Schedule...

Date	Day	Class No.	Title	Chapters	HW Due date	Lab Due date	Exam
22 Oct	Wed	15	Transient Response 1 st Order Circuits	5.3 - 5.4			
23 Oct	Thu						
24 Oct	Fri		Recitation				
25 Oct	Sat						
26 Oct	Sun						
27 Oct	Mon	16	Sinusoidal Frequency Response	6.1		LAB 5	
28 Oct	Tue						
29 Oct	Wed	17	Operational Amplifiers	8.1 - 8.2	(1	1

1

ECEN 301

Good, Better, Best

Elder Oaks (October 2007):

As we consider various choices, we should remember that it is not enough that something is **good**. Other choices are **better**, and still others are **best**. Even though a particular choice is more costly, its far greater value may make it the **best** choice of all.

I have never known of a man who looked back on his working life and said, "I just didn't spend enough time with my job."

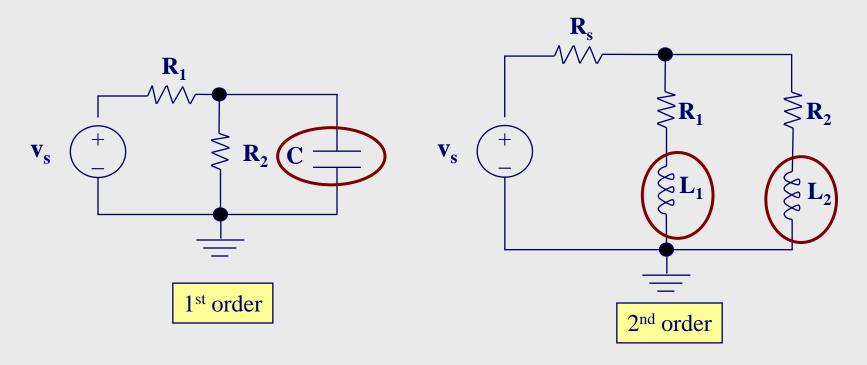
Lecture 15 – Transient Response of 1st Order Circuits

DC Steady-State Transient Response

ECEN 301

1st Order Circuits

Electric circuit 1st order system: any circuit containing a single energy storing element (either a capacitor or an inductor) and any number of sources and resistors

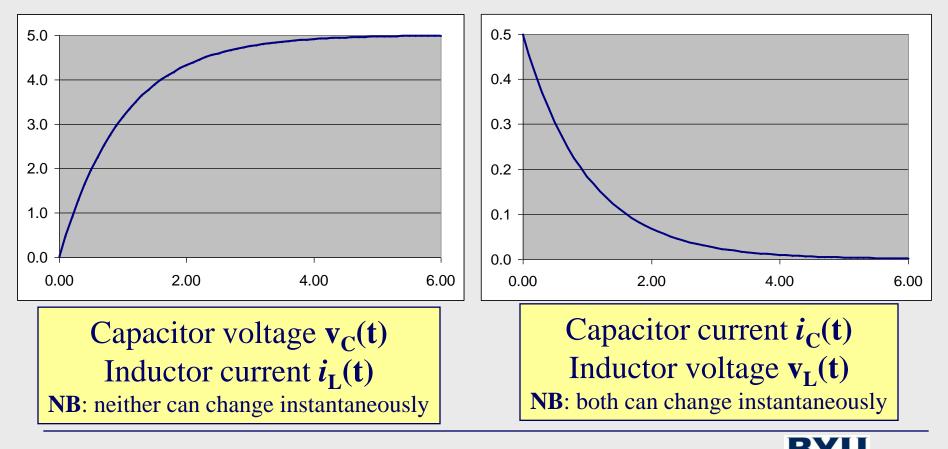


ECEN 301

Discussion $#15 - 1^{st}$ Order Transient Response

Capacitor/Inductor Voltages/Currents

Review of capacitor/inductor currents and voltages



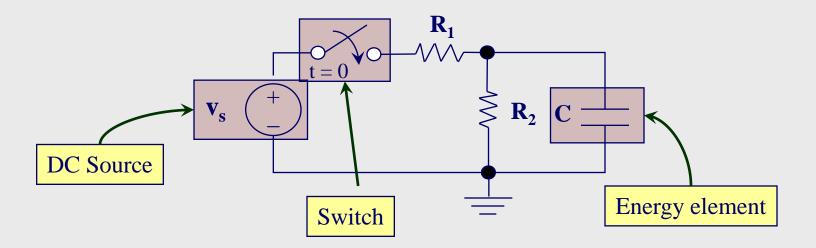
Discussion $#15 - 1^{st}$ Order Transient Response

Electrical Engineering Computer Engineering

Transient Response

Transient response of a circuit consists of 3 parts:

- Steady-state response prior to the switching on/off of a DC source
- 2. Transient response the circuit **adjusts** to the **DC source**
- 3. Steady-state response following the transient response



1. DC Steady State

1st and 3rd Step in Transient Response

ECEN 301

<u>**DC steady-state</u>**: the **stable** voltages and currents in a circuit connected to a DC source</u>

$$i_C(t) = C \frac{dv_C(t)}{dt}$$
 capacitor current
 $i_C(t) \to 0$ as $t \to \infty$ steady state current

Capacitors act like **open circuits** at DC steady-state

$$v_L(t) = L \frac{di_L(t)}{dt}$$
 inudctor v oltage
 $v_L(t) \to 0$ as $t \to \infty$ steady state voltage

Inductors act like **short circuits** at DC steady-state

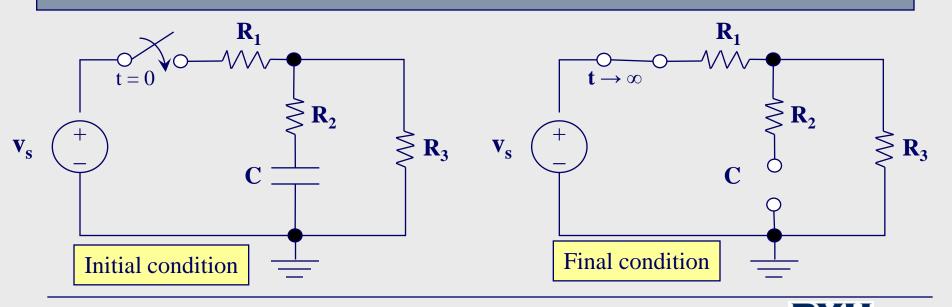
ECEN 301

Initial condition x(0): DC steady state **before** a switch is first activated

 \land **x**(**0**⁻): right before the switch is closed

 \land **x**(**0**⁺): right after the switch is closed

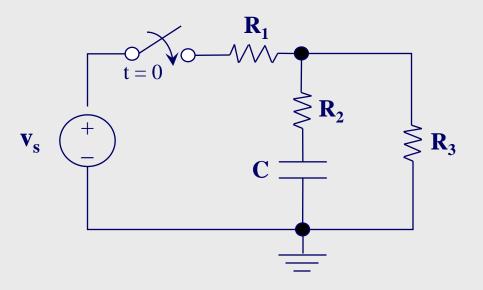
Final condition $x(\infty)$: DC steady state a long time **after** a switch is activated



Discussion $#15 - 1^{st}$ Order Transient Response

Electrical Engineering Computer Engineering

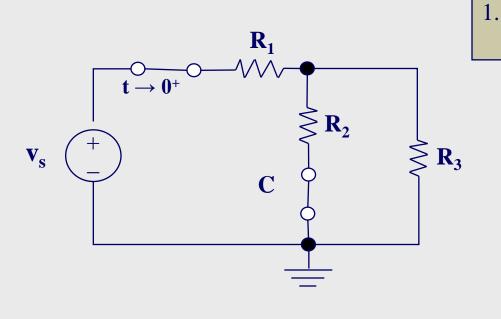
• Example1: determine the final condition capacitor voltage $\mathbf{v_s} = 12V, \mathbf{R_1} = 100\Omega, \mathbf{R_2} = 75\Omega, \mathbf{R_3} = 250\Omega, \mathbf{C} = 1$ uF



10

ECEN 301

Example1: determine the final condition capacitor voltage $\mathbf{v_s} = 12V, \mathbf{R_1} = 100\Omega, \mathbf{R_2} = 75\Omega, \mathbf{R_3} = 250\Omega, \mathbf{C} = 1$ uF



. Close the switch and find **initial** conditions to the capacitor

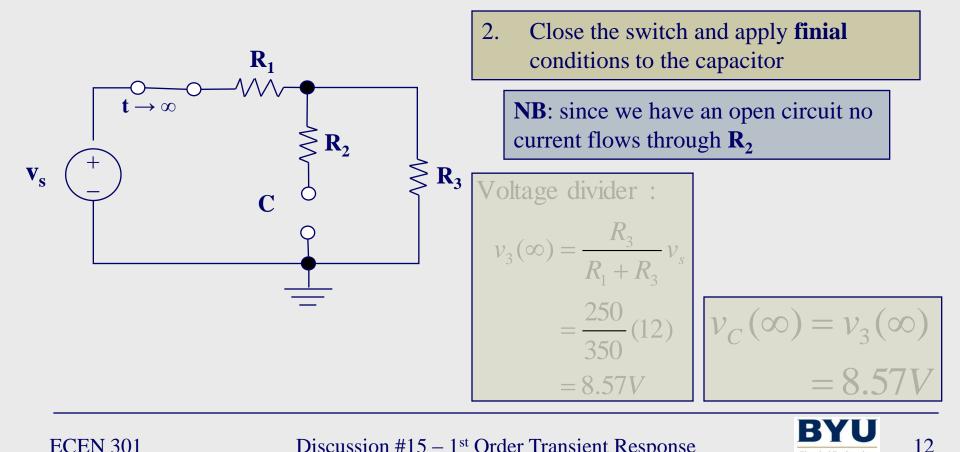
NB: Initially $(t = 0^+)$ current across the capacitor changes **instantly** but voltage cannot change instantly thus it acts as a **short circuit**

$$v_C(0^+) = v_C(0^-)$$
$$= 0V$$

11

Discussion $#15 - 1^{st}$ Order Transient Response

Example1: determine the final condition capacitor voltage $v_s = 12V, R_1 = 100\Omega, R_2 = 75\Omega, R_3 = 250\Omega, C = 1 \mu F$



ECEN 301

Discussion $#15 - 1^{st}$ Order Transient Response

Electrical Engineering **Computer Engineering**

Remember – capacitor voltages and inductor currents cannot change instantaneously

Capacitor voltages and inductor currents don't change right before closing and right after closing a switch

$$v_C(0^+) = v_C(0^-)$$

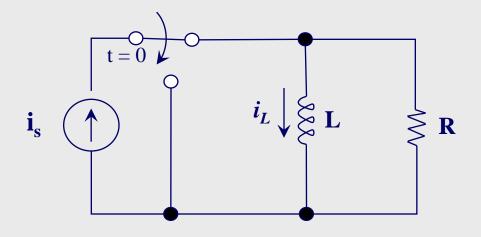
 $i_L(0^+) = i_L(0^-)$

13

ECEN 301

Example2: find the initial and final current conditions at the inductor

 $i_s = 10 \text{mA}$



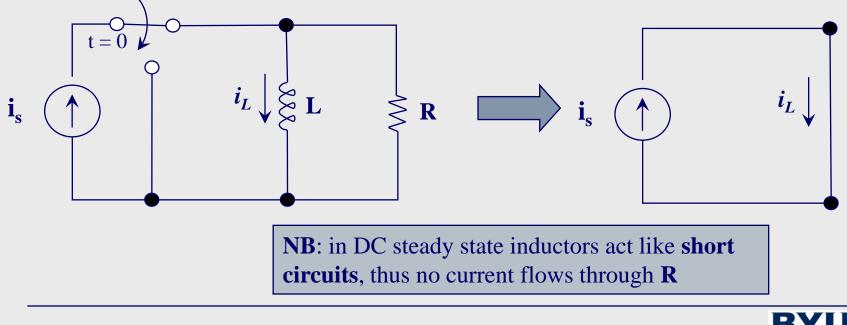
14

ECEN 301

Example2: find the initial and final current conditions at the inductor

 $i_s = 10 \text{mA}$

1. Initial conditions – assume the current across the inductor is in steady-state.

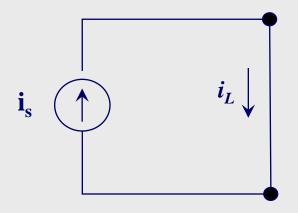


ECEN 301

Example2: find the initial and final current conditions at the inductor

 $i_s = 10 \text{mA}$

1. Initial conditions – assume the current across the inductor is in steady-state.

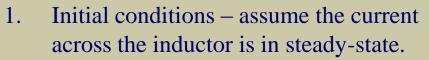


$$i_L(0^-) = i_s$$
$$= 10 mA$$

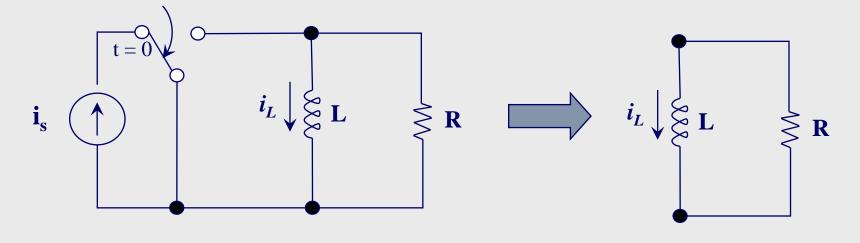
16

Example2: find the initial and final current conditions at the inductor

 $i_s = 10 \text{mA}$



2. Throw the switch

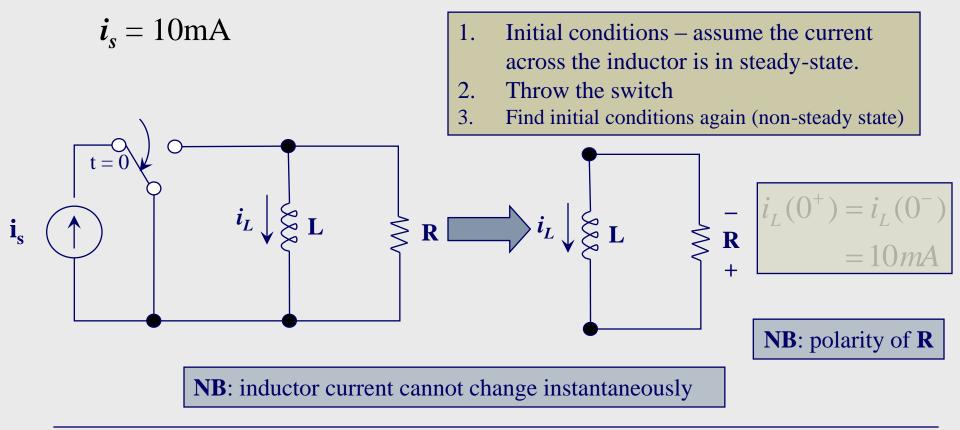


NB: inductor current cannot change instantaneously

Discussion #15 – 1st Order Transient Response

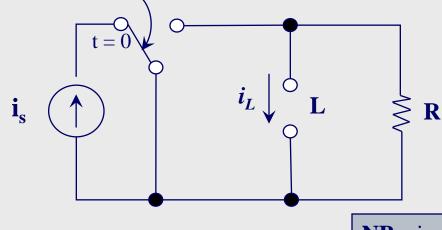
17

Example2: find the initial and final current conditions at the inductor



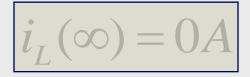
Example2: find the initial and final current conditions at the inductor

 $i_s = 10 \text{mA}$



1. Initial conditions – assume the current across the inductor is in steady-state.

- 2. Throw the switch
- 3. Find initial conditions again (non-steady state)
- 4. Final conditions (steady-state)



NB: since there is **no source attached** to the inductor, its current is drained by the resistor **R**

19

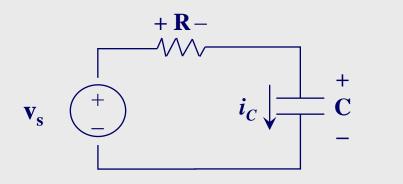
2. Adjusting to Switch

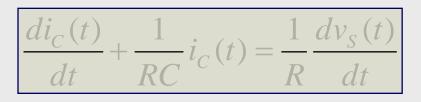
2nd Step in Transient Response

20

ECEN 301

Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation





NB: Review lecture 11 for derivation of these equations

$$\frac{dv_C(t)}{dt} + \frac{1}{RC}v_C(t) = \frac{1}{RC}v_S(t)$$

BYU Electrical Engineering Computer Engineering

21

ECEN 301

Discussion $#15 - 1^{st}$ Order Transient Response

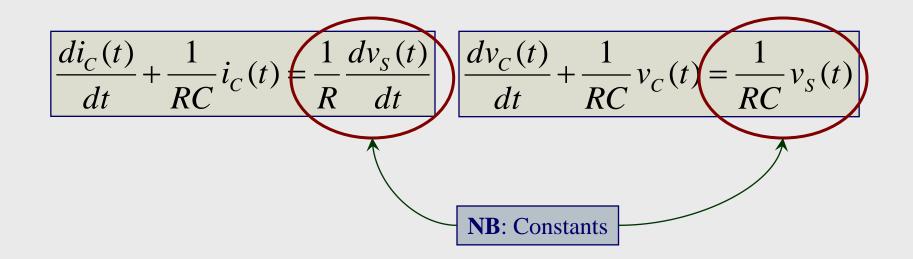
Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation

$$\frac{di_C(t)}{dt} + \frac{1}{RC}i_C(t) = \frac{1}{R}\frac{dv_S(t)}{dt} \qquad \frac{dv_C(t)}{dt} + \frac{1}{RC}v_C(t) = \frac{1}{RC}v_S(t)$$

22

ECEN 301

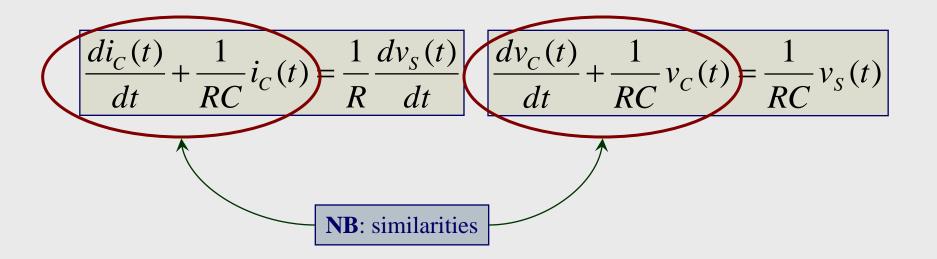
Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



23

ECEN 301

Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



24

ECEN 301

Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation

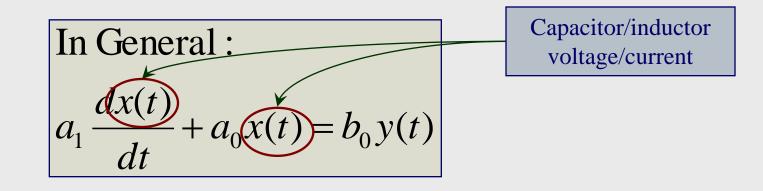
In General :

$$a_1 \frac{dx(t)}{dt} + a_0 x(t) = b_0 y(t)$$

25

ECEN 301

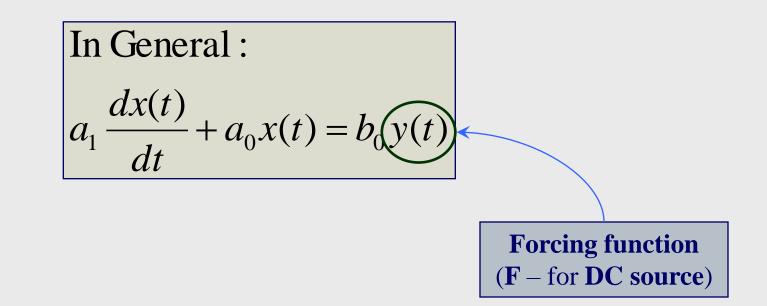
Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



26

ECEN 301

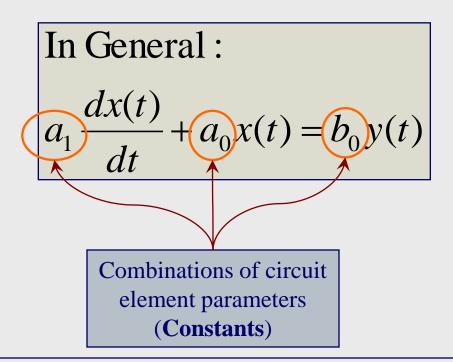
Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



27

ECEN 301

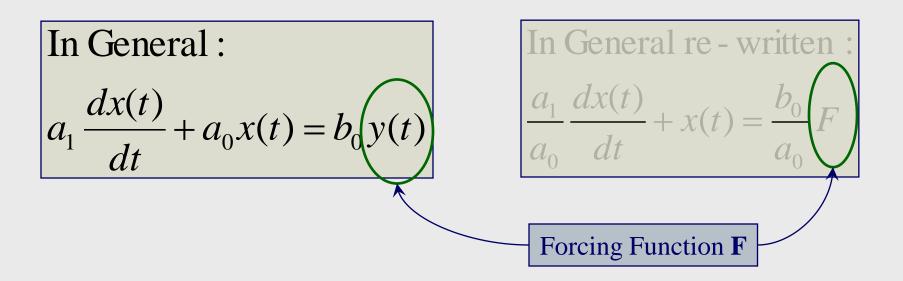
Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



28

ECEN 301

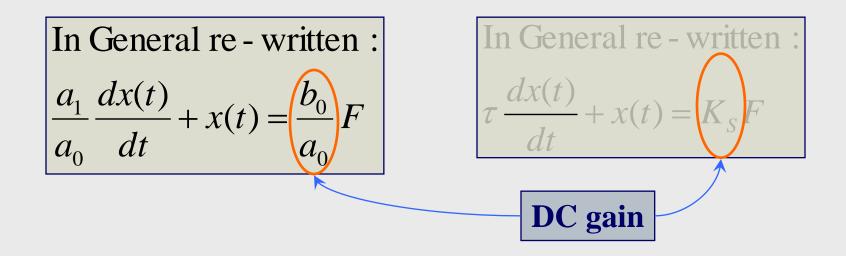
Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



29

ECEN 301

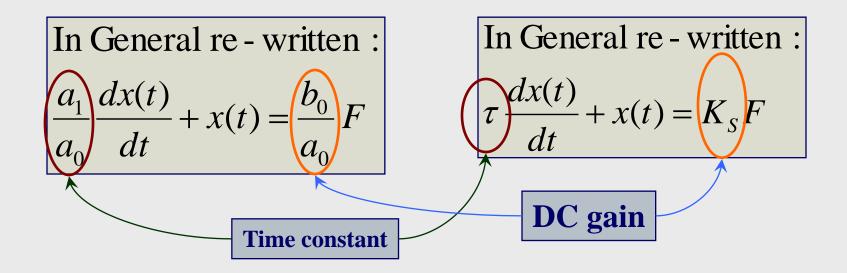
Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



30

ECEN 301

Expressions for voltage and current of a 1st order circuit will be a 1st order differential equation



31

The solution to this equation (the **complete response**) consists of two parts:

- ▲ Natural response (homogeneous solution)
 - Forcing function equal to zero

▲ Forced response (particular solution)

$$\tau \frac{dx(t)}{dt} + x(t) = K_s F$$

32

ECEN 301

Natural response (homogeneous solution)

▲ Forcing function equal to zero

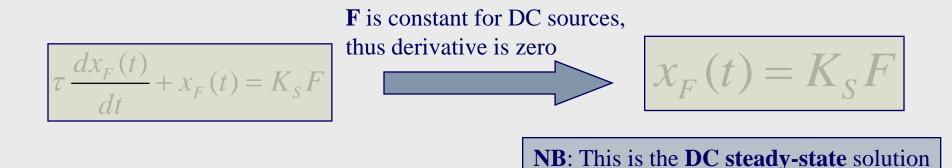
$$\tau \frac{dx_N(t)}{dt} + x_N(t) = 0$$
$$\frac{dx_N(t)}{dt} = -\frac{x_N(t)}{\tau}$$

Has known solution of the form:

 $x_N(t) = \alpha e^{-t}$

33

Forced response (particular solution)



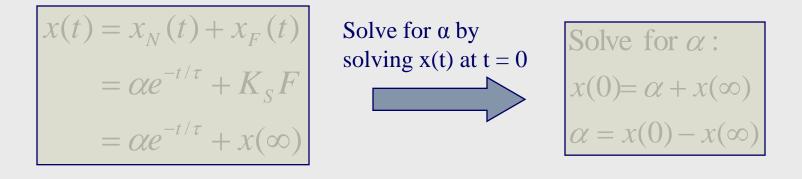
$x_F(t) = x(\infty) = K_S F$

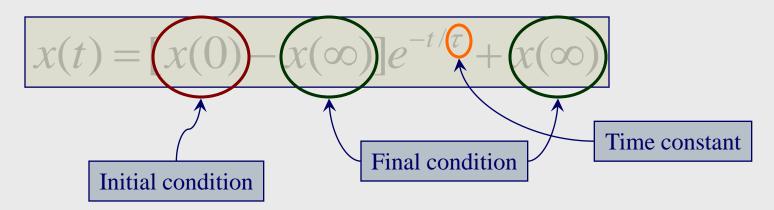
34

ECEN 301

General Solution of 1st Order Circuits

Complete response (natural + forced)

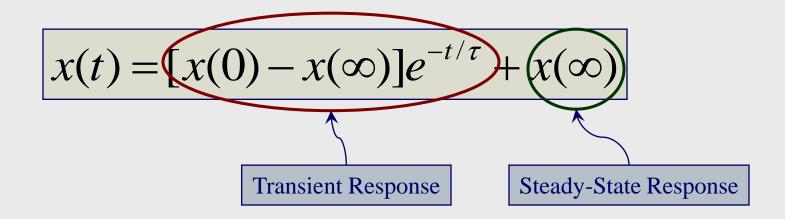




35

ECEN 301

Complete response (natural + forced)



36

ECEN 301

3. DC Steady-State + Transient Response

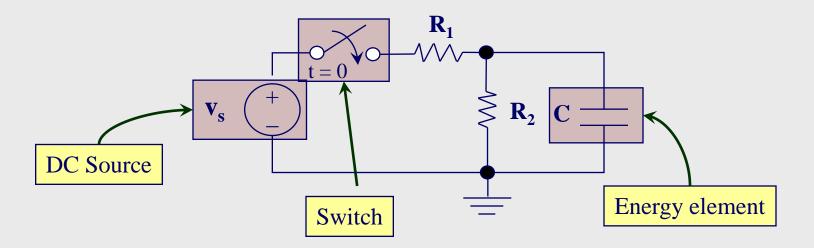
Full Transient Response

37

ECEN 301

Transient response of a circuit consists of 3 parts:

- Steady-state response prior to the switching on/off of a DC source
- 2. Transient response the circuit **adjusts** to the **DC source**
- 3. Steady-state response following the transient response



38

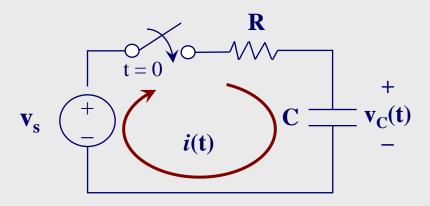
Solving 1st order transient response:

- 1. Solve the **DC** steady-state circuit:
 - ▲ Initial condition $\mathbf{x}(\mathbf{0}^{-})$: before switching (on/off)
 - Final condition $\mathbf{x}(\infty)$: After any transients have died out $(t \to \infty)$
- 2. Identify $x(0^+)$: the circuit initial conditions
 - Capacitors: $\mathbf{v}_{\mathbf{C}}(\mathbf{0}^+) = \mathbf{v}_{\mathbf{C}}(\mathbf{0}^-)$
 - A Inductors: $i_{\rm L}(0^+) = i_{\rm L}(0^-)$
- 3. Write a differential equation for the circuit at time $t = 0^+$
 - Reduce the circuit to its Thévenin or Norton equivalent
 - ▲ The energy storage element (capacitor or inductor) is the load
 - A The differential equation will be either in terms of $\mathbf{v}_{\mathbf{C}}(\mathbf{t})$ or $\mathbf{i}_{\mathbf{L}}(\mathbf{t})$
 - Reduce this equation to standard form
- 4. Solve for the **time constant**
 - $\land \quad \text{Capacitive circuits: } \boldsymbol{\tau} = \mathbf{R}_{\mathbf{T}}\mathbf{C}$
 - $\land Inductive circuits: \tau = L/R_T$
- 5. Write the **complete response** in the form:

 $\mathbf{x}(t) = \mathbf{x}(\infty) + [\mathbf{x}(0) - \mathbf{x}(\infty)] e^{-t/\tau}$

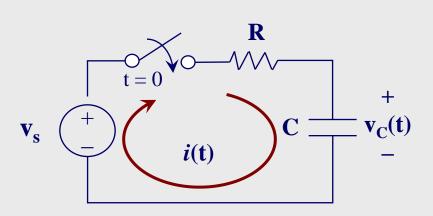
39

• <u>Example3</u>: find $\mathbf{v}_{c}(\mathbf{t})$ for all t $\mathbf{v}_{s} = 12V, \mathbf{v}_{C}(\mathbf{0}) = 5V, \mathbf{R} = 1000\Omega, \mathbf{C} = 470 \mathrm{uF}$

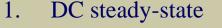


ECEN 301

Example3: find $\mathbf{v}_{c}(\mathbf{t})$ for all t $\mathbf{v}_{s} = 12V, \mathbf{v}_{C}(\mathbf{0}) = 5V, \mathbf{R} = 1000\Omega, \mathbf{C} = 470 \mathrm{uF}$



NB: as $t \to \infty$ the capacitor acts like an open circuit thus $\mathbf{v}_{\mathbf{C}}(\infty) = \mathbf{v}_{\mathbf{S}}$



- a) Initial condition: $\mathbf{v}_{\mathbf{C}}(\mathbf{0})$
- b) Final condition: $\mathbf{v}_{\mathbf{C}}(\infty)$

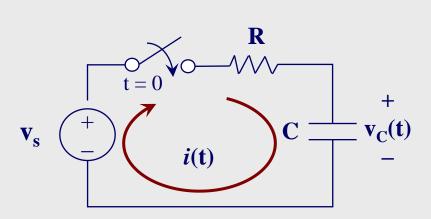
$$v_C(t < 0) = v_C(0^-) = 5V$$

$$v_C(\infty) = v_S$$

= 12V

ECEN 301

Example3: find $\mathbf{v}_{c}(\mathbf{t})$ for all t $\mathbf{v}_{s} = 12V, \mathbf{v}_{C}(\mathbf{0}) = 5V, \mathbf{R} = 1000\Omega, \mathbf{C} = 470 \mathrm{uF}$



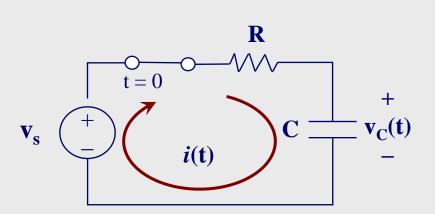
2. Circuit initial conditions: $v_{C}(0^{+})$

$$v_C(0^+) = v_C(0^-)$$
$$= 5V$$

42

ECEN 301

Example3: find $\mathbf{v}_{c}(\mathbf{t})$ for all t $\mathbf{v}_{s} = 12V, \mathbf{v}_{C}(\mathbf{0}) = 5V, \mathbf{R} = 1000\Omega, \mathbf{C} = 470 \mathrm{uF}$



3. Write differential equation (already in Thévenin equivalent) at t = 0

$$KVL:$$

$$-v_{S} + v_{R}(t) + v_{C}(t) = 0$$

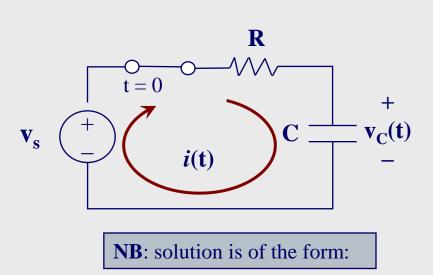
$$i_{C}(t)R + v_{C}(t) = v_{S}$$

$$RC \frac{dv_{C}(t)}{dt} + v_{C}(t) = v_{S}$$

43

ECEN 301

Example3: find $\mathbf{v}_{c}(\mathbf{t})$ for all t $\mathbf{v}_{s} = 12V, \mathbf{v}_{C}(\mathbf{0}) = 5V, \mathbf{R} = 1000\Omega, \mathbf{C} = 470 \mathrm{uF}$



$$\tau \frac{dx(t)}{dt} + x(t) = K_s F$$

3. Write differential equation (already in Thévenin equivalent) at t = 0

$$KVL:$$

$$-v_{S} + v_{R}(t) + v_{C}(t) = 0$$

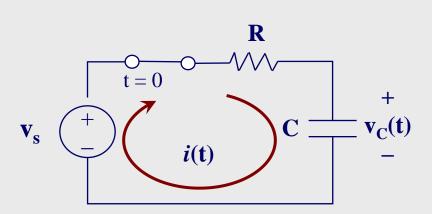
$$i_{C}(t)R + v_{C}(t) = v_{S}$$

$$RC \frac{dv_{C}(t)}{dt} + v_{C}(t) = v_{S}$$

44

ECEN 301

Example3: find $\mathbf{v}_{c}(\mathbf{t})$ for all t $\mathbf{v}_{s} = 12V, \mathbf{v}_{C}(\mathbf{0}) = 5V, \mathbf{R} = 1000\Omega, \mathbf{C} = 470 \mathrm{uF}$



4. Find the time constant τ

$$\tau = RC$$

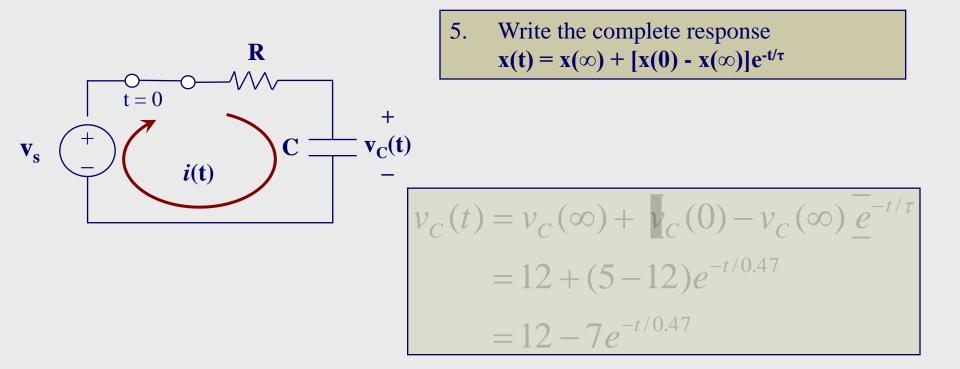
= (1000)(470×10⁻⁶)
= 0.47

$$K_{S} = 1 \qquad F = v_{S} = 12$$

45

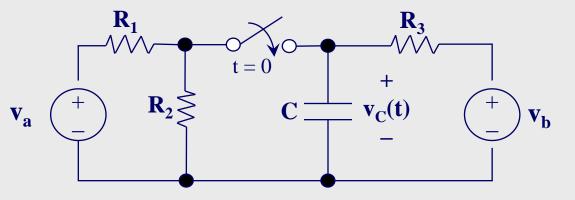
ECEN 301

Example3: find $\mathbf{v}_{c}(\mathbf{t})$ for all t $\mathbf{v}_{s} = 12V, \mathbf{v}_{C}(\mathbf{0}) = 5V, \mathbf{R} = 1000\Omega, \mathbf{C} = 470 \mathrm{uF}$



ECEN 301

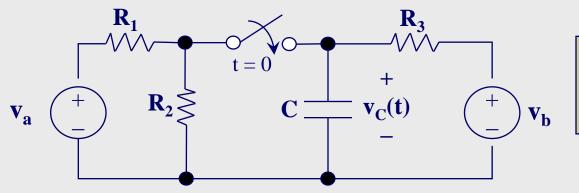
• Example4: find
$$\mathbf{v_c}(\mathbf{t})$$
 for all t
 $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1uF$



47

ECEN 301

• Example4: find
$$\mathbf{v_c}(\mathbf{t})$$
 for all t
 $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1$ uF



1. DC steady-state

- a) Initial condition: $v_{C}(0)$
- b) Final condition: $v_{C}(\infty)$

$$v_C(0^-) = v_b$$
$$= 5V$$

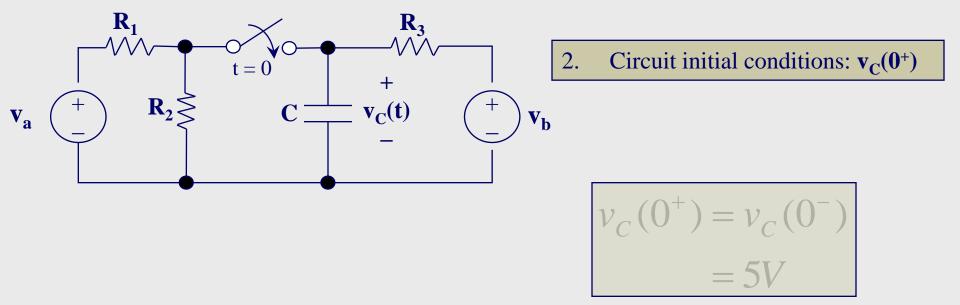
For $t \to \infty \mathbf{v_c}(\infty)$ is not so easily determined – it will be equal to $\mathbf{v_T}$ (the open circuited Thévenin equivalent)

For t < 0 the capacitor has been charged by $\mathbf{v}_{\mathbf{h}}$ thus $\mathbf{v}_{\mathbf{C}}(\mathbf{0}) = \mathbf{v}_{\mathbf{h}}$

$$v_C(\infty) = v_T$$

48

• Example4: find
$$\mathbf{v}_{c}(\mathbf{t})$$
 for all t
 $\mathbf{v}_{a} = 12V, \mathbf{v}_{b} = 5V, \mathbf{R}_{1} = 10\Omega, \mathbf{R}_{2} = 5\Omega, \mathbf{R}_{3} = 10\Omega, \mathbf{C} = 1$ uF

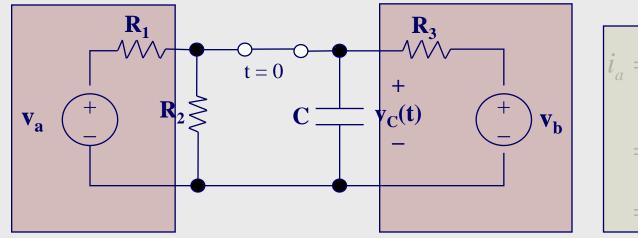


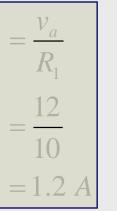
49

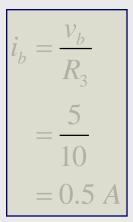
ECEN 301

• Example4: find $\mathbf{v_c}(\mathbf{t})$ for all t $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1$ uF

3. Write differential equation at t = 0a) Find Thévenin equivalent





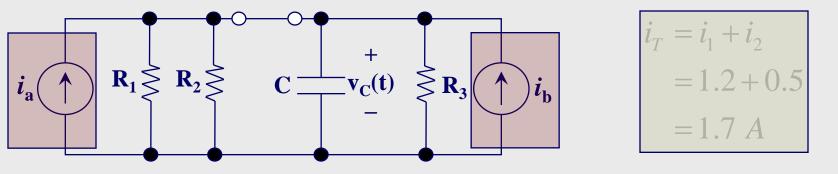


50

ECEN 301

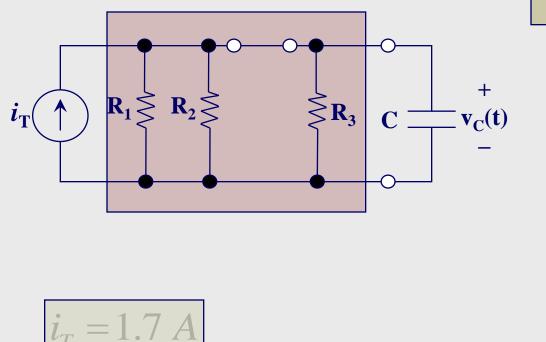
• Example4: find $\mathbf{v_c}(\mathbf{t})$ for all t $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1$ uF

3. Write differential equation at t = 0a) Find Thévenin equivalent



ECEN 301

• Example4: find
$$\mathbf{v_c}(\mathbf{t})$$
 for all t
 $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1uF$



3. Write differential equation at t = 0a) Find Thévenin equivalent

$$R_{T} = R_{1} || R_{2} || R_{3}$$

$$= \frac{R_{1}R_{2}R_{3}}{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}$$

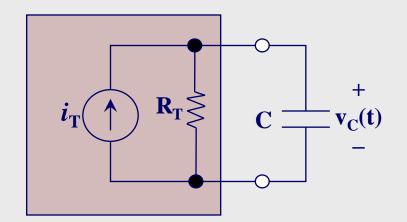
$$= \frac{(10)(5)(10)}{(10)(5) + (10)(10) + (5)(10)}$$

$$= \frac{500}{200}$$

$$= 2.5\Omega$$

ECEN 301

• Example4: find $\mathbf{v_c}(\mathbf{t})$ for all t $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1$ uF



$$v_T = i_T R_T$$

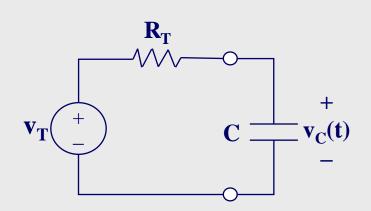
= (1.7)(2.5)
= 4.25 V

53

ECEN 301

 $l_T = 1.7 A$ $R_T = 2.50$

• Example4: find $\mathbf{v_c}(\mathbf{t})$ for all t $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1\mathrm{uF}$



- 3. Write differential equation at t = 0
 - a) Find Thévenin equivalent
 - b) Reduce equation to standard form

$$KVL:$$

$$-v_{T} + v_{RT}(t) + v_{C}(t) = 0$$

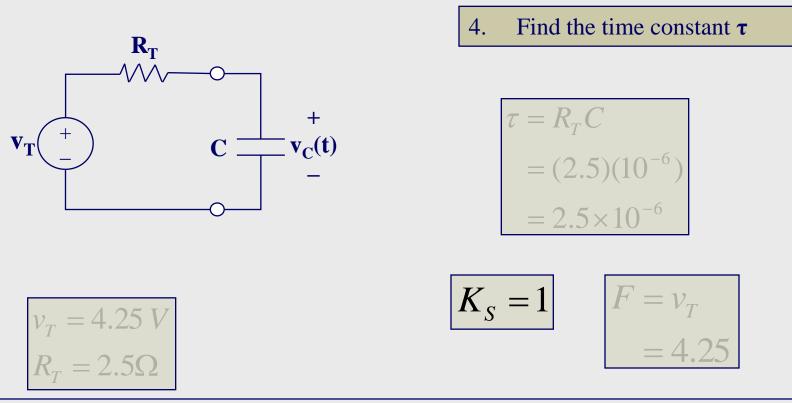
$$i_{C}(t)R_{T} + v_{C}(t) = v_{T}$$

$$CR_{T} \frac{dv_{C}(t)}{dt} + v_{C}(t) = v_{T}$$

ECEN 301

 $v_T = 4.25 V$ $R_- = 2.50$

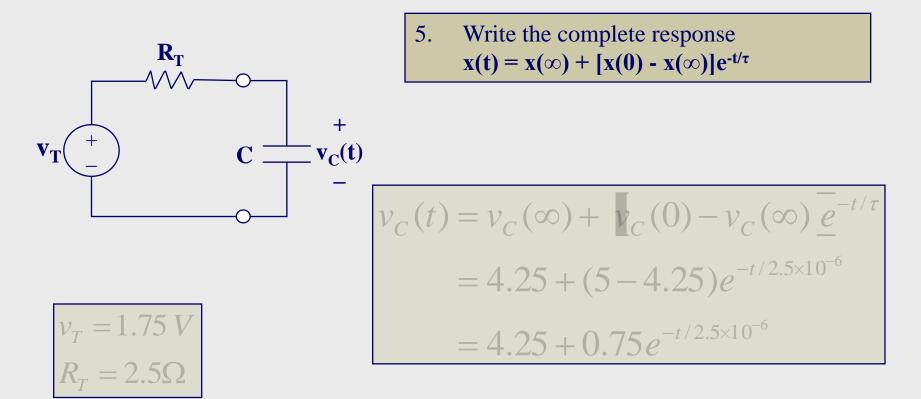
• Example4: find $\mathbf{v_c}(\mathbf{t})$ for all t $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1$ uF



55

ECEN 301

• Example4: find $\mathbf{v_c}(\mathbf{t})$ for all t $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1$ uF

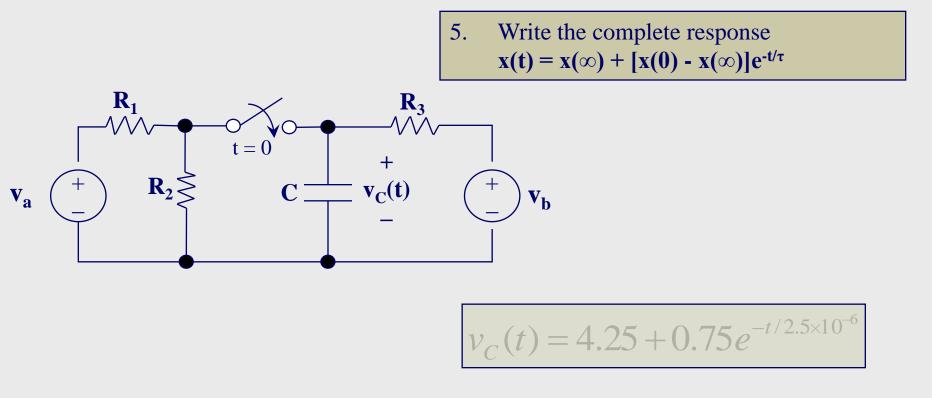


ECEN 301

Discussion #15 – 1st Order Transient Response

56

• Example4: find $\mathbf{v_c}(\mathbf{t})$ for all t $\mathbf{v_a} = 12V, \mathbf{v_b} = 5V, \mathbf{R_1} = 10\Omega, \mathbf{R_2} = 5\Omega, \mathbf{R_3} = 10\Omega, \mathbf{C} = 1$ uF



57

ECEN 301