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Abstract—Most previously proposed statistical models for the
indoor multipath channel include only time-of-arrival character-
istics. However, in order to use statistical models in simulating or
analyzing the performance of systems employing spatial diversity
combining, information about angle of arrival statistics is also
required. Ideally, it would be desirable to characterize the full
space-time nature of the channel. In this paper, a system is
described that was used to collect simultaneous time and angle of
arrival data at 7 GHz. Data processing methods are outlined, and
results obtained from data taken in two different buildings are
presented. Based on the results, a model is proposed that employs
the clustered “double Poisson” time-of-arrival model proposed by
Saleh and Valenzuela (1987). The observed angular distribution
is also clustered with uniformly distributed clusters and arrivals
within clusters that have a Laplacian distribution.

Index Terms—Communication channels, indoor radio commu-
nications, multipath channels, radio propagation.

I. INTRODUCTION

W IDE-BAND digital wireless communications are
becoming increasingly more practical in indoor en-

vironments. The availability of new frequency spectra in the
900-MHz, 2.4-GHz, and 5.7-GHz ranges are making wireless
an attractive option for applications such as local area net-
works. Wireless networks can be particularly advantageous for
applications that require portability or where installation of
wiring is undesirable or impractical.

One of the biggest obstacles to the more widespread use of
wireless networks is the challenging indoor propagation envi-
ronment, which leads to multipath with significant time and an-
gular spreading. To more fully understand indoor radio propaga-
tion, a number of researchers have collected data at frequencies
commonly used in wireless networks and have attempted to de-
velop models that fit their measurements. To date, most of these
studies have focused on the temporal properties of the indoor
channel.

Because of the rough similarity between the multipath chan-
nels in indoor and urban environments, early research in mod-
eling indoor propagation was based on previous work involving
urban multipath environments. A seminal paper in this area is
that by Turinet al.[2], which was a basis for the comprehensive
study of indoor propagation conducted by Saleh and Valenzuela
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[1]. Their model is based on a temporal clustering phenom-
enon they observed in their indoor multipath data. Other related
models on indoor propagation have been developed more re-
cently, such as that proposed by Ganesh and Pahlavan [3]. Their
model is an extension of that in [2], a modified Poisson process
where the probability of an arrival in a time bin is partially de-
pendent on whether or not an arrival was observed in the pre-
vious time bin. Many others have addressed various aspects of
the indoor channel, as reported, for example, in [4]–[8]. Var-
ious survey articles have recently appeared which have a large
number of references on indoor propagation [9]–[11], and one
discusses statistical channel modeling for both indoor and out-
door channels [12].

Until recently, the majority of research on indoor propaga-
tion has ignored the spatial aspect of the channel. Besides the
fact that most indoor wireless networks were single-antenna sys-
tems, the issue of modeling the spatial characteristics of the
channel had not been previously addressed due to the com-
plexity of making such measurements. It is significantly more
difficult to simultaneously collect space-time data than it is to
make only time-domain impulse response measurements. How-
ever, as more consideration is given to multiple antenna systems
that employ spatial diversity, the need for an accurate space-time
model is clear.

The papers by Ganesh and Pahlavan [6] and Toddet al. [7]
were initial attempts at addressing the spatial aspects of indoor
propagation. Both presented data that were collected with small
variations in the location of the receiving antenna, and both also
addressed the effects of the movement of people near the trans-
mitting and receiving antennas. Early research that specifically
addressed the angle of arrival is found in [13]–[15] and [16].
More recently, research has begun to focus on statistical channel
models that include both time and angle of arrival [17], [18],
though as yet no space-time channel models based on measured
channel responses have been developed.

The goal of this paper is to undertake a more comprehensive
study of the joint temporal and spatial properties of the indoor
propagation environment. We have assembled a data acquisition
system that is capable of resolving multipath arrivals simulta-
neously in space and time with a resolution of 6and 3 ns, re-
spectively. The system was used to collect a number of data sets
from two different buildings on the Brigham Young University
(BYU) campus. This paper reports the results of these measure-
ments, and based on them it proposes a statistical model for both
the spatial and temporal components of the indoor channel. Mul-
tipath clustering in time similar to that described in [1] was ob-
served in our data, and so we employ the temporal description
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Fig. 1. An illustration of exponential decay of mean cluster power and ray power within clusters.

of the data used in [1] in our joint model. In addition, clusters
of arrivals were also found to exist in angle, and the distribution
of the individual clusters was found to be approximately Lapla-
cian. Another key observation from our data is that, on average,
the temporal and spatial channel parameters appear to be inde-
pendent of one another.

Since the space-time model we propose in this paper is an ex-
tension of the time-only model of [1], we begin in Section II with
a brief discussion of this approach and continue in Section III
with a description of the proposed joint space-time model based
on the Saleh–Valenzuela model. Section IV contains a descrip-
tion of the hardware setup used to collect the indoor data studied
herein, and Section V presents the techniques used to extract
time and angle of arrival information from the data. Section VI
is a discussion of the results and model parameters extracted
from the data. The paper concludes with a summary of results
and some topics for further research.

II. THE SALEH–VALENZUELA MULTIPATH PROPAGATION

MODEL

The Saleh–Valenzuela model [1] closely reflects the charac-
teristics of the data presented here, and thus it is used as a basis
for the extended model. This section summarizes the most im-
portant aspects of their model. The model is based on a clus-
tering phenomenon observed in their experimental data. In all of
their observations, the arrivals came in one or two large groups
within a 200-ns observation window. It was observed that the
second clusters were attenuated in amplitude, and that rays, or
arrivals within a single cluster, also had amplitudes that decayed
on average with time. Their model proposes that both of these

decaying patterns are exponential with time and are controlled
by two time constants:, the cluster arrival decay time constant,
and , the ray arrival decay time constant. Fig. 1 illustrates this,
showing the mean envelope of a three-cluster channel.

The impulse response of the channel they considered is given
by

(1)

where the sum overrepresents the clusters and the sum over
represents the arrivals within each cluster. The term repre-
sents a statistically independent random phase associated with
each arrival, where is uniform on . The total time
delay of each arrival is the sum of, the delay of theth cluster,
and , the delay of the th arrival in the th cluster. The am-
plitude of each arrival is given by , which is assumed to
be a Rayleigh distributed random variable whose mean-square
value is described by the double-exponential decay illustrated
in Fig. 1. This mean squared value is modeled by

(2)

(3)

where is the average power of the first arrival of the
first cluster. This average power is a function of the distance
separating the transmitter and receiver.

The time of arrival is described by two Poisson processes
that model the cluster arrival times and the arrival times of rays
within clusters. The time of arrival of each cluster is an expo-
nentially distributed random variable conditioned on the time



SPENCERet al.: MODELING THE STATISTICAL TIME AND ANGLE OF ARRIVAL CHARACTERISTICS 349

of arrival of the previous cluster. The case is the same for each
ray, or arrival within a cluster. Following the terminology used
in [1], raysshall refer to arrivals within clusters, so that the term
cluster arrival ratedenotes the parameter for the intercluster ar-
rival times , and theray arrival rate refers to the parameter
for the intracluster arrival times . The distributions of these
arrival times are shown in (4) and (5)

(4)

(5)
These two distributions are assumed to be independent of each
other. Furthermore, and are both assumed to be zero. This
implies that all times are relative with respect to the bulk delay
of the first arrival.

In [1], the parameters and were estimated by superim-
posing clusters with normalized amplitudes and time delays and
selecting a mean decay rate. The estimated parameters from
their data were ns and ns. The Poisson cluster ar-
rival rate parameter was estimated so that the probabilities of
the total number of clusters per random channel closely matched
the statistics of the observed data. This produced an estimate of

ns. The ray arrival rate parameter was approximated
based on the average separation time between arrivals. The esti-
mate for their data was ns. As their data did not provide
spatial information, angle of arrival was not addressed in [1].

III. A C OMBINED TEMPORAL/SPATIAL STATISTICAL MODEL

FOR INDOOR MULTIPATH PROPAGATION

A. Time of Arrival

In this section we propose a statistical model for the indoor
multipath channel that includes a modified version of the
Saleh–Valenzuela time-of-arrival model and incorporates
spatial information. This model is based on a collection of
space-time channel measurements that will be described in
Sections IV–VI.

As in [1], we assume that the time delay and amplitude com-
ponent of the combined model is represented by in (1),
where, as before, is the mean square value of theth arrival
of the th cluster. This mean square value is described by the ex-
ponential decay given in (3) and illustrated in Fig. 1. As before,
the ray arrival time within a cluster is assumed to be described
by the Poisson process of (5), and the time delay of the first ar-
rival in each cluster is denoted by, described by the Poisson
process of (4). The inter-ray arrival times,, are dependent on
the time of the first arrival in the cluster . In the Saleh–Valen-
zuela model, the first cluster arrival time was assumed to be
zero, implying that all times are measured relative to the bulk
delay of the first arrival.

B. Angle of Arrival

The data collected for this paper show that arrivals tended to
be clustered in both time and angle. Therefore, in addition to
the cluster and ray arrival times and , we propose that the
angle of arrival be characterized by a cluster angle and a

ray angle . This results in the addition of an angle-of-arrival
term to the channel impulse response given in (1). The combined
impulse reponse is thus taken to be

(6)

The time-only model assumed the cluster timesto be statisti-
cally independent of the ray times . Likewise, we will assume
that the cluster statistics (the distributions ofand ) are in-
dependent of the ray statistics (distributions ofand ).

Similar to the time-of-arrival model, all angles are measured
with respect to the angle of the first cluster . The time and
angle of the first arrival are heavily dependent on the specific
room geometry, and all measurements are made with respect
to it in order to eliminate these effects. The data presented
here show that the conditional distribution of given [or

] is approximately uniform on . The cluster
arrival angles are not meant to be the angle of the first
arrival within a cluster, but the mean of all angles of arrival for
the cluster. Thus the distribution of the ray arrival anglehas
a zero mean. Based on the data presented later, we propose a
zero-mean Laplacian distribution with standard deviation

(7)

The suitability of these distributions in accurately modeling the
channel will be discussed later.

C. Correlation of Time and Angle

As already mentioned, the cluster statistics and ray statis-
tics are assumed to be independent, but with the introduction of
angle of arrival into the model there is the potential of a correla-
tion between time and angle. If the time and angle distributions
are independent, the cluster and ray statistics are separable func-
tions

(8)

(9)

For the sake of simplicity, and based on our data, we assume
that these distributions are indeed independent. The reasons for
this conclusion will be discussed later.

IV. DATA ACQUISITION SYSTEM

The basic technique used to collect the data involved pointing
an antenna with a narrow angular resolution in a certain di-
rection, measuring the time domain impulse response of the
channel in that direction, rotating the antenna a small amount,
and repeating the procedure until full 360coverage was ob-
tained. A Hewlett-Packard 8720B network analyzer was used as
a signal generator and receiver. The transmitted signal was sent
from the network analyzer to the transmitting antenna through a
low-loss 36-m coaxial cable. A chirp signal of 500-MHz band-
width was transmitted, resulting in an effective pulsewidth of
approximately 3 ns. A block diagram of the system is shown
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Fig. 2. The data acquisition system.

Fig. 3. Example of a raw data set. The processed data are superimposed.

in Fig. 2. The data produced by this setup can best be viewed
in the form of an image plot of received power with respect to
time and angle. An example of this is shown in Fig. 3. In this
figure, and in the others like it, delay represents absolute delay
from the transmitter with a 25 ns offset.

The frequency band used for our experiments was 6.75–7.25
GHz. To date, this particular frequency range has not been the
subject of much study for indoor applications; its selection for

our work was due primarily to the availability of the required
hardware. However, the apparent trend toward increasingly
higher frequencies for indoor wireless (as high as 60 GHz in
one paper [14]), and recent frequency allocations in the United
States between 5–6 GHz for use in wireless local area networks
makes this choice of frequency very relevant.

The data were gathered during regular daytime working
hours, and in some cases there were people moving in the
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rooms where the data were collected. This had very little effect
on the data, because multiple measurements were taken for
each angle and the results averaged. This offset the effects
of any nonstationarity in the channel and also improved the
overall signal-to-noise ratio (SNR) of the data.

The antenna used in the data acquisition system was a dish
antenna with a diameter of 60 cm. At a frequency of 7 GHz, the
antenna has a 3-dB beam width of about 6in both the horizontal
and vertical directions and a null-to-null beam width of roughly
10 . It is anticipated that most of the received energy from the
channel will be confined to the horizontal plane (assuming both
the transmit and receive antennas are, say, on the same floor of a
given building), but it is possible that there are multipath compo-
nents with significant vertical displacement. For this reason, the
narrow vertical beam width of the antenna may provide incom-
plete information about the channel in question. To test this, the
antenna was temporarily modified to increase the vertical 3-dB
beam width to approximately 30. A comparison of the results
from the modified and unmodified antenna, shown in Fig. 4, re-
vealed that while the relative amplitudes of the major arrivals
had changed, the general clustering structure was unchanged.
Thus, for purposes of obtaining a statistical model, the antenna
was left unmodified for data collection, since the modification
caused a loss of about 5 dB.

V. DATA PROCESSING ANDANALYSIS

A. Image Processing

Although diffuse multipath components are visible in the im-
ages of Fig. 3, most of the energy is highly localized in space
and time. Consequently, we choose to model only the specular
component of the multipath channel. As such, the images shown
above can be modeled as a collection of point sources blurred by
a point spread function (PSF) and corrupted by additive noise.
This assumption reduces the problem of identifying exact times
and angles of arrival to one of two-dimensional (2-D) decon-
volution, which would normally be very difficult in the diffuse
source (or scattering) case.

The PSF or impulse response of the system was generated by
setting up the data acquisition system in a line-of-sight (LOS)
environment with a high SNR and no reflections in the vicinity
of the direct path. Sidelobes along the angular axis result from
the beampattern of the antenna, while sidelobes in time result
from the effects of windowing and pulse shaping. Because the
point spread function is known with reasonable accuracy, the de-
convolution problem lends itself well to the CLEAN algorithm
[19]. The CLEAN algorithm was originally used for processing
astronomical images, which are also often modeled as groups of
point sources convolved with a blurring function. The algorithm
is essentially a recursive subtraction of the PSF from the image,
with the PSF positioned to correspond with the maximum value
of the image. The highest peak is found, its amplitude, time,
and angle are stored, and a scaled copy of the impulse response
is subtracted from the image. This process is repeated on the
residual image until a predetermined threshold (usually corre-
sponding to the noise level) is reached.

One difficulty with the CLEAN algorithm is that slight mis-
alignments in the estimated position of the PSF center can lead

to artifacts, or points that are taken as arrivals where obviously
none are present. Furthermore, around very strong arrivals, the
surrounding areas tend to be significantly stronger than the noise
floor. This combined with the PSF model error in the side lobes
could cause many points in those areas to be interpreted as ar-
rivals. Other sources of false detections may include volume re-
verberation or multiplicative noise in the system.

To combat this problem, a scheme known as constant false
alarm rate detection was used [20]. The noise floor threshold
was adjusted at each point based on the average power of the
surrounding samples within a certain window. This greatly re-
duced the number of false arrivals that were detected but did not
eliminate them all. While a manual search or a more complex al-
gorithm could have been used, the CLEAN algorithm with con-
stant false alarm level detection proved to be the simplest and
overall the most reliable means of accurately identifying the lo-
cation of the major multipaths.

B. Cluster Finding

The result of the deconvolution process is shown by the x's
superimposed on Fig. 3. In order to analyze the statistics of
clustering effects, the next task was to identify the presence
and composition of any clusters in the data. Early analysis
of the data showed clustering effects in both time and angle.
These clusters were obvious to the observer in most cases.
Some experimentation was done with computer algorithms for
automatic cluster identification, but eventually it was decided
that the overall amount of data was small enough that the
clusters could easily and accurately be determined manually.
This was done via a computer program that displayed an image
of the processed data, and it allowed the user to identify clusters
using graphical input, similar in concept to the process used by
Saleh and Valenzuela, who also identified clusters by visual
observation. With the times, angles, amplitudes, and clusters of
all major arrivals identified, the data could be used to analyze
the channel statistics and arrive at a model.

VI. RESULTS

This section presents some comparisons between the pro-
posed model and the data that were obtained using the collec-
tion system described earlier. Data were collected in two build-
ings of significantly different construction. The two buildings
studied are representative of the steel and concrete frame build-
ings common in institutional and commercial settings. In all
of the collection scenarios, the transmitter and receiver were
separated by a wall, and in most cases they were in different
rooms. Separation distances ranged from approximately 6 m to
30 m. Most doors in both buildings were made of wood and
were closed for all measurements. The following sections dis-
cuss general trends observed in the data and the model parame-
ters derived from the data for the two buildings.

A. General Observations

A total of 55 data sets were recorded on the fourth floor
of the Clyde Building (CB) on the BYU campus, and another
ten data sets were collected in the Crabtree Building (CTB), a
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(a)

(b)

Fig. 4. Data collected with (a) original antenna and (b) modified antenna.

newer building also located on the BYU campus. The CB is con-
structed mostly of reinforced concrete and cinder block, with all
internal walls composed of cinder block. The building Saleh and

Valenzuela used for their measurements is similar in construc-
tion to the CB. The CTB is built with steel girders, and internal
walls are gypsum board over a steel frame. The model parame-
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(a)

(b)

Fig. 5. Scatter plot of (a) time and angle for cluster and (b) arrivals within clusters.

ters estimated from the experimental data for each building are
discussed below.

As alluded to earlier, a clustering pattern in angle was im-
mediately visible in the processed data images. Generally there

were at least two or three clusters, except in rare cases with
long propagation distances and consequently low SNR’s. There
were some extreme cases of more than five clusters, especially
in the CTB data. The average number of clusters per data set



354 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 3, MARCH 2000

in the CTB was about five, while for the CB the average was
three. Histograms of the number of clusters for each building
are shown in Fig. 6.

In general, fewer clusters were observed when the trans-
mitter/receiver separation was large due to the correspondingly
lower SNR. A higher number of clusters occurred with a
stronger signal when the channel possessed a more complex
geometry, i.e., more doorways, walls, or rooms in between the
transmitter and receiver. The higher overall number of clusters
in the CTB seems to be a result of the fact that the building's
construction produced more reflections and attenuated the
signals less, and hence more long-delay arrivals could be seen.
As documented in the next section, clusters were observed at all
angles. In most clusters, the majority of arrivals were located
within 20 –30 of the cluster mean, with occasional outliers.

In both buildings, the LOS path was almost always present
in the data, but its level of attenuation was dependent on the
number and type of walls between the transmitter and receiver
(LOS was observed in cases of up to three walls). In the CTB
the LOS component was stronger than in the CB. In both build-
ings, when there was only a single wall separating the trans-
mitter and receiver, the LOS arrival was generally the strongest.
It appeared that almost all door openings provided a non-LOS
cluster, even with the doors closed. Almost all strong clusters
had a corresponding cluster that appeared to be a back-wall re-
flection. However, the relative angles of the back-wall reflec-
tions tended to vary with the geometry of the specific situation.
For example, a receive location near a corner can produce two
strong back-wall reflections from each of the nearby walls, but
the angles can vary widely depending on transmitter location.

In most respects, the data collected in the two buildings did
not differ greatly. Both data sets exhibited similar clustering
structures, as well as a decay over time of the amplitudes of the
clusters and the rays within clusters. The most pronounced dif-
ference was a much slower decay rate in the CTB data, which
produced a corresponding increase in the total number of ar-
rivals and a slight increase in the number of clusters. The next
two sections present the specific model parameter estimates for
the CB and CTB.

B. CB

The cluster and ray decay time constants,and , were esti-
mated using the same method as in [1]. The first cluster arrival
in each set was normalized to an amplitude of 1 and a time delay
of 0. All arrivals were superimposed and plotted on a semilog-
arithmic plot as shown in Fig. 7. The estimate forwas found
via a least-squares fit of the data to an exponential curve. For the
CB, was found to be 34 ns, which is slightly more than half
the figure found in [1], where it was estimated to be 60 ns.

Fig. 8 shows the data and estimated curve forobtained using
the same method. The first arrival in each cluster was set to a
time delay of zero and an amplitude of one, and all other ar-
rivals were then adjusted accordingly and superimposed. The
superimposed curve represents ns, which is quite close
to the value of 30 ns found in [1].

It is obvious from the large variance of the amplitudes at each
delay that the assumption of exponential decay can only reflect

Fig. 6. Histogram of number of clusters per location for the CB and CTB.

the mean behavior of the channel. In their data, Saleh and Valen-
zuela did not have information about the specific time and am-
plitude of arrival that was as accurate as that presented here. As
a result, they made rough estimates for the amplitude decay pa-
rameters and did not attempt to generate plots like Figs. 7 or
8. However, in their case, as well as with this data, the general
trend is a linear decline of log-amplitude over time, indicating
that to first order at least, the amplitude decay is exponential.

It can be seen in Figs. 7 and 8 that the first arrival was not
always the strongest arrival, which is likely due to occasional
sidelobes or noise being taken as an arrival by the CLEAN al-
gorithm. Because of this fact, the amplitude of the curve at zero
delay was allowed to vary from the standard value of one when
finding the best fit. This allowed for a curve which better fol-
lowed the general decay trend of the data.

The rate-of-arrival parameters were easily estimated from the
data since the precise time of arrival was known for each ray and
cluster. To estimate , the cluster arrival rate, the first arrival in
each cluster was considered to be the beginning of the cluster,
regardless of whether or not it had the largest amplitude. The
arrival time of each cluster was subtracted from that of its im-
mediate predecessor, so that the delay parameter of the condi-
tional probability distribution given in (4) could be determined.
Estimates for both and were obtained by a least-squares fit
of the sample pdf to the measured probabilities for each bin.
Fig. 9 shows this cumulative density function on a log scale and
the closest exponential fit. These data do not include the first
arrival in each data set, for reasons that will be discussed in the
next section. In this case ns. The possible reasons
for the large discrepancy between this estimate and the estimate
of 300 ns given in [1] will also be discussed at the end of this
section.

The second Poisson parameter,, representing the ray arrival
rate, was estimated in a similar fashion. Each within-cluster time
of arrival was subtracted from the previous one to produce a
set of conditional arrival times . The cumulative
distribution of these with the best fitting pdf is shown in Fig. 10.
In this case, ns.
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Fig. 7. Plot of normalized cluster amplitude versus relative delay for the CB, with the curve for� = 33:6 ns superimposed.

Fig. 8. Plot of normalized ray amplitude versus relative delay for the CB, with the curve for
 = 28:6 ns superimposed.

Fig. 11 shows a CDF of the mean angle of each of the clusters.
Each arrival angle plotted is measured relative to the absolute
angle of the first arrival in the data set. The distribution looks

very uniform, except that the interval between 50–310 (about
50 on each side of zero) contains very few arrivals (also visible
in Fig. 5). The explanation for this is simply that arrivals near
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Fig. 9. CDF of relative cluster arrival times for the CB (1=� = 16:8 ns).

Fig. 10. CDF of relative arrival times within clusters in the CB (1=� = 5:1 ns).

the reference cluster are likely classified as belonging to that
cluster. The results shown here support the conclusion that the
mean cluster angles are distributed uniformly over all angles.

The distribution of the ray arrivals with respect to the cluster
mean is shown in Fig. 12. The characteristic sharp peak of the

Laplacian distribution is immediately obvious. The superim-
posed curve is a Laplacian distribution that was fit by integrating
a Laplacian pdf over each bin and matching the curves using
least squares. The Laplacian distribution turns out to be a very
close fit. In this case the angular variancewas measured to
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Fig. 11. CDF of relative mean cluster angles in the CB with respect to the first cluster in each set.

Fig. 12. Histogram of relative ray arrivals with respect to the cluster mean for the CB. Superimposed is the best fit Laplacian distribution (� = 25:5 ).

be 26 . The tail behavior of the distribution was examined by
looking at the distribution on a log scale, and it was observed
that the tails are actually heavier than predicted by a Laplacian
distribution, but the model accurately captures the behavior of
90% of the arrivals.

C. CTB

The model parameters were evaluated for the CTB in the
same way as they were for the CB, and the associated plots can
be found in [21]. In general the fits were not quite as good be-
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cause of the lower number of samples, but the data were useful
for a comparison with the CB results. The estimate forwas de-
termined to be 78 ns, more than double the number found for the
CB, but closer to the figure of 60 ns found in [1]. The most sig-
nificant difference found in the CTB data was that the ray decay
rate was found to be 82 ns, slower than the cluster decay rate

. The value of ns is the same as the value measured
for the CB, although the higher total number of clusters in the
CTB indicates that this particular method of estimatingmay
give results that are low. The estimate of 7 ns for is slightly
slower than the estimate for the CB. The cluster angles of arrival
conditioned on the first arrival in this case was also found to be
quite uniform, as was the case in the CB. The ray angle of ar-
rival also fit the proposed Laplacian distribution very well, with

. In this case, a log plot revealed that the Laplacian
distribution accurately fit the tails of the distribution, demon-
strating that the model accurately predicts the angular distribu-
tion in nearly 99% of the trials.

D. Correlation of Time and Angle

The time-space channel model proposed earlier makes the as-
sumption that the statistics for the time and angle of the clusters
and rays are independent, i.e., that and are sepa-
rable functions. In order to test this assumption on the data, 2-D
scatter plots were generated as shown in Fig. 5. The first plot
is of the relative delays and angles of all clusters with respect
to the first cluster. The second is a plot of the relative delay and
angle of each ray with respect to the first cluster arrival time and
the mean cluster arrival angle. The plots show that there is not
a significant correlation between time and angle in either case.
This is evident in the fact that the density functions appear to be
approximately separable in both cases, and that there are rays or
clusters present at nearly all times and angles. Based on this evi-
dence, and for the sake of simplicity, we will assume that arrival
times and angles are independent. However, these assumptions
are based on a very small data set, and it is possible that a larger
set of data could reveal some correlation.

E. Comparison of Model Parameters

Table I shows a comparison of the model parameters esti-
mated for the CB, the CTB, and those presented in [1]. The
most obvious discrepancy is in the estimates for the value of

. The explanation for this is quite straightforward. There were
significantly more clusters observed in both the CB and CTB
data compared with the average of 1–2 clusters observed in [1].
This may be due in part to the higher rf frequency used in our
experiments. More significant, however, was the ability of our
testbed to see clusters that overlapped in time but were separated
in angle. In many cases, clusters that would have been classified
as a single group if observed only in time were clearly disjoint
in space.

The values for for the various data sets were all very sim-
ilar. The most interesting observation concerning the estimates
of the amplitude decay parameters is that for both the
CB and the CTB, unlike the results of [1]. The value ofwas
unusually low in the CB, while the value offor the CTB was
especially unusual since it was not only large, but larger than

TABLE I
A COMPARISON OF MODEL PARAMETERS

FOR THETWO BUILDINGS AND FROM SALEH AND VALENZUELA

the corresponding . The likely explanation for this is that the
walls in the CTB both reflect more (due to steel framing) and
attenuate less (due to thin gypsum board coverings). The CB,
which is similar in construction to the building used by Saleh
and Valenzuela for their data, tended to have a higher attenua-
tion, most likely due to the higher frequency used in our experi-
ments. Both values of were close to each other, but there is no
precedent that allows for comparison of this figure with other
researchers' data.

F. Possible Causes for Various Aspects of the Model

Many aspects of the model have plausible physical explana-
tions that we may propose as causes for the observed behavior.
Because an absolute angular reference was maintained during
the collection of the data, it was possible to compare the pro-
cessed data with the geometry of each configuration. It was
observed that the strongest cluster was almost always associ-
ated with the LOS between the receiver and transmitter. This
was true even though the LOS signal had to propagate through
walls. The apparent causes of weaker clusters were back wall
reflections and the presence of doorway openings, even when
the doors were closed. Evidence of propagation through closed
doorways was not surprising since all of the doors in the two
buildings tested were composed of wood and were surrounded
by metal frames. Such clusters would likely not be present in a
building with metal doors.

A cluster with a narrow angular variance was centered at most
doorway openings, likely accounting for the sharp peak in the
Laplacian angular distribution. The location of the line of sight
and the back wall reflection is very dependent on the specific
arrangement of transmitter and receiver, and therefore, over a
large number of rooms and locations, a uniform distribution of
clusters in angle is reasonable.

The physical reasons for multipath clustering in the indoor
environment seem to imply that there should be a stronger cor-
relation between time and angle of arrival than was observed.
For example, one might expect that as clusters diverge in angle
from the line of sight, there should be a corresponding increase
in the time delay of those clusters. This could also be said for the
arrivals within clusters. However, our empirical analysis of the
data did not give any significant evidence of such patterns. Be-
cause of the wide range of separation distances and room types
used for this data, the model represents the mean behavior of
the indoor channels tested. It is possible that data collected with
narrower range of parameters may give additional insight into
possible time/angle correlation.
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VII. SUMMARY

Using a data collection system that took measurements in
both space and time, information was obtained about the clus-
tering structure of indoor wireless multipath signals, the angular
distribution of these multipaths, and the behavior of multipath
signals in buildings of varying structure. A definite clustering
pattern was observed in the time-angle indoor multipath data.
The temporal clustering observed in [1] is supported by the data
presented here, and a clustering pattern in angle was also ob-
served. The mean angles of each cluster were found to be dis-
tributed uniformly over all angles. The distribution of arrivals
within clusters was approximately Laplacian, with standard de-
viations (angular spreads) ranging from 22to 26 .

In general, the data presented here exhibited the same general
characteristics as the Saleh–Valenzuela data. The amplitudes of
clusters and rays within clusters both approximately follow a
pattern of exponential decay, and the times of arrival in the data
closely follow the model of [1]. There were some differences ob-
served in the measured model parameters, most noticeably in the
time decay rates. The other major discrepancy is in the markedly
faster cluster arrival rate, which is most likely explained by the
larger overall number of observed clusters resulting from a more
sensitive data gathering apparatus.

The model parameters for the two buildings had more in
common with each other than they did with those in [1].
Both buildings had similar parameters for angular distribution
and rate of arrival, differing mainly in the amplitude decay
parameters. The slower decay rates seen in the CTB are most
likely due to the steel and gypsum construction of the building,
which tends to both enhance reflections and reduce attenuation
at the same time. In general, the model seemed to be able to
accurately describe the differing multipath characteristics in
both buildings, regardless of their very different construction.
This implies that the model could possibly provide a general
representation for many different types of buildings, and
model parameters could then be found for buildings of varying
construction.
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