Schedule...

Date	Day	Class No.	Title	Chapters	HW Due date	Lab Due date	Exam
27 Oct	Mon	16	Sinusoidal Frequency Response	6.1		LAB 5	
28 Oct	Tue						
29 Oct	Wed	17	Operational Amplifiers	8.1 - 8.2			
30 Oct	Thu						
31 Oct	Fri		Recitation		HW 7		
1 Nov	Sat						
2 Nov	Sun						
3 Nov	Mon	18	Operational Amplifiers	8.3 - 8		LAB 6	
4 Nov	Tue					(Exam 1

Easier to Maintain Than to Retake

<u>Alma 59:9</u>

9 And now as Moroni had supposed that there should be men sent to the city of Nephihah, to the assistance of the people to maintain that city, and knowing that it was easier to keep the city from falling into the hands of the Lamanites than to retake it from them, he supposed that they would easily maintain that city.

Lecture 16 – Frequency Response

Back to AC Circuits and Phasors

- Frequency Response
- Filters

Frequency Response H(jω): a measure of how the voltage/current/impedance of a load responds to the voltage/current of a source

$$H_{V}(j\omega) = \frac{V_{L}(j\omega)}{V_{S}(j\omega)} \qquad H_{I}(j\omega) = \frac{I_{L}(j\omega)}{I_{S}(j\omega)}$$

$$H_{Z}(j\omega) = \frac{V_{L}(j\omega)}{I_{S}(j\omega)}$$

ECEN 301

 $V_L(j\omega)$ is a phase-shifted and amplitude-scaled version of $V_S(j\omega)$

$$\frac{V_L(j\omega)}{V_S(j\omega)} = H_V(j\omega)$$
$$V_L(j\omega) = H_V(j\omega)V_S(j\omega)$$

 $V_L(j\omega)$ is a phase-shifted and amplitude-scaled version of $V_S(j\omega)$

$$\frac{V_L(j\omega)}{V_S(j\omega)} = H_V(j\omega)$$

$$V_L(j\omega) = H_V(j\omega)V_S(j\omega)$$

$$V_L e^{j\phi_L} = |H_V|e^{j\angle H_V}|V_S|e^{j\angle V_S}$$

$$V_L e^{j\phi_L} = |H_V|V_S|e^{j(\angle H_V + \angle V_S)}$$

NB : any complex number
A can be expressed as

$$A = |A|e^{j \angle A}$$

 $A = |A| \angle A$

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

7

ECEN 301

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

1. Note frequencies of AC sources

Only one AC source so frequency response $H_V(j\omega)$ will be the function of a single frequency

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

ECEN 301

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

- 1. Note frequencies of AC sources
- 2. Convert to phasor domain
- 3. Solve using network analysis
 - Thévenin equivalent

10

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

- 1. Note frequencies of AC sources
- 2. Convert to phasor domain
- 3. Solve using network analysis
 - Thévenin equivalent

$$V_T(j\omega) = V_S(j\omega) \frac{Z_C}{Z_1 + Z_C}$$

$$Z_T = Z_1 \parallel Z_C$$

11

ECEN 301

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

5. Find an expression for the frequency response

$$H_{V}(j\omega) = \frac{V_{L}(j\omega)}{V_{S}(j\omega)}$$
$$= \frac{Z_{C}}{Z_{1} + Z_{C}} \cdot \frac{Z_{LD}}{(Z_{1} \parallel Z_{C}) + Z_{LD}}$$

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

ECEN 301

Example1: compute the frequency response $H_V(j\omega)$ $R_1 = 1k\Omega$, $R_L = 10k\Omega$, C = 10uF

15

ECEN 301

<u>Example2</u>: compute the frequency response $H_Z(j\omega)$ $R_1 = 1k\Omega$, $R_L = 4k\Omega$, L = 2mH

ECEN 301

<u>Example2</u>: compute the frequency response $H_Z(j\omega)$ $R_1 = 1k\Omega$, $R_L = 4k\Omega$, L = 2mH

1. Note frequencies of AC sources

Only one AC source so frequency response $H_Z(j\omega)$ will be the function of a single frequency

17

<u>Example2</u>: compute the frequency response $H_Z(j\omega)$ $R_1 = 1k\Omega$, $R_L = 4k\Omega$, L = 2mH

1. Note frequencies of AC sources

2. Convert to phasor domain

18

<u>Example2</u>: compute the frequency response $H_Z(j\omega)$ $R_1 = 1k\Omega$, $R_L = 4k\Omega$, L = 2mH

19

ECEN 301

Example2: compute the frequency response $H_Z(j\omega)$ $R_1 = 1k\Omega$, $R_L = 4k\Omega$, L = 2mH

ECEN 301

Example2: compute the frequency response $H_Z(j\omega)$ $R_1 = 1k\Omega$, $R_L = 4k\Omega$, L = 2mH

21

1st and 2nd Order RLC Filters

Graphing in Frequency Domain Filter Orders Resonant Frequencies Basic Filters

22

ECEN 301

Frequency Domain

Graphing in the frequency domain: helpful in order to understand filters

Discussion #16 – Frequency Response

Frequency Domain

<u>Graphing in the frequency domain</u>: helpful in order to understand filters

ECEN 301

Discussion #16 – Frequency Response

Electromagnetic (Frequency) Spectrum

electromagnetic spectrum

ECEN 301

Basic Filters

Electric circuit filter: attenuates (reduces) or eliminates signals at unwanted frequencies

ECEN 301

Filter Orders

Higher filter orders provide a higher quality filter

ECEN 301

Discussion #16 – Frequency Response

27

Impedance

Impedance of resistors, inductors, and capacitors

ECEN 301

Discussion #13 – Phasors

Impedance

Impedance of capacitors

29

ECEN 301

Discussion #13 – Phasors

Impedance

Impedance of inductors

30

ECEN 301

Discussion #13 – Phasors

<u>Resonant Frequency (\omega_n)</u>: the frequency at which capacitive impedance and inductive impedance are equal and opposite (in 2nd order filters)

Discussion #16 – Frequency Response

31

<u>Resonant Frequency (\omega_n)</u>: the frequency at which capacitive impedance and inductive impedance are equal and opposite (in 2nd order filters)

ECEN 301

<u>Resonant Frequency (\omega_n)</u>: the frequency at which capacitive impedance and inductive impedance are equal and opposite (in 2nd order filters)

Impedances in series

$$Z_L = \frac{j\sqrt{LC}}{C} \qquad Z_C = -\frac{j\sqrt{LC}}{C}$$

$$Z_{EQ} = Z_L + Z_C$$
$$= 0$$

33

ECEN 301

<u>Resonant Frequency (\omega_n)</u>: the frequency at which capacitive impedance and inductive impedance are equal and opposite (in 2nd order filters)

34

<u>Resonant Frequency (\omega_n)</u>: the frequency at which capacitive impedance and inductive impedance are equal and opposite (in 2nd order filters)

$$Z_{EQ} = Z_L || Z_C$$
$$= \frac{Z_L Z_C}{Z_L + Z_C}$$
$$= \frac{L/C}{0}$$
$$= \infty$$

35

Low-Pass Filters

<u>**Low-pass Filters</u>**: only allow signals under the **cutoff** frequency (ω_0) to pass</u>

ECEN 301

Discussion #16 – Frequency Response

Low-Pass Filters

ECEN 301

Discussion #16 – Frequency Response

Low-Pass Filters

ECEN 301

Discussion #16 – Frequency Response

High-Pass Filters

<u>High-pass Filters</u>: only allow signals above the cutoff frequency (ω_0) to pass

ECEN 301

Discussion #16 – Frequency Response

High-Pass Filters

1st Order High-pass Filters:

ECEN 301

Discussion #16 – Frequency Response

High-Pass Filters

2nd Order High-pass Filters:

ECEN 301

Discussion #16 – Frequency Response

Band-Pass Filters

<u>Band-pass Filters</u>: only allow signals between the **passband** (ω_a to ω_b) to pass

ECEN 301

Band-Pass Filters

ECEN 301

Discussion #16 – Frequency Response

Band-Stop Filters

<u>Band-stop Filters</u>: allow signals except those between the **passband** (ω_a to ω_b) to pass

ECEN 301

Band-Stop Filters

<u>2nd</u> Order Band-stop Filters:

ECEN 301