Schedule...

Date	Day	Class No.	Title	Chapters	HW Due date	Lab Due date	Exam
15 Oct	Wed	13	Phasors	4.4			
16 Oct	Thu						EXAM 1
17 Oct	Fri		Recitation				
18 Oct	Sat						
19 Oct	Sun						
20 Oct	Mon	14	AC Circuit Analysis	4.5		NO LAB	
21 Oct	Tue					NO LAB	
22 Oct	Wed	15	Transient Response 1st Order Circuits	5.4		(

Imaginary

JS-H 1: 16

16 But, exerting all my powers to call upon God to deliver me out of the power of this enemy which had seized upon me, and at the very moment when I was ready to sink into despair and abandon myself to destruction—not to an **imaginary** ruin, but to the power of some actual being from the unseen world, who had such marvelous power as I had never before felt in any being—just at this moment of great alarm, I saw a pillar of light exactly over my head, above the brightness of the sun, which descended gradually until it fell upon me.

Lecture 13 – Network Analysis with Capacitors and Inductors

Phasors

Euler's Identity

◆ **Appendix A** reviews complex numbers

Complex exponential $(e^{j\theta})$ is a point on the complex plane

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$|e^{j\theta}| = 1 \rightarrow |\cos \theta + j \sin \theta| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$$

$$Ae^{j\theta} = A\cos \theta + jA\sin \theta$$

$$= A\angle \theta$$

Rewrite the expression for a **general sinusoid signal**:

Complex phasor notation for the **simplification**:

$$A\cos(\omega t + \theta) \rightarrow A\angle\theta = Ae^{j\theta}$$

NB: The **e**^{jwt} term is **implicit** (it is there but not written)

Frequency Domain

Graphing in the frequency domain: helpful in order to understand Phasors

 $\cos(\omega_0 t)$

Time domain

$$\pi[\delta(\omega-\omega_0)+\delta(\omega-\omega_0)]$$

Frequency domain

Electromagnetic Spectrum

- 1. Any sinusoidal signal can be represented by either:
 - Time-domain form: v(t) = Acos(ωt+θ)
 - Frequency-domain form: $V(j\omega) = Ae^{j\theta} = A\angle\theta$
- 2. Phasor: a complex number expressed in polar form consisting of:
 - **♦** Magnitude (A)
 - **Phase angle** (θ)
- 3. Phasors do not explicitly include the sinusoidal frequency (ω) but this information is still important

- \blacktriangleright Example 1: compute the phasor voltage for the equivalent voltage $\mathbf{v}_{s}(\mathbf{t})$
 - $v_1(t) = 15\cos(377t + \pi/4)$
 - $v_2(t) = 15\cos(377t + \pi/12)$

- \blacktriangleright **Example 1**: compute the phasor voltage for the equivalent voltage $\mathbf{v}_{s}(\mathbf{t})$
 - $v_1(t) = 15\cos(377t + \pi/4)$
 - $v_2(t) = 15\cos(377t + \pi/12)$

1. Write voltages in phasor notation

$$V_{1}(j\omega) = 15e^{j\pi/4}$$

$$= 15 \angle \frac{\pi}{4} V$$

$$V_{2}(j\omega) = 15e^{j\pi/12}$$

$$= 15 \angle \frac{\pi}{12} V$$

- **Example1**: compute the phasor voltage for the equivalent voltage $\mathbf{v}_{s}(\mathbf{t})$
 - $v_1(t) = 15\cos(377t + \pi/4)$
 - $v_2(t) = 15\cos(377t + \pi/12)$

- Write voltages in phasor notation
- Convert phasor voltages from polar to rectangular form (see Appendix A)

$$V_1(j\omega) = 15 \angle \frac{\pi}{4} V$$

Convert to rectangular:

$$V_1(j\omega) = 15\cos\left(\frac{\pi}{4}\right) + j15\sin\left(\frac{\pi}{4}\right)$$
$$= 10.61 + j10.61 V$$

$$V_2(j\omega) = 15 \angle \frac{\pi}{12} V$$

Convert to rectangular:

$$V_{1}(j\omega) = 15\cos\left(\frac{\pi}{4}\right) + j15\sin\left(\frac{\pi}{4}\right)$$

$$= 10.61 + j10.61 V$$

$$V_{2}(j\omega) = 15\cos\left(\frac{\pi}{12}\right) + j15\sin\left(\frac{\pi}{12}\right)$$

$$= 14.49 + j3.88 V$$

- \blacktriangleright Example 1: compute the phasor voltage for the equivalent voltage $\mathbf{v}_{s}(\mathbf{t})$
 - $v_1(t) = 15\cos(377t + \pi/4)$
 - $v_2(t) = 15\cos(377t + \pi/12)$

- 1. Write voltages in phasor notation
- 2. Convert phasor voltages from polar to rectangular form (see Appendix A)
- 3. Combine voltages

$$V_S(j\omega) = V_1(j\omega) + V_2(j\omega)$$

= 25.10 + j14.49

- \blacktriangleright Example 1: compute the phasor voltage for the equivalent voltage $\mathbf{v}_{s}(\mathbf{t})$
 - $v_1(t) = 15\cos(377t + \pi/4)$
 - $v_2(t) = 15\cos(377t + \pi/12)$

- 1. Write voltages in phasor notation
- 2. Convert phasor voltages from polar to rectangular form (see Appendix A)
- 3. Combine voltages
- 4. Convert rectangular back to polar

$$V_{S}(j\omega) = 25.10 + j14.49$$

Convert to polar:
 $r = \sqrt{(25.10)^{2} + (14.49)^{2}}$
 $= 28.98$
 $\theta = \tan^{-1}\left(\frac{14.49}{25.10}\right)$
 $= \frac{\pi}{6}$
 $V_{S}(j\omega) = 28.98 \angle \frac{\pi}{6}$

- \blacktriangleright **Example1**: compute the phasor voltage for the equivalent voltage $\mathbf{v}_{\mathbf{s}}(\mathbf{t})$
 - $v_1(t) = 15\cos(377t + \pi/4)$
 - $v_2(t) = 15\cos(377t + \pi/12)$

- 1. Write voltages in phasor notation
- 2. Convert phasor voltages from polar to rectangular form (see Appendix A)
- 3. Combine voltages
- 4. Convert rectangular back to polar
- 5. Convert from phasor to time domain

NB: the answer is **NOT** simply the addition of the amplitudes of $\mathbf{v_1}(\mathbf{t})$ and $\mathbf{v_2}(\mathbf{t})$ (i.e. 15 + 15), and the addition of their phases (i.e. $\pi/4 + \pi/12$)

- \blacktriangleright Example 1: compute the phasor voltage for the equivalent voltage $\mathbf{v}_{s}(\mathbf{t})$
 - $v_1(t) = 15\cos(377t + \pi/4)$
 - $v_2(t) = 15\cos(377t + \pi/12)$

$$V_S(j\omega) = 28.98 \angle \frac{\pi}{6}$$
$$v_S(t) = 28.98 \cos\left(377t + \frac{\pi}{6}\right)$$

Superposition of AC signals: when signals do not have the same frequency (ω) the $e^{j\omega t}$ term in the phasors can no longer be implicit

NB: e^{jωt} can no longer be implicit

Superposition of AC signals: when signals do not have the same frequency (ω) solve the circuit separately for each different frequency (ω) – then add the individual results

- **Example2**: compute the resistor voltages
 - $i_s(t) = 0.5\cos[2\pi(100t)]$ A
 - $v_s(t) = 20\cos[2\pi(1000t)] V$
 - $Arr R_1 = 150Ω$, R2 = 50 Ω

- **Example2**: compute the resistor voltages
 - \wedge $i_s(t) = 0.5\cos[2\pi(100t)]$ A
 - $v_s(t) = 20\cos[2\pi(1000t)] V$
 - $Arr R_1 = 150Ω$, R2 = 50 Ω

- 1. Since the sources have different frequencies $(\omega_1=2\pi^*100)$ and $(\omega_2=2\pi^*1000)$ use superposition
 - first consider the ($\omega_1 = 2\pi * 100$) part of the circuit
 - When $v_s(t) = 0$ short circuit

- **Example2**: compute the resistor voltages
 - \wedge $i_s(t) = 0.5\cos[2\pi(100t)]$ A
 - $v_s(t) = 20\cos[2\pi(1000t)] V$
 - $R_1 = 150\Omega, R_2 = 50 \Omega$

- 1. Since the sources have different frequencies $(\omega_1 = 2\pi*100)$ and $(\omega_2 = 2\pi*1000)$ use superposition
 - first consider the ($\omega_1 = 2\pi * 100$) part of the circuit

$$I_{s}(j\omega) = 0.5 \angle 0$$

$$V_{I1}(j\omega) = V_{I2}(j\omega) = I_{s} \cdot R_{1} \parallel R_{2}$$

$$= I_{s} \cdot \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

$$= 0.5 \angle 0 \cdot \frac{(50)(150)}{(50) + (150)}$$

$$= 18.75 \angle 0$$

- **Example2**: compute the resistor voltages
 - \wedge $i_s(t) = 0.5\cos[2\pi(100t)]$ A
 - $v_s(t) = 20\cos[2\pi(1000t)] V$
 - $R_1 = 150\Omega, R_2 = 50 \Omega$

- 1. Since the sources have different frequencies $(\omega_1 = 2\pi*100)$ and $(\omega_2 = 2\pi*1000)$ use superposition
 - first consider the ($\omega_1 = 2\pi * 100$) part of the circuit
 - Next consider the ($\omega_2 = 2\pi * 1000$) part of the circuit

$$V_{s}(j\omega) = 20 \angle 0$$

$$V_{V1}(j\omega) = V_{s} \cdot \frac{R_{1}}{R_{1} + R_{2}}$$

$$= 20 \angle 0 \cdot \frac{(150)}{(50) + (150)}$$

$$= 15 \angle 0$$

$$V_{s}(j\omega) = 20 \angle 0$$

$$V_{V2}(j\omega) = -V_{s} \cdot \frac{R_{2}}{R_{1} + R_{2}}$$

$$= -20 \angle 0 \cdot \frac{(50)}{(50) + (150)}$$

$$= -5 \angle 0$$

$$= 5 \angle \pi$$

- **Example2**: compute the resistor voltages
 - \wedge $i_s(t) = 0.5\cos[2\pi(100t)]$ A
 - $v_s(t) = 20\cos[2\pi(1000t)] V$
 - \wedge R₁ = 150 Ω , R₂ = 50 Ω

- 1. Since the sources have different frequencies $(\omega_1=2\pi^*100)$ and $(\omega_2=2\pi^*1000)$ use superposition
 - first consider the ($\omega_1 = 2\pi * 100$) part of the circuit
 - Next consider the ($\omega_2 = 2\pi * 1000$) part of the circuit
 - Add the two together

$$V_{1}(j\omega) = V_{I1}(j\omega) + V_{V1}(j\omega)$$

$$= 18.75 \angle 0 + 15 \angle 0$$

$$v_{1}(t) = 18.75 \cos[2\pi(100t)] + 15 \cos[2\pi(1000t)]$$

$$\begin{aligned} V_2(j\omega) &= V_{12}(j\omega) + V_{V2}(j\omega) \\ &= 18.75 \angle 0 - 5 \angle 0 \\ v_1(t) &= 18.75 \cos[2\pi(100t)] - 5\cos[2\pi(1000t)] \end{aligned}$$

Impedance: complex resistance (has no physical significance)

- ♠ will allow us to use network analysis methods such as node voltage, mesh current, etc.
- A Capacitors and inductors act as **frequency-dependent** resistors

Impedance – Resistors

Impedance of a Resistor:

Consider Ohm's Law in phasor form:

$$Z_{R}(j\omega) = \frac{V_{Z}(j\omega)}{I_{Z}(j\omega)} = R$$

NB: Ohm's
Law works the
same in DC and
AC

Impedance – Inductors

Impedance of an Inductor:

▲ First consider voltage and current in the **time-domain**

NB: current is shifted 90 from voltage

$$\begin{aligned} v_S(t) &= v_L(t) = A\cos(\omega t) \\ i_L(t) &= \frac{A}{\omega L}\sin(\omega t) \\ &= \frac{A}{\omega L}\cos\left(\omega t - \frac{\pi}{2}\right) \end{aligned}$$

Impedance – Inductors

Impedance of an Inductor:

Now consider voltage and current in the **phasor-domain**

Phasor domain

$$\begin{aligned} v_S(t) &= v_L(t) = A\cos(\omega t) \\ i_L(t) &= \frac{A}{\omega L}\sin(\omega t) \\ &= \frac{A}{\omega L}\cos\left(\omega t - \frac{\pi}{2}\right) \end{aligned}$$

Phasor

$$V_{Z}(j\omega) = A \angle 0$$

$$I_{Z}(j\omega) = \frac{A}{\omega L} \angle -\frac{\pi}{2}$$

$$Z_{L}(j\omega) = \frac{V_{Z}(j\omega)}{I_{Z}(j\omega)} = j\omega L$$

Impedance – Capacitors

Impedance of a capacitor:

▲ First consider voltage and current in the **time-domain**

$$v_{C}(t) = \frac{1}{C} \int i_{C}(\tau) d\tau = v_{S}(t)$$

$$i_{C}(t) = C \frac{dv_{C}(t)}{dt}$$

$$= C \frac{d}{dt} [A\cos(\omega t)]$$

$$= -C[A\omega\sin(\omega t)]$$

$$= \omega C A\cos\left(\omega t + \frac{\pi}{2}\right)$$

Phasor

$$V_{Z}(j\omega) = A \angle 0$$

$$I_{Z}(j\omega) = \omega CA \angle \frac{\pi}{2}$$

Impedance – Capacitors

Impedance of a capacitor:

Next consider voltage and current in the **phasor-domain**

$$V_{Z}(j\omega) = A\angle 0$$

$$I_{Z}(j\omega) = \omega CA \angle \frac{\pi}{2}$$

Impedance of resistors, inductors, and capacitors

$$(j\omega) = R$$

$$Z_L(j\omega) = j\omega L$$

$$Z_C(j\omega) = \frac{1}{j\omega C}$$

Impedance of resistors, inductors, and capacitors

<u>Practical capacitors</u>: in practice capacitors contain a real component (represented by a resistive impedance $\mathbf{Z}_{\mathbf{R}}$)

- ▲ At high frequencies or high capacitances
 - ideal capacitor acts like a short circuit
- ▲ At **low frequencies** or **low capacitances**
 - ideal capacitor acts like an open circuit

<u>Practical inductors</u>: in practice inductors contain a real component (represented by a resistive impedance $\mathbf{Z}_{\mathbf{R}}$)

- \wedge At low frequencies or low inductances Z_R has a strong influence
 - Ideal inductor acts like a short circuit
- \wedge At **high frequencies** or **high inductances** $\mathbf{Z}_{\mathbf{L}}$ dominates $\mathbf{Z}_{\mathbf{R}}$
 - Ideal inductor acts like an open circuit
 - At high frequencies a capacitor is also needed to correctly model a practical inductor

Ideal Inductor

Practical Inductor

NB: the ratio of $\mathbf{Z}_{\mathbf{L}}$ to $\mathbf{Z}_{\mathbf{R}}$ is highly frequency dependent

- **Example3**: impedance of a practical capacitor
 - ▲ Find the impedance
 - $\triangle \omega = 377 \text{ rads/s}, \mathbf{C} = 1 \text{nF}, \mathbf{R} = 1 \text{M}\Omega$

- **Example3**: impedance of a practical capacitor
 - ▲ Find the impedance
 - \wedge ω = 377 rads/s, $\mathbf{C} = 1 \text{nF}$, $\mathbf{R} = 1 \text{M}\Omega$

$$Z = Z_R || Z_C$$

$$= \frac{R \cdot (1/j\omega C)}{R + (1/j\omega C)}$$

$$= \frac{R}{1 + j\omega CR}$$

$$= \frac{10^6}{1 + j(377)(10^{-9})(10^6)}$$

$$= \frac{10^6}{1 + j0.377}$$

$$= 9.36 \times 10^5 \angle (-0.36) \Omega$$

 $igoplus \underline{\mathbf{Example 4}}$: find the equivalent impedance $(\mathbf{Z_{EQ}})$

 $\triangle \omega = 10^4 \text{ rads/s}, C = 10 \text{uF}, R_1 = 100 \Omega, R_2 = 50 \Omega, L = 10 \text{mH}$

 $igoplus {f Example 4}$: find the equivalent impedance (${f Z_{EQ}}$)

$$\triangle \omega = 10^4 \text{ rads/s}, C = 10 \text{uF}, R_1 = 100 \Omega, R_2 = 50 \Omega, L = 10 \text{mH}$$

$$Z_{EQ1} = Z_{R2} \parallel Z_{C}$$

$$= \frac{R_{2}(1/j\omega C)}{R_{2} + (1/j\omega C)}$$

$$= \frac{R_{2}}{1 + j\omega CR_{2}}$$

$$= \frac{50}{1 + j(10^{4})(10 \times 10^{-6})(50)}$$

$$= \frac{50}{1 + j5}$$

$$= 1.92 - j9.62$$

$$= 9.81 \angle (-1.37) \Omega$$

Example4: find the equivalent impedance $(\mathbf{Z}_{\mathbf{EQ}})$

$$\triangle \omega = 10^4 \text{ rads/s}, C = 10 \text{uF}, R_1 = 100 \Omega, R_2 = 50 \Omega, L = 10 \text{mH}$$

$$Z_{EQ} = Z_{R1} + Z_L + Z_{EQ1}$$

$$= R_1 + j\omega L + 9.81 \angle (-1.37)$$

$$= 100 + j(10^4)(10^{-2}) + 1.92 - j9.62$$

$$= 101.92 + j90.38$$

$$= 136.2 \angle 0.723 \ 92$$

 $Z_{EQ1} = 9.81 \angle (-1.37) \Omega$

NB: at this frequency (ω) the circuit has an **inductive impedance** (reactance or phase is positive)