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Why Study the Cramer-Rao Bound?

• Array calibration is fundamentally a statistical parameter 
estimation problem. 

• Estimated gains are random variables, with their own 
means and variances. 

• The Cramer Rao lower bound (CRB) reveals the 
theoretical limit on estimation error variance.  

• Provides an absolute frame of reference.

• No algorithm can do better than the CRB.

• The BIG question: Can LOFAR be reliably calibrated?
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CRB Definition

• Notation
x: a vector of random samples with joint probability 

density  p(x |θ ).
any unbiased estimator for θ. 
covariance matrix for 

M: Fisher information matrix.
• The Cramer-Rao theorem:

• Error variance is lower bounded by                  !
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A Simple Example

• Estimate a constant in additive white Gaussian noise:
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A Simple Example

• Estimate a constant in additive white Gaussian noise:
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A Simple Example

• Estimate a constant in additive white Gaussian noise:
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A Simple Example

• This proves what we already knew: 
you can’t beat the sample mean estimator

• In general, relationships to parameters of interest are 
complex, and we do not know            analytically.  

• CRB must be evaluated to bound the problem.
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A Second Simple Example

• Line fitting in additive white Gaussian noise:
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We now have 
no intuition on 
estimation error 
for θ1 and θ2!
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A Second Simple Example
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• Variance on constant term θ1 is now higher.  
→ estimating more parameters increases error.

• Variance of slope term, θ2, drops more rapidly with N.
→ θ2 is easier to estimate. 
→ x[n] is more sensitive to θ2 due to multiplication by n.

A Second Simple Example: Insights
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What algorithm do we use?

• What estimator achieves the CRB?
• Maximum likelihood (ML) does asymptotically (N→∞).

• Consider our second example:
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CRB Uses in Radio Astronomy

1. Calibration algorithm development and assessment

• Is the existing algorithm adequate?

• Is there hope for finding a better solution?

• Permits trading off performance and computational 
burden.  Answers “How close are we?”

• Faster than simulation, more flexible than direct 
observation.

• Can be computed even if no algorithm exists yet.
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CRB Uses in Radio Astronomy

2. Performance Prediction in real observations

• The bound is specific to signal conditions.

• Can forewarn an astronomer of poor calibration 
conditions.

• A real-time tool could be developed.  “Will this 
observation work?”
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Direction Dependent Calibration

•Each station sees a different
direction dependent blur.
•Calibration on several bright
point sources in the field of 
view is required.
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Direction Dependent Calibration
Data Model

V: visibility matrix, computed over 
a series of time-frequency 
intervals.  Observed.

G: calibration complex gain matrix.  
One column per calibrator 
source.  Unknown.

K: Fourier kernel, geometric array 
response.  sq is source direction 
vector.  rm is station location. 
Known.

B: Calibrator source intensity.  
Known.

D: Noise covariance.  Unknown.
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CRB for Calibration Parameters

• For the general multivariate Gaussian case the Fisher 
information has a nice closed form:

• For LOFAR V(θ) is the visibility (covariance) matrix for 
full array sample vector x.

• θ contains unknown gains and phases for Q calibrator 
sources, and noise powers for each station:
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Applying Parameter Model 
Constraints

• Performance improves by estimating a smaller set of 
constrained parameters, p.     θ = f(p).

• Constraint examples:
• Compact core sees coherent scene.
• Phase is a deterministic function of frequency.
• Smoothing polynomial over time-frequency-space.

• Vk,n are statistically independent over time-frequency. 
Each bin (k,n) has distinct Mk,n and θk,n.
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Now it Gets a Little Messy

O

Constraint Jacobian 
for packed central core

Block Fisher information

Block
closed
forms
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Now it Gets a Little Messy

The important points:
• Closed form CRB expressions have been derived for 

most important LOFAR calibration models.
• Though expressions are complex, computer codes 

have been developed to evaluate them.
• These solutions exist now and could be made available 

for astronomers to predict calibration performance for 
a given observations.
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The Single Snapshot LOFAR 
Calibration Ambiguity

• For conventional arrays without direction dependent 
ionospheric phase perturbation calibration is possible 
with one Vk,n observation.

• Not so for LOFAR, there is an essential ambiguity.

• CRB blows up, M is singular!
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Solutions to Calibration Ambiguity

• Time-frequency diversity
• Fringe rotation over time and across bands changes visibility 

structure while calibration gains are relatively constant.
• Cells, Snippets, Polc’s, UV Bricks, Peeling.
• Low order polynomial fitting.
• Peeling.

• Single snapshot calibration
• Compact core.
• Deterministic Frequency dependence.
• Known gain magnitudes.

• CRB analysis is completed for most of these scenarios.
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LOFAR Calibration with Compact 
Central Core

• Though phase distortion 
is direction depen-
dent, each station 
sees the same 
ionosphere.

• Central core sees a 
coherent scene, imaging 
is possible

• One calibration gain is 
estimated for each 
station.

Station beam
field of view

Ionosphere

Closely packed LOFAR stations

Phase and gain is
direction dependent
but stations see the
same ionosphere
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LOFAR Calibration with Compact 
Central Core

• The full array can be calibrated given a compact central core.
• The wisdom of the LOFAR design is confirmed by CRB analysis
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LOFAR Calibration with Compact 
Central Core (Optional slide instead of last)

• Calibration succeeds for Q ≤ Mc+1.  
Q calibrator sources and an Mc element core.
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2-D Polynomial Model over time-
frequency for Ionospheric Variation

• Variations in G are smooth over time and frequency

• We have CRB analysis for 2-D polynomial interpolation:
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Full Sky Map
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Field of View
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Antenna Beam Pattern
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Station Beam Pattern

Station Beam Pattern
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Noise

Assume sky noise limited and 550K @ 90 MHz

Tsky ∼ λ
2.7

Rayleigh-Jeans law

B =
2kT

λ2

Integration over a hemisphere

Pnoise = 2πB
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Source power & SNR

Source powers from 3C & 4C catalogs @
178MHz.
Assume all sources have spectral index α = 0.7,
then

Psource ∼ λ
0.7

The Signal to Noise Ratio (SNR) does not change

with frequency.
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The ten sources

Source SNR (dB) Ang. dist.

3C461 -29.3694 39.6633

3C144 -32.3766 35.6677

4C+55.08 -34.4506 1.0305

4C+54.06 -34.6182 1.0479

3C405 -35.8227 74.0794

3C147 -36.7395 11.8521

4C+56.09 -36.9509 0.6951

3C274 -37.4495 95.0506

4C+56.10 -37.6375 0.9507

4C+55.09 -38.2076 1.4073
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Single source calibration - constant gain
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Multiple sources - constant gain
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Multiple sources - constant gain
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Multiple sources - constant gain
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Multiple sources - constant gain
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Multiple sources - 2D polynomial
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Multiple sources - 2D polynomial
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Multiple sources - 2D polynomial
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Multiple sources - 2D polynomial
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Multiple sources - 2D polynomial
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Multiple sources - 2D polynomial
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Limitations to Current CRB Analysis

• So far it includes only error effects due to noise and 
sample covariance estimation.

• There can also be modeling errors, e.g. maybe a 
polynomial fits time-frequency variation poorly.

• Errors in tabulated source location and brightness are 
not considered.

• Array station location is assumed to be exact.

• Station calibration errors are lumped in with 
ionospheric gains.
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Conclusions

• The BIG answer: Yes, LOFAR can be calibrated

• Given a range of time-frequency observations and 
compact core geometry: there are no theoretical 
roadblocks to achieving useful calibration estimates.

• If an algorithm can be developed to approach the CRB 
calibration error should be acceptable. 
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