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ABSTRACT 
This paper presents a new non-iterative, closed-form approxima- 
tion to the maximum entropy (M.E.) image restoration method. 
A fast frequency domain implementation of this closed form ap- 
proach is developed for the case of circular convolutional blur. 
This result dramatically reduces computational demands compared 
to conventional iterative M.E. algorithms such as MART. Some 
limitations and advantages of M.E. restoration are investigated, in- 
cluding its dismal performance for high resolution restoration of 
decimated or randomly sampled blurred observations. 

1. INTRODUCTION 

Maximum entropy (M.E.) image restoration has been widely used 
with significant success for many years. It remains a method of 
choice for radio astronomy image restoration applications. Though 
usually expressed as a deterministic constrained convex opdmiza- 
tion problem, proponents of M.E. restoration have used informa- 
tion theoretic and quantum physics arguments to justify its use in 
a wide variety of applications [1][2]. 

We will use the following observation model, 

y = H x ,  (1) 

where y : M x 1 and x : N x 1 are vectors formed by column 
scanning the corresponding 2-D images (e.g. x = vec{x[m, n]}), 
and H is the doubly block Toeplitz convolution matrix correspond- 
ing to the 2-D point spread function, h[m, n]. It will be assumed 
that the rank of H is M, with M 5 N, so that given y, the solu- 
tion for x is not unique unless some optimization criterion (such as 
maximum entropy) is employed. This rank deficiency also ensures 
that the strict equality constraint of equation (1) can be satisfied 
even in the presence of observation noise, though the solution will 
be perturbed. The corresponding M.E. optimization problem for 
image restoration is given by 

M 

? M E  = argmax - X x i l n x i ,  
i=l 

xzo 

such that y = H x .  (2) 

This M.E. problem my be solved using general purpose non-linear 
constrained optimization computer algorithms, or one of several 
algorithms related to the multiplicative algebraic reconstruction 
technique (MART) [3][4]. The most important of these, MART, 
is given by the following iterative update, 

x;+l = .; ( Yi ) A h i i  
(hi,  xh) ' (3) 

where xj" is thej th  element of the kth iteration on x, hi is a vector 
formed from the ith row of H ,  (., .) indicates vector inner prod- 
uct, hij is the i, j t h  element of H ,  and X is a relaxation parameter 
which controls step size. The general purpose constrained opti- 
mization approach is impractical with image sized data sets, and 
the MART can be very slow. Both are iterative methods, and no 
closed-form solution has been available. 

2. A CLOSED-FORM M.E. APPROXIMATION 

In this section we derive a closed-form M.E. approximation by 
projecting the solution onto the null space of H to formulate an 
unconstrained optimization problem of lower dimension. A finite 
series expansion of the entropy expression leads to an algebraic 
solution to equation (2). This approach will be useful in theoret- 
ical analysis of the M.E. problem, and is dramatically faster than 
MART. 

All inverse problems with linear equality constraints, y = H x ,  
have admissible solutions of the form x = xo + xe, where xo 
belongs to the row space of H ,  (i.e. xo E R { H T } )  and xe is 
drawn from the right nullspace of H, (i.e. xe E N { H T } ) .  xo 
is the unique minimum norm solution (known as the least squares 
solution in the presence of measurement error) given by 

xo = Hty (4) 

where indicates pseudo inverse. On the other hand, xe is different 
for each optimization criterion that may be chosen, e.g. maximum 
entropy, least squares, minimum Zp norm, etc. xe is typically a 
small perturbation from xo, but as long as xe E N{HT},  x will 
satisfy the constraint equation. Selecting an optimization criterion 
in effect determines xe, and thus determines a particular unique 
solution for z. 

The approach of the proposed algorithm is to first find xo and 
then to perturb this solution in the direction of the xe given by 
the entropy criterion. xo may be computed using one of several 
standard algorithms. 

We can decompose H into its range and null spaces using the 
SVD, 

where superscript denotes conjugate transpose and C is the diag- 
onal matrix of singular values. UR and VR are partitions of left and 
right singular matrices U and V respectively which correspond to 
the non-zero singular values of H. Likewise, UN and VN contain 
the singular vectors corresponding to the zero singular values. UN 
and Vj, span the left and right null spaces of H respectively. 
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By construction, N { H T }  = VN. Therefore xe  = VN z for 
some z. The vector z that leads to a maximum entropy solution of 
equation (2) is yields 

Diag{wec(FFTm{h[m, n ] } } }  [5]. Here the elements of C are 
not ordered by magnitude. Subspace partitioning of H as in ( 5 )  

M VN = FpT,  VR = FQT, 

O 1  z = arg mzm - c ( x o i  + [VN z]i)  ln(xoi + [VN zli), (6) ... 
i=l 

and the M.E. solution for x is simply 

X M E  = x0 + VN Z. (7) 

Note that this optimization is unconstrained in z. Also, z is length 
p = N - rank{H} < N, so expressing X M E  in terms of z 
dramatically reduces both the complexity of the minimization and 
the number of parameters to be estimated. 

Consider the entropy expression from the right hand side of 
equation (6). Using a finite series expansion approximation yields 

E ( X )  = - C(~oi + xei) W z o i  + xei)  
a 

M 

x -(C + r H v , z  + zHvfBvNz) .  (8) 

- (c  + r H x e  + x,XBxe) 

where the approximation comes from taking the first term of the 
Taylor series expansion of In(1 + 2). r = [l + Inxol, 
. . . , 1 + In xOnIT, B = Diag{ [x i : ,  * . , x i : ] } ,  and scalar c = xi xoi In xoi .  To maximize entropy we take the derivative with 
respect to z and set it to zero, which yields 

(9) v f r  + 2 v f B v ~  z = 0. 

Therefore, noting that V,"SVN is a full rank square matrix, equa- 
tions (9) may be solved algebraically for z, which is substituted 
into equation (7) to yield our final closed form approximation 

(10) 

We note that B and r are direct functions of y through xor and 
VN is a direct function of H. The required matrix inverse is on a 
relatively small p x p matrix. The most significant computation is 
the singular value decomposition used to form VN. 

1 -1 X 
x M E  M H+Y - -VN(V,"BVN) VN r. 

2 

2.1. A Fast Closed Form Implementation 

If the blur represented by H is due to circular convolution, the 
singular value decomposition of H becomes trivial using the 2- 
D FFT, and an extremely fast implementation of equation (10) is 
possible. For non-circular FIR convolutional blur, the image frame 
can be extended using a zero fill border with a width equal to the 
psf region of support. The conventional convolution can then be 
exactly embedded in a slightly larger circular convolution repre- 
sentation. In this way, most practical restoration problems can uti- 
lize the following fast implementation. 

For 2-D circular convolution, H is N x N doubly block 
circulant and is therefore diagonalized by the 2-D unitary DFT. 
Thus the SVD of equation (5) is given by H = .FHEF, where 
F = -&F @ F, F is the 1-D DFT unitary transform 
matrix, @ indicates Kroneker matrix product, and C = 

... P =  I 1 0 0  
0 0 1 0 . . '  

io .. . 0 1  O 1  

P is a p x N selection matrix formed by deleting all rows from I 
which correspond to non-zero singular values in C. Q is ( N - p )  x 
N and contains the rows of I not in P ,  such that PTP + QTQ = 
I .  Equation (1 1) alone yields tremendous efficiencies in comput- 
ing VN and xo.  F is known, P and Q are constructed easily 
by thresholding frequency bin magnitudes in FlTzo{h[m, n ] }  to 
identify zero singular values, and xo = FH&'(&CQT)-'&Fy. 

Additional computational savings come from recognizing that 
all products involving V$ in equation (10) are simply 2-D FFT's 
followed by masking out frequency bins corresponding 
to non-zero singular values. Thus for an arbitrary vector 
g = wec{g[m, n ] } ,  P F g  can be interpreted as operator notation 
for M A S K ~ { F F T ~ D { ~ [ ~ ,  n ] } } .  Likewise, F H P H g  corresponds 
to IFFT2D{MASKp{g[m, n]}}. Using FIT'S also eliminates the 
need to store huge N x N matrices by operating directly on the 
original f i x  0 images. Without this reduction, the problem is 
completely intractable for even modest sized images of 256 x 256 
pixels. 

The only remaining computational difficulty in equation (10) 
is the matrix inverse, (V/BVN)-' ,  which cannot be computed 
directly in the frequency domain. Instead, we find z with a steepest 
descent algorithm to find the minimum norm solution to equation 
(9). The following algorithm operates in the frequency domain 
to efficiently approximate z in about five iterations using FFTs. 
No matrices larger than the original images are involved in the 
computation. 

1. xo = F ~ Q ~ ( Q C Q ~ ) - ~ Q F ~ .  
2. zk=O = - ; p F [ [ D i a g { x o } ]  FHpTpFT. 
3.  Z k + l  = Z k  - pPFBFHPTPF(2BFHpTZk + r ) .  
4. k = k + 1. If k 5 K got0 3. 

H T  5. X M E  = 20 +F P Z k .  

where p is the iteration step size, and K x 5 is the desired number 
of iterations. 

2.2. Experimental Results 

Figure 1 illustrates an example using the closed-from M.E. approx- 
imation. The original Hubble Space Telescope image of planetary 
nebula NGC 6543 was circularly convolved (i.e. periodic convolu- 
tion in implemented in the frequency domain) with a low pass fil- 
ter to produce the output image. No noise was added. Comparing 
the true maximum entropy solution as produced by MART with 
the closed form approximation shows striking similarity. Both re- 
sults recover some of the filament structure in the nebula m s  and 
reduce the blur extent on the caption text. The only apparent dif- 
ference is an increased low level ringing in Figure Id, which is 
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difficult to see in this reproduction. This suggests the new algo- 
rithm will be promising for a variety of M.E. image restoration 
applications. It is noteworthy that the closed form result was com- 
puted on a 400 MHz PC in approximately 40 seconds, while the 
MART computation required more than 24 hours. 

3. M.E. WITH NON-UNIFORM SAMPLING 

A number of important image restoration and reconstruction appli- 
cations involve non-uniform or decimated sampling of the obser- 
vation. An example of this kind of problem is image reconstruction 
in microwave earth remote sensing, which is of particular interest 
to the authors. The experiments presented in this section are de- 
signed to evaluate M.E. algorithm suitability for this application. 

An instrument often used in satellite remote sensing is the scat- 
terometer, which is an orbital radar that transmits microwave en- 
ergy and measures the retum microwave “backscatter.” Backscat- 
ter has been shown to be useful for ice and vegetation classifica- 
tion. With appropriate reconstruction algorithms, it is possible to 
form images with much higher resolution than the underlying sam- 
ple density of the radar system [6]. The area seen by the radar is 
defined by the radar “footprint,” or projection of the antenna aper- 
ture function on the ground. By using multiple irregularly spaced 
overlapping measurements during several orbital passes is possible 
to form reconstructed images of the ground on a higher resolution 
regular sample grid. This remote sensing problem is structurally 
similar to the standard reconstruction from projections problem. 

Figure 2 shows the results of some decimated M.E. reconstruc- 
tion trials using the same planetary nebula image seen in Figure 
l(a). Both regular and random decimation of the observed image 
were studied, with the random decimation by a factor of 36 being 
representative of the arbitrary sample spacing for a scatterometer 
antenna ground footprint. The restored image is computed on the 
original higher resolution undecimated pixel grid. 

As seen in Figure 2(a), the M.E. solution does a fair job of re- 
constructing with regular decimation (though rectangular grid ar- 
tifacts are obvious). M.E. does not perform as well in the presence 
of sparse random sampling. Figure 2(b) shows that the M.E. result 
is extremely corrupted by sampling artifacts, and would be unac- 
ceptable as a restoration result. Because spaceborne scatterom- 
eter sample spacing is dictated by orbital dynamics and a rela- 
tively large antenna footprint, such randomly spaced sampling is 
unavoidable. We therefore conclude that maximum entropy tech- 
niques are not appropriate for these remote sensing applications. 

To illustrate that the sparse random decimation example is not 
an intractable restoration problem, Figure 2(c) presents the result 
obtained using the same data set as in 2(b), but processed with the 
Simultaneous Algebraic Reconstruction Technique (SART) [7]. 
The SART iteration is given by 

Note the almost total lack of sampling artifacts. SART belongs to 
a class of related iterative algorithms we have studied where the 
updates are normalized by the columns of the transfer matrix X. 
The key feature of this algorithm which reduces sampling artifacts 
is the normalizing denominator term, ELl hij . We have shown 
that a variety of algorithms with this term are artifact suppressing, 
and thus well suited for microwave earth remote sensing imaging 
N. 

4. CONCLUSIONS 

Maximum entropy image restoration is an effective approach which 
yields surprisingly good results given the simplicity of the opti- 
mization criterion. The M.E. criterion includes no spatial corre- 
lation metric (i.e. there are no cross pixel terms in the criterion), 
yet M.E. restorations are known to be edge preserving and to per- 
form well when flat intensity regions are involved. Unfortunately 
the best existing algorithm, MART, is notorious for slow iterative 
convergence. The new fast closed form M.E. approximation solves 
this problem, and makes quick restorations possible even for very 
large images. This may make M.E. a more attractive option for 
future use in a variety of applications 

We have also shown that M.E. reconstruction is not appro- 
priate for sparsely sampled images. This suggests that a solution 
which combines the advantages of M.E. and artifact suppressing 
algorithms like SART may be very useful. We are currently study- 
ing a new column normalized algorithm with multiplicative up- 
dates like MART and plan to report on our findings in the future. 
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Fig. 2. Examples of reconstructed images. a) Regularly decimated 
by a factor of 6 in both the x and y directions, and reconstructed 
using MART. b) Randomly decimated by a factor of 36 (i.e. one 
pixel in 36 retained) and reconstructed with MART. c) Randomly 
decimated by 36 and reconstructed with SART. 

Fig. 1. Closed form maximum entropy results. a) Original 256 x 
256 pixel image. b) Observed image, blurred with a low pass filter 
with cutoff frequency of P. c) M.E. reconstruction using MART. 
d) Closed form approximation of M.E. 
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