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Abstract 

This paper presents new insights into the maximum en- 
tropy (ME) method of image restoration. It is shown that 
when a spec.$c image prior probability pdf model is cho- 
sen for Bayesian MAP restoration, the resulting solution is 
identical to the maximum entropy result. This relationship 
provides a new means of evaluating the theoretical foun- 
dations-of maximum entropy, and may assist in determin- 
ing what class of images are best suited for  ME processing. 
Also, a new non-iterative, closed-form approximation to the 
ME solution is developed. This result can reduce compu- 
tational demands compared to conventional iterative algo- 
rithms. An example of the closed form restoration is pre- 
sented. 

1. Introduction 

Maximum entropy (ME) image restoration has been 
widely used with significant success for many years. It 
remains, thc method of choice for radio astronomy image 
restoration applications. Though usually expressed as a de- 
terministic constrained convex optimization problem, pro- 
ponenfs of ME restoration have used information theoretic 
and quantum physics arguments to justify its use in a wide 
variety of applications [5][7]. 

A frequently used observation model for maximum en- 
tropy restoration is 

y = H z  + 71, (1) 

where y : M x 1 and x : N x 1, are vectors formed by 
column scanning the corresponding 2-D images, and H is 
the doubly block Toeplitz convolution matrix correspond- 
ing to the 2-D point spread function. 7 is a random vector, 
with joint probability density function (pdf), p , ( v ) ,  which 
represents measurement uncertainty or additive observation 

"The authors acknowledge the contribution of Cornell Bean to this 
work. 

noise. For simplicity we will assume each noise pixel has 
identical variance, gi. 

Many ME restoration methods employ an equality con- 
straint by assuming C T ~  = 0 [2]  [4]. In this case it must 
also be assumed that H does not have full column rank, so 
that given y,  the solution for z is not unique unless some 
optimization criterion (such as maximum entropy) is em- 
ployed. The corresponding equality constrained ME opti- 
mization problem for image restoration is given by 

M 
arg max - 

such that y = Hx. 

x, ln  xi, x 20 i M E 1  = 
i= l  

(2) 

We also consider the case of inconsistent measurements, i.e. 
when 0: > 0, which can be addressed with an 12 vector 
norm constraint on the entropy expression [6]: 

M .._ 

i M E 2  = arg max - xi In xi, 
I20 

i=l 

such that 11 y - Hx 1 1 2 =  2u:. (3) 

A variety of iterative algorithms are available to solve ME 
expressions ( 2 )  and (3) [2][6], but no practical direct form 
solutions are known. 

2. Relationship Between Maximum Entropy 
and Bayesian Image Restoration 

In this section we will show a relationship between the 
maximum entropy solutions of equations ( 3 )  and (2) and the 
well known and widely used maximum a posteriori (MAP) 
Bayesian image restoration technique. It will be shown that 
for a particular choice of the image prior probability den- 
sity model, the MAP solution is equivalent to maximum 
entropy. Since MAP restoration is a well known method 
founded in classical estimation theory, knowing the limiting 
conditions under which the two solutions match will give 
us insight into properties of maximum entropy methods. In 
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particular, MAP estimation incorporates prior information 
about the solution, z, in the fo& of a prior probability den- 
sity p, (z ) .  Knowing which p , ( z )  yields the ME solution 
will suggest what kinds of implicit modeling assumptions 
are being made with regard to z. 

An simple example of the utility of establishing such re- 
lationships is found in least squares optimization. Least 
squares is often used as a deterministic approach, without 
regard to signal statistics, because of its ease of applica- 
tion and the quality of results obtained. However, the MAP 
estimator for images with uniformly distributed intensities, 
and which are corrupted by white Gaussian noise, has ex- 
actly the same form as least squares with bounded inten- 
sities. This knowledge provides insight into the power of 
the method, and guides practitioners in deciding when least 
squares may be appropriate based on signal statistics (e.g. 
when the truth image is actually uniformly distributed). 

It must be pointed out that a complete image model 
paradigm shift is needed in order to use estimation theoretic 
methods for restoration. For maximum entropy, the image 
pixel intensity values themselves are modeled as probabili- 
ties.(e.g. zi is the probability that a single detected photon 
strikes pixel i.) On the other hand, in the conventional sig- 
nals and sys'tems view, all images (including the true image, 
the observed image, and noise) are modeled as realizations 
drawn from random fields. The statistical properties of an 
image are completely described by its probability density 
function, which is distinct from the image realization itself. 
Restoration is thus a statistical estimation problem, i.e. find- 
ing the z which best optimizes some statistical measure. In 
this context the maximum entropy optimization of equation 
(3) has no obvious relationship to any well known statistical 
estimator. 

The MAP estimator solution can be expressed as 

,?MAP = m y  Pzl ,  ( 4 Y  1 > 

= a r g m y  ln{P,l,(Ylz)P,(~))> (4) 

where p , , ,  (ylz) is the conditional probability density for 
observed image y and p ,  (z) contains all of our knowledge 
about the expected form of the true image. It can be shown 
that p,l,(yIz) is simply a mean-shifted version of the noise 
distribution, p V ( r / ) .  The current state of the art is to use 
Markov random field models based on a variety of Gibbs 
distributions for p ,  (z) in order to represent ones prior no- 
tions of the correlation, texture, and edge activity structure 
expected in z [ 1, 31. 

We will assume that the noise is distributed i.i.d. zero 
mean Gaussian with variance U;.  ThuspY~,(y1z) = p,(y - 
H z ) ,  as given by 

where I( . [ I 2  denotes 12 vector norm squared. 
We now make a less obvious assumption: that pixels 

zi are distributed i.i.d. with marginal and joint image prior 
pdf's given respectively by 

1 -  p ( .) = -x i  z 'u(z i ) ,  and z 2 xz (6) 
. M  

where 2 = sooo x,"dx = 2.0 is the constant valued parti- 
tion function which insures p5(z1) integrates to I ,  and U(.) 
is the unit step function. Figure 1 illustrates p,(z , ) .  Note 
that this is a one sided, highly skewed distribution with a 
modal peak near zero. 

Figure 1 .  Marginal image prior density, p,(z i )  = 
$ z i " ' u ( z i ) .  When z, is distributed i.i.d. with this 
density, and the noise is Gaussian, the MAP solution 
is identical to the 12 norm constrained maximum en- 
tropy solution of equation (3). 

Substituting equations ( 5 )  and (7) into (4) leads to 

-- 11 i= l  ?-, 

i M A p  = a r g m a x  - C z, In zi + x 11 y - ~z 1 1 2  

where X = - 4 and additive constants have been dropped 
2*,, 

due to the maximum operator. 
Equation (9) is readily seen to be the Lagrangian expres- 

sion corresponding to the constrained optimization of equa- 
tion (3), with X the Lagrange multiplier. The important con- 
sequence of this observation is that the solutions are equal, 

, 
i=l I i "  (9) 

2 2 0  

s 
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i.e. 2 ~ ~ p  = ~ M E Z .  This is noteworthy because the so- 
lutions were derived using entirely different image models, 
from information theoretic vs. estimation theoretic perspec- 
tives, and with different assumptions about the image sig- 
nals. The equality constraint ME solution is also equivalent 
to a MAP solution. It can be shown that in the limit as 
uz + 0 equation (9) corresponds to an equality constraint 

ages of interest. Despite a controversial theoretical founda- 
tion, we believe that ME methods stand on their own merits 
based on performance. 

3. A Closed-Form ~~~i~~~ Entropy A ~ ~ ~ ~ ~ -  
imation 

identical to the X M . ~ E ~  solution of equation (2). 
A key conclusion to be drawn from the equivalence of 

the ME and MAP solutions relates to the form of p,(xi) 
shown in Figure 1. We know of no image class where this 
specific model can be justified by physical processes or by 
empirical estimation of the pdf using histogram methods. 
One may observe however that p ,  (xi) is one sided, heavy 
tailed, and has a modal peak in the low intensity values. It 
may be argued that these characteristics are consistent with 
some photographic images which have large darker back- 
ground regions surrounding a brighter high contrast object 
of interest. The overall shape of pl(xi) is grossly similar 
to a non-central Chi-squared distribution, which could arise 
from a square law detector (intensity proportional to power) 
in  a linear observation environment that produces Gaussian 
random variates due to ccntral limit theorem effects. 

These observations suggest one should be cautious about 
using maximum entropy, at least from the estimation theo- 
retic, signals and systems point of view. Typical images 
of interest may not have the distributions we have implic- 
itly assumed. Further, most images have significant inter- 
pixel correlation and are thus not i.i.d. as with the p,(x) 
of equation 7. In these cases the ME solution will not be 
optimal in the Bayesian sense. Using the ME approach 
is equivalent to assuming the “unlikely” image prior den- 
sity, pZ(xi) = ~ z ~ z ’ u ( x i ) ,  which is difficult to justify for 
many problems. This reinforces our concern that the ME 
approach of interpreting thc imagc itself as a probability 
distribution in order to force-fit the information theoretic 
entropy measure onto the image restoration problem is not 
well supported, unless the true image pdf is similar to equa- 
tion (7). 

On the other hand, the ME criterion has enjoyed much 
success due to a number of advantages. ME restorations 
have been found to preserve edge and point-like image de- 
tail [ 5 ] .  Equations ( 2 )  and (3) define convex deterministic 
optimizations over convex constraints, a formulation which 
has significant computational advantages as compared with 
many MAP algorithms. Efficient iterative algorithms exist 
to solve these ME problems (e.g. multiplicative algebraic 
reconstruction technique, MART [ 2 ] ) .  We find ME restora- 
tion to be a powerful image processing tool, but prefer to 
view it as a deterministic constrained optimization method 
with an arbitrary, though effective optimization metric. This 
metric was developed by analogy with information theory, 
and has been shown to perform well for a large class of im- 

The ME problem my be solved using general purpose 
non-linear constrained optimization computer algorithms, 
or one of several algorithms related to the multiplicative 
algebraic reconstruction technique (MART) (21. Thc for- 
mer approach is impractical with image sized data sets, and 
the later can be very slow. Both are iterative methods, and 
no closed-form solution is available. In this section we de- 
rive an approximate closed form result for the equality con- 
straint maximum entropy problem of equation ( 2 ) .  This 
approach will be useful in theoretical analysis of the ME 
problem, and in some cases will provide a result with lower 
computational demands than MART. 

All inverse problems with linear equality constraints, 
y = H x ,  have admissible solutions of the form x = 
z, + z,, where x, belongs to the row space of N, (i.e. 
z, 6 8 { H T } )  and z, i s  drawn from the right nullspace 
of H ,  (i.e. x, E N { H ” } ) .  x, is the unique minimum norm 
solution (known as the least squares solution in the presence 
of measurement error) given by 

5, = H t y  (10) 

where t indicates pseudo inverse. On the other hand, z, is 
different for each optimization criterion that may be chosen, 
e.g. maximum entropy, least squares, minimum 1, norm, 
etc. z, is typically a small perturbation from x,,, but as long 
as z, E N { H T } ,  z will satisfy the constraint equation. 
Selecting an optimization criterion in effect determines z, 
to yield a particular unique solution for x. 

The approach of the proposed algorithm is to first find 
x, and then to perturb this solution in the direction of the 
x, given by the entropy criterion. x, may be computed us- 
ing one of several standard algorithms, e.g. singular value 
decomposition based pseudoinverse, iterative least squares, 
or additive algebraic reconstruction technique (ART). 

We can decompose H into its range and null spaces using 
the SVD, 

where superscript ” denotes conjugate transpose. UR and 
VR are partitions of left and right singular matrices U and 
V respectively which correspond to the non-zero singular 
values of H .  Likewise, U N  and VN contain the singular 
vectors corresponding to the zero singular values. UN and 
VN span the left and right null spaces of H respectively. 
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By construction, N{HT} = VN. Therefore x, = VN z 
for some z. The vector z that will leads to a maximum 
entropy solution of equation (2) is 

M 

Z M E ~  = a r g m a -  C ( x o i  + [vN zli) ln(xoi + [vN zli), 
i=l 

(12) 

X M E l  = xo f VN ZMEl .  (13) 

Note that this optimization is unconstrained in z .  Also, z is 
length P = N - rank{H} << N ,  so expressing X M E ~  in 
terms of z dramatically reduces both the complexity of the 
minimization and the number of parameters to be estimated. 

Consider the entropy expression from the right hand 
side of equation (12), which for x, = VNZ is E(x) = 
- xgl xi ln xi. Using a finite series expansion approxi- 
mation yields 

and the ME solution for x is simply 

E(X) = - C ( x o i  + xei) In(xoi + xei) 

(lnz,i + 2) (14) 

where the approximation comes from talung the first term 
of the Taylor series expansion of ln(1 + 2). Expanding 
the terms in the summation gives 

M - (c + T ~ X ,  + x f B x , )  (15) 

where T = [l + l n x , l , . . .  , l  + I ~ X , , ] ~ ,  B = 
diag(x,i', . . . , x i , ) ,  and scalar c = xi xoi In x,i (which, 
incidentally, is the negative entropy of xoi). Substituting 
VN z for x,, we obtain 

E(X) M - ( c  + T ~ V N Z  + Z ~ V ~ B V N Z )  

x - ( c  + Sz  + z H D z )  (16) 

where D = V/BVN and S = T ~ V N .  To maximize en- 
tropy we take the derivative with respect to z and set it to 
zero, 

(17) 
Therefore, noting that D is a full rank square matrix, the 
solution to equation (12) is 

SH + 20.2 = 0. 

1 
2 

z M E ~  = - - D - ~ s ~  

Substituting into equation (13) yields our final closed form 
approximation 

X M E ~  M H t y  - - V N ( V / B V N ) - ~ ( T ~ V N ) ~ .  1 (19) 2 

We note that B and T are direct closed form functions of 
y through x,, and VN is a direct function of H. The re- 
quired matrix inverse is on a relatively small P x P matrix. 
The most significant computation is the singular value de- 
composition used to form VN. However if the point-spread- 
function is known a priori, or is used for a series of images, 
VN can be computed in advance so the actual image restora- 
tion computation dependent on data y is small. 

Figure 2 illustrates an example using the closed-from 
ME approximation. The original image was circularly con- 
volved with a low pass filter, and then noise was added 
to produce the output image. Comparing the true maxi- 
mum entropy solution as produced by MART with the ap- 
proximation shows how similar the two are. This suggests 
the algorithm will be promising for larger scale ME image 
restoration applications. 

Figure 2. Example results from the closed form max- 
imum entropy algorithm of equation (19). a) Original 
27 x 27 pixel true image. b) Observed image, 13 x 13 
pixels. Blurred with 5 by 5 pixel raised cosine psf, 
and decimated by 2 in each axis. c) True maximum 
entropy reconstruction. 27 x 27 pixels. d) Closed 
form approximation of maximum entropy. Note sim- 
ilarity of solutions in (d) and (c) confirms accuracy of 
the closed form approximation. 

1 
2 

= - - (Vf.€?v~)- '  ( T ~ V N ) ~ .  (1 8) 
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3.1 Conclusions and Future Work 

In this paper we have shown a relationship between max- 
imum entropy and Bayesian MAP image restorations under 
the assumption of a particular image prior pdf. This pro- 
vides insight into what class of images are best suited to 
ME restoration by suggesting a pdf model for the random 
field they should be drawn from. An obvious next step is to 
evaluate an ensemble of images that are typically processed 
using ME (e.g. radio astronomical images) and compare 
their histograms with pz(xi) of Figure 1. A close match 
would indicate that ME restoration has remained popular 
in  these application areas, despite the availability of many 
other methods, because unknown to the practitioners the un- 
derlying implicit image prior pdf model was a good fit. 

A closed form approximation to the ME solution was 
developed by projecting the solution onto the null space of 
H to formulate an unconstrained optimization problem of 
lower dimension. A finite series expansion of the entropy 
expression led to an algebraic solution to this optimization. 
The new approximation can be much faster (particularly for 
a set of-observations with common H )  and will provide in- 
sight into the structure of ME results. 

Equation'( 19) was derived using a first order approxima- 
tion for the logarithm. Using a second order term for the log 
expansion would give a more accurate approximation. The 
approximate entropy expression would then be 

&(x) M - C(XOi + x,,) ( 1I1Xo2 + - x e i  - - ; (2)') 
X o i  i 

(20) 
where now the second order Taylor series for the logarithm 
has been used. We are currently developing a closed form 
optimization for equation (20). 
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