantly. These outliers are often caused by false DOAs
that are picked up in phase I. Figure 3 shows an example of how
the two algorithms respond to outliers. In both cases the first iter-
ation selects two minima closely corresponding to true DOAs and
one false-DOA minima at about −50◦. In minimizing the original
cost function, the outlier dominates the l2 norm and a gain estimate
is favored that lowers the false minima in the second iteration but
not the true minima, as shown in Figure 3(a). In the process, the
gain estimate degrades from an initial error of 16% to 43% after
one iteration. Error percentage is calculated as εk × 100%, where

εk = min
ψ

∥∥∥∥ejψ κk

‖κk‖2
− κtrue

‖κtrue‖2

∥∥∥∥
2

, (8)

and where ψ is adjusted to provide the best match to the arbitrary
phase term. When the new cost function is minimized, as in Fig-
ure 3(b), the l0.4 norm causes a gain estimate to be favored which
lowers the true minima in the second iteration. Starting from the
same initialization, this gain estimate has an error of only 4% after
the first iteration.
Using Multiple Channel Realizations

When multiple distinct channel realizations are available it is
possible to dramatically reduce the problem (mentioned above) of
poor convergence for some individual channels. We propose an al-
gorithm in which the channel index, i, is incremented between it-
erations. Thus the algorithm proceeds in a round through the avail-
able channels. Also, the gain estimates are exponentially averaged
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Fig. 2. One thousand estimated calibration gains from simulations,
relative to the true calibration gains. (a) Using the original con-
straint. (b) Using the RIMM, constant-norm constraint.

over the iterations to prevent large deviations due to channels that
result in poor estimates. The new algorithm is as follows.

RIMM Algorithm Steps:

1. Initialization: form noise subspaces Ûn,i for each channel
i; set k = 1, i = 1, and κ0 = [1, 1, . . . , 1]T .

2. Find θk from the Pi lowest minima of (5).

3. Find the iteration gains estimate, κk
RIMM, by minimizing (7).

This can be computed by gradient descent steps, alternated
with normalization to impose the constraint.

4. Use exponential averaging to compute the new smoothed
estimate as

κ̄k = (1 − α)κ̄k−1 + αeiψκk
RIMM , (9)

ψ = arg min
ψ

‖eiψκk
RIMM − κ̄k−1‖2 .

Note that a best-fit phase rotation is carried out to insure
successive add with coherent phase.

5. Normalize the averaged estimate as κ̄k = κ̄k
√

Nr/‖κ̄k‖2.

6. Increment k and i(MODULO M) and repeat from step 2. Return
κ̂ = κ̄k at convergence.

Figure 4 shows the effect of exponentially averaging the cali-
bration estimate. The “iteration estimate” curve uses no averaging,
but computes κk as a separate full IM estimate at each channel
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Fig. 3. MUSIC scans from iterative MUSIC in the first and second
iterations using the original cost function(a), and using the new
RIMM cost function (b).

iteration using the previous channel’s result as an initialization.
Note the poor convergence behavior. The exponentially averaged
RIMM error in κ̄k is much lower at convergence.

3. REAL DATA RESULTS

The new algorithm was tested on real 2.43 GHz measurement data,
using a custom channel probing system built in the Wireless Com-
munications Laboratory at Brigham Young University. The trans-
mitter and receiver arrays each consist of ten monopole antennas in
a circular configuration, with a adjacent element spacing of 0.46λ
and a total aperture of 1.7λ. See [3] for a more detailed description
of the measurement platform.

In [4], results were reported from measurements taken on the
fourth floor of the Engineering building on the BYU campus, and
the same measurements are used here. The transmitter remained
stationary in one hallway while the receiver was moved down an
intersecting hallway, as illustrated in Figure 5. Fifty channel es-
timates were chosen corresponding to a line-of-sight orientation
between the transmitter and the receiver, to ensure a fairly strong
signal that would be dominated by a relatively small number of
rays. Orthogonal training sequences, x[n], were transmitted to
produce a new channel estimate, Hi, for each receiver location.
Receiver sites were separated by about one wavelength between
probing realizations, and channel estimates were then arranged in
a random order.

Channel estimate error was found to have an element-wise
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Fig. 4. The convergence of the gains estimate error using the new
algorithm. The percentage error is plotted for the iteration esti-
mate, κk, and for the averaged estimate, κ̄k.

variance of about σ2
E = 0.00025 when the transfer matrix was

normalized such that ‖Ĥi‖F =
√

NrNt. In addition to this error,
we also expect a certain amount of model mismatch. For the 2.43
GHZ indoor propagation environment, diffuse and near-field scat-
ters, along with vertical spread in multipath angle will all likely be
present. These factors are not considered in the model, and lead
to an environment in which the auto-calibration procedure must be
very robust to sources of error.

Since the exact true calibration gains for the test arrays are
unknown, the accuracy of the new algorithm was evaluated using
a known, multiplicative perturbation inserted on the receiver side
of each channel estimate, i.e.

Ĥ′
i = diag(κpert)Ĥi , 1 ≤ i ≤ M . (10)

The i.i.d. complex circular Gaussian random vector, κpert, was
generated with mean a of 1 and standard deviation 0.17. With
this known gain offset, the accuracy of the algorithm in tracking
the perturbation can be measured by comparing pre- and post-
perturbation calibration estimates. If the receiver-calibration es-
timate from the unmodified channel measurements is κ̂, then the
expected estimate from the manually-perturbed channels is κ′ =
diag(κpert)κ̂. We can then compare the actual result, κ̂′, of the
algorithm operating on the manually-perturbed channels, Ĥ′

i, with
this true perturbed calibration, κ′. Tracking error for this estimate
is computed using (8) by substituting κ′ for κtrue, and κ̂′ for κk.

Figure 6 plots εk
track vs. iteration number in for the manually-

offset real data. The auto-calibration algorithm is able to track
the inserted calibration with about 7.3 percent error. These results
show reasonable performance, considering the multiple sources of
error that are present from model mismatch.

Given the comparative results shown in Figures 2, 3, 4 and
6, we conclude that RIMM is a viable algorithm for MIMO array
auto-calibration which significantly outperforms IM.

Rx1
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Fig. 5. The fourth floor of the Clyde building, showing the chan-
nel environment for the real data measurements and orientations
between the transmitter and receiver. The measurements used in
this paper correspond to the line-of-sight portion of the position
labeled ‘Tx1’ and ‘Rx1’.
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Fig. 6. Tracking error for an manually-injected offset in the re-
ceiver calibration for measured data, over the iterations of the auto-
calibration algorithm.
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