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Why Study the Cramer-Rao Bound?

« Array calibration is fundamentally a statistical parameter
estimation problem.

e Estimated gains are random variables, with their own
means and variances.
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Why Study the Cramer-Rao Bound?

« Array calibration is fundamentally a statistical parameter
estimation problem.

e Estimated gains are random variables, with their own
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 The Cramer Rao lower bound (CRB) reveals the
theoretical limit on estimation error variance.
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Why Study the Cramer-Rao Bound?

« Array calibration is fundamentally a statistical parameter
estimation problem.

e Estimated gains are random variables, with their own
means and variances.

 The Cramer Rao lower bound (CRB) reveals the
theoretical limit on estimation error variance.

* Provides an absolute frame of reference.
* No algorithm can do better than the CRB.
e The BIG question: Can LOFAR be reliably calibrated?
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CRB Definition

* Notation
X: avector of random samples with joint probability
. density p(x|8).
6: any unbiased estimator for &.
C.: covariance matrix for 4

6
M: Fisher information matrix.

e The Cramer-Rao theorem:

-1
_ d°In p(x| @
c. =M= g I NPXIO)
9608

» Error variance is lower bounded by diag{C}!
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A Simple Example

e Estimate a constant in additive white Gaussian noise:

[Eny
o
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.. | 2
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A Simple Example

e Estimate a constant in additive white Gaussian noise:

_ 1 & 2

p(x|6) = 277) exp{ Y nZ:;)(X[Iﬂ] 0) }
dinpx|6) _ 1% 0’ Inp(x|6) __N
00 _aznzz(;()qn] % (96)° o’

Thus var(é) > — (E{—ﬁz}j_ = 0—2.
g N
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A Simple Example

e Estimate a constant in additive white Gaussian noise:

_ 1 & 2

p(x|6) = 277) exp{ Y nZ:;)(X[Iﬂ] 0) }
dinpx|6) _ 1% 0’ Inp(x|6) __N
00 _aznzz(;()qn] % (96)° o’

Thus var(d) = —(E{—ﬁz}j_ :J—z. — ThiS. !OOkS very
g N familiar!
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A Simple Example
« This proves what we already knew:
you can’t beat the sample mean estimator

L 1N . 1 N1 2_2_0_2
by = 200 var(HSM)—E{(NZx[n]” o=

n=0

« In general, relationships to parameters of interest are
complex, and we do not know var(€d) analytically.

e CRB must be evaluated to bound the problem.
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A Second Simple Example

 Line fitting in additive white Gaussian noise:

e

il : ] 6,+6n

X(n] =6 +6,n+wn]

x[n]

We now have
no intuition on
o estimation error
S for g .and &,
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A Second Simple Example

p(x|8) = - n;) exp{ zg(ﬁn]-ﬁﬁﬁzn)z}

dln p(x|8)
06,

LLCLEES .

_ 1 N-1 ~
—UZHZ:(;(X[H] 6,+0,n),

Z

2 N -1 2 -1 2
a?Inp(x|6) _ 1ZZn 0’Inp(x[6) __ 1% , 9*Inp(x]6) __ N

06,00, o= 067 =) o’

1
o
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A Second Simple Example: Insights

| N(N -1)
N
M :i 2
o2 N(N-1) N(N-1)(2N-12) |
. 2 6 ]

[l _2@2N-1)0? [ 1207
var@) =[w -, =20 va@) =[w L = ST
. 40° . 120°
le var(6,) = leo var(6,) = N

 Variance on constant term &, is now higher.
— estimating more parameters increases error.
 Variance of slope term, &,, drops more rapidly with N.
— 6, Is easier to estimate.
— X[Nn] IS more sensitive to &, due to multiplication by n.
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What algorithm do we use?

 What estimator achieves the CRB?
« Maximum likelihood (ML) does asymptotically (N—x).

N

O :argmgxln p(x|6)

e Consider our second example:

6|nap(0X|9) - 012 Z(x[n] -6, +6,n)=0, alng)éx|9) = 012 I\IZ__ll(X[n] —6+0,Mn=0
B N-1 1-1r N-1 ]
5 [all N &) | Unfortunately ML
| fn _Nz‘lnz N‘lnx[n] is not practical for
| 70 = K= LOFAR calibration
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CRB Uses in Radio Astronomy

1. Calibration algorithm development and assessment

Is the existing algorithm adequate?
Is there hope for finding a better solution?

Permits trading off performance and computational
burden. Answers “How close are we?”

Faster than simulation, more flexible than direct
observation.

Can be computed even if no algorithm exists yet.
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CRB Uses in Radio Astronomy

2. Performance Prediction in real observations
e The bound is specific to signal conditions.

e Can forewarn an astronomer of poor calibration
conditions.

A real-time tool could be developed. “Will this
observation work?”
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Direction Dependent Calibration

eEach station sees a different
direction dependent blur.

Calibration on several bright
point sources in the field of
view is required.

LOFAR station LOFAR station LOFAR station LOFAR statiy
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Direction Dependent Calibration

Data Model

V: visibility matrix, computed over
a series of time-frequency
intervals. Observed.

G: calibration complex gain matrix.
One column per calibrator
source. Unknown.

K: Fourier kernel, geometric array
response. s, is source direction
vector. r_ is station location.
Known.

B: Calibrator source intensity.
Known.

D: Noise covariance. Unknown.

EWI Circuits and Systems

V = E{x[n]x"[n]}
= (G &K)B (G &K )" +D

G =

K =

011

Jig
Iv.q_
Ko
P kg =exp{i s, 0,}
Ky o |
_ d _
, D=
_ i Ay |
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CRB for Calibration Parameters

e For the general multivariate Gaussian case the Fisher
information has a nice closed form:

d vec(V ()
A

M =FR@V@E) DV G)F@E).  FO)=
 For LOFAR V(8 is the visibility (covariance) matrix for
full array sample vector x.

e @contains unknown gains and phases for Q calibrator
sources, and noise powers for each station:

g=[vec{|G ", vec{OG}",vec{D}"']"
:[y1""yQ’¢11"'¢Q1d]T
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Applying Parameter Model
Constraints

« Performance improves by estimating a smaller set of
constrained parameters, p. 8= f(p).

« Constraint examples:
« Compact core sees coherent scene.
* Phase is a deterministic function of frequency.
* Smoothing polynomial over time-frequency-space.

* V,, are statistically independent over time-frequency.
Each bin (k,n) has distinct M, , and ..

NN e _ 06, ,(p)
M p ZZ‘]an k,n‘J k,n? ‘]k,n - a T '\Enforces
k=l n=l P constraint
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Now it Gets a Little Messy

- - = T——17% H —
M, My, My - Mo, Mg My ~y, = 2070.Re <<<I>pR <I>q) (ayR"ay) Block
' + (2R 'a,) (ayR 1%, ) * Closed
M . ..M M. 1]_\/_[ M d P e | R Ha i
> - “/r'YQ'Y “/r'YQ'YQ /r'YC»JSD “/r'YQ‘PQ “/r'YQ M(ppgoq — 20’;0’5Re ((I\pR Fq) (apR laq) forms
ik = YR Vro1yg Yo TV 0 Yipid - D
- (PR 'ay) (R Ty )
Mooy Mogyg Mege, - Megp, Mopgd Mga = R oR™
| My May, Mg, My, Mg | My o, = 20%02im ((&,R'T,) (ajR"a,) "% )"
e . aeh,) (R eR™)
R Block Fisher information + (8R4 (4R 7'T,)) o )
Myq = 20.Re <<i>pf_{_1 o a;R‘l) Fa) © (R a) +
Constraint Jacobian p W) e SR+ o
2 o 1 H 1 _
Mpa = —im(BEogmY) |1
for packed central core TR (f )
T = 20202 ; FECE) a) ’1a/ R)
I, ] [0 | ] 2020%Re ((T,R'T, ) (R ay)
1@ IR e | o 0 0 0 - (6, 'a,) (2 'T)) -
[ Ot J I_ Tas, J - ; TR e e (GRE) +
Jem = I 0 _ (@ eRE) o (8R"a) |
o 0 0 1o ® g Ip® et 0 J (58 a) o (r,))
| Own v, | Iy - s (6 (5 a)
0 0 0 0 I, + (%8 'a,) (R r.,Z)
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Now it Gets a Little Messy

The important points:

* Closed form CRB expressions have been derived for
most important LOFAR calibration models.

* Though expressions are complex, computer codes
have been developed to evaluate them.

* These solutions exist now and could be made available
for astronomers to predict calibration performance for
a given observations.
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The Single Snapshot LOFAR
Calibration Ambiguity

« For conventional arrays without direction dependent
lonospheric phase perturbation calibration is possible
with one V, , observation.

 Not so for LOFAR, there is an essential ambiguity.
V =(G&K)B*UU"B? (G&K)*+D <= Rotation by U is

invisible in V
UuU"™ =1, aunitary matrix

Each U produces a

=y 1UB ) &K
G(U) =((GeK)B*UB ?)alK different calibration

e CRB blows up, M is singular!
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Solutions to Calibration Ambiguity

e Time-frequency diversity
* Fringe rotation over time and across bands changes visibility
structure while calibration gains are relatively constant.
» Cells, Snippets, Polc’s, UV Bricks, Peeling.
* Low order polynomial fitting.
e Peeling.
 Single snapshot calibration
e Compact core.
» Deterministic Frequency dependence.
« Known gain magnitudes.

e CRB analysis is completed for most of these scenarios.
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LOFAR Calibration with Compact
Central Core

e Though phase distortion
is direction depen- m

dent, each station o

—- >

sees the same j

ionosphere. Staton bear e e
» Central core sees a ceme fonosphere

coherent scene, imaging

IS possible
* One calibration gain is

estimated for each . 4\4\4\ AN

station. AN AN

Closely packed LOFAR stations
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LOFAR Calibration with Compact

Central Core

« The full array can be calibrated given a compact central core.
« The wisdom of the LOFAR design is confirmed by CRB analysis
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Mean Squared Error

15

LOFAR Calibration with Compact

Central Core (Optional slide instead of last)

« Calibration succeeds for Q < M_+1.
Q calibrator sources and an M, element core.

MSE for 10 element array,4 element subarray and 3 sources

x10-3

T T T T T T

T T
— - ML Monte Carlo
— CRB
start of phases
— - start of noise powers

\

\
\
|

|

T
I
I
I
!
I
|

Parameter Index

EWI Circuits and Systems

50

Mean Squared Error

4.5

35

25

15

0.5

CRB for 10 element array,4 element subarray and 6 sources

T

T

T T T T

T
— CRB
start of phases
— - start of noise powers

1 1 1

10

20

30

40 50 60 70 80

Parameter Index

]
TUDelft

90




2-D Polynomial Model over time-
frequency for Ionospheric Variation

« Variations in G are smooth over time and frequency

Gk,n — (Foo +F10fk +F20fk2 +F01tn +F02t3 +F11fktn)

OeXp{i(CDOO + @ fy + D fi + Dyt + D@yt +(D11fktn)}

p=|vec{l,,}",---,vecil, }',vec{® ) ,---,vec{®,,}",diag{D}
00 11 00 11

« We have CRB analysis for 2-D polynomial interpolation:
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Full Sky Map

Full Sky Map
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Field of View

Field of View
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Antenna Beam Pattern

Simulated Antenna Beam Pattern

Gain (dB)

| | | | | | | | |
-100 -80 -60 -40 -20 0 20 40 60 80 100
Theta (deg)

&
EWI Circuits and Systems TUDelft



Station Beam Pattern

Station Beam Pattern
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Noise

Assume sky noise limited and 550K @ 90 MHz

Tsky ~ )\2.7
Rayleigh-Jeans law

2T
B="

Integration over a hemisphere

an'se = 2B
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Source power & SNR

Source powers from 3C & 4C catalogs @

178MHz.
Assume all sources have spectral index o = 0.7,

then
Psource ~ )\0'7
The Signal to Noise Ratio (SNR) does not change

with frequency.
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The ten sources

Source SNR (dB) | Ang. dist.
3C461 -29.3694 | 39.6633
3C144 -32.3766 | 35.6677
4C+55.08 | -34.4506 | 1.0305
4C+54.06 | -34.6182 | 1.0479
3C405 -35.8227 | 74.0794
3C147 -36.7395 | 11.8521
4C+56.09 | -36.9509 | 0.6951
3C274 -37.4495 | 95.0506
4C+56.10 | -37.6375 | 0.9507
4C+55.09 | -38.2076 | 1.4073

EWI Circuits and Systems

%
TUDelft



Single source calibration - constant gair

Gain error — Antenna m=1/ Source = 4C+55.08/ Q=1
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Multiple sources - constant gain

Gain error — Antenna m=1/ Source q=3 (4C+55.08) / Q = 10
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Multiple sources - constant gain

Relative gain error — Antenna m=1/ Source q=3 (4C+55.08)
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Multiple sources - constant gain

Relative gain error — Antenna m=1/ Source q=3 (4C+55.08)
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Multiple sources - constant gain

Relative gain error — Antenna m=1/ Source q=3 (4C+55.08)
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Multiple sources - 2D polynomial

Relative gain error (a0) — Antenna m=1/ Source g=3 (4C+55.08)
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Multiple sources - 2D polynomial

Relative gain error (a0) — Antenna m=1/ Source g=3 (4C+55.08)
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Multiple sources - 2D polynomial

Relative gain error (al) — Antenna m=1/ Source g=3 (4C+55.08)
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Multiple sources - 2D polynomial

Relative gain error (al) — Antenna m=1/ Source g=3 (4C+55.08)
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Multiple sources - 2D polynomial

Relative gain error (a2) — Antenna m=1/ Source g=3 (4C+55.08)
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Multiple sources - 2D polynomial

Relative gain error (a2) — Antenna m=1/ Source g=3 (4C+55.08)
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Limitations to Current CRB Analysis

« So far it includes only error effects due to noise and
sample covariance estimation.

« There can also be modeling errors, e.g. maybe a
polynomial fits time-frequency variation poorly.

« Errors in tabulated source location and brightness are
not considered.

 Array station location is assumed to be exact.

« Station calibration errors are lumped in with
ionospheric gains.
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Conclusions

« The BIG answer: Yes, LOFAR can be calibrated

« Given a range of time-frequency observations and
compact core geometry: there are no theoretical
roadblocks to achieving useful calibration estimates.

« If an algorithm can be developed to approach the CRB
calibration error should be acceptable.
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