Schedule...

Date	Day	Class No.	Title	Chapters	HW Due date	Lab Due date	Exam
5 Nov	Wed	19	Binary Numbers	13.1 – 13.2			
6 Nov	Thu						
7 Nov	Fri		Recitation		HW 8		
8 Nov	Sat						
9 Nov	Sun						
10 Nov	Mon	20	Exam Review			LAB 7	
11 Nov	Tue						EXAM 2
12 Nov	Wed	21	Boolean Algebra	13.2 – 13.3		(

Numbered

<u>Moses 1:33,35,37</u>

- 33 And worlds without **number** have I created; and I also created them for mine own purpose; and by the Son I created them, which is mine Only Begotten.
- 37 And the Lord God spake unto Moses, saying: The heavens, they are many, and they cannot be **numbered** unto man; but they are **numbered** unto me, for they are mine
- 35 ...all things are **numbered** unto me, for they are mine and I know them.

<u>3 Nephi 18:31</u>

31 ... behold I know my sheep, and they are **numbered**.

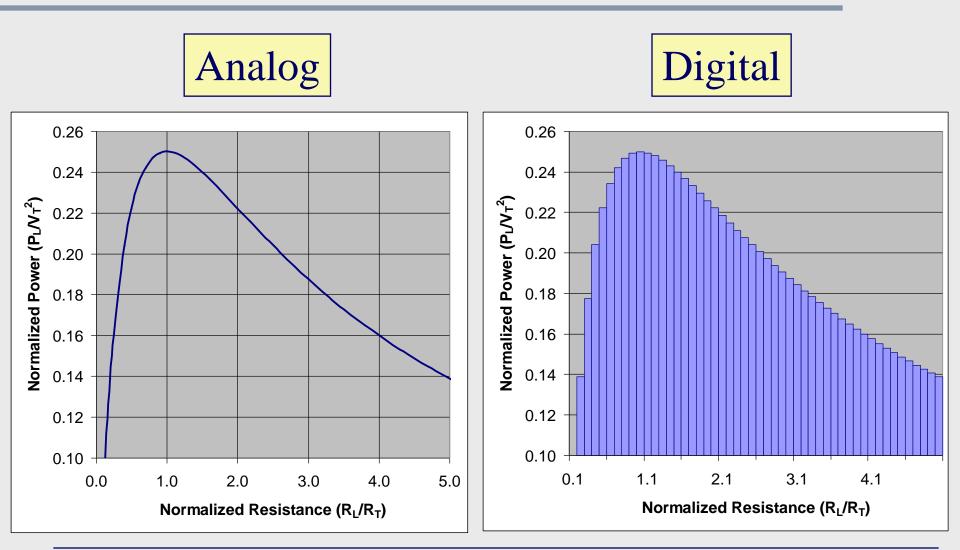
Lecture 19 – Binary Numbers

ECEN 301

Digital vs. Analog

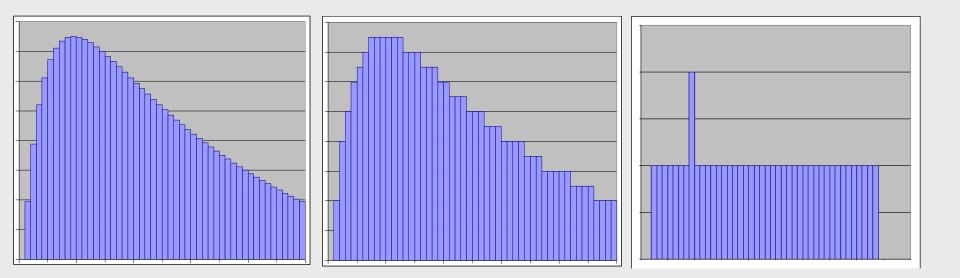
- Wristwatches (numbers vs. hands)
- LP's vs. CD's
- Rotary phone vs.
- Cell phone
- NTSC vs. HDTV
- Slide rule vs.calculator

Digital vs. Analog



ECEN 301

Digital vs. Analog



Digital signals are limited to a set of possible values (precision)

Set of **10** different symbol values \rightarrow **decimal**

Set of 2 different symbol values \rightarrow **binary**

ECEN 301

Decimal means that we have ten digits to use in our representation (the symbols 0 through 9)
 <u>Example</u>: What is 3,546?

three thousands + five hundreds + four tens + six ones. $3,546_{10} = 3 \times 10^3 + 5 \times 10^2 + 4 \times 10^1 + 6 \times 10^0$

How about negative numbers?
 We use two more symbols to distinguish positive and negative, namely, + and -.

Example1: What is **1011.101**?

Example1: What is **1011.101**?

A Depends on what **radix** or **base** we use

- Decimal \longrightarrow base = 10 (digit set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9})
- Binary \longrightarrow base = 2 (digit set: $\{0, 1\}$)
- Hexadecimal base = 16 (digit set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F})
- Other? \longrightarrow base = r (digit set: {0, ... r-1})

Etymologically Correct Base Names

- 🔺 2 binary
- ▲ 3 ternary
- ▲ 4 quaternary
- 🔺 5 quinary
- 🔺 6 senary
- ▲ 7 septenary
- 🔺 8 octal
- 🔺 9 nonary
- \wedge 10 denary, although this is never used; instead decimal is the common term.
- ▲ 11 undenary
- ▲ 12 duodenary, although this is never used; duodecimal is the accepted word.
- ▲ 16 senidenary, although this is never used; see the discussion in hexadecimal.
- 🔺 20 vegesimal
- \land 60 sexagesimal

Example1: What is 1011.101?

A Depends on what **radix** or **base** we use

- Decimal \longrightarrow base = 10 (digit set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9})
- Binary \longrightarrow base = 2 (digit set: $\{0, 1\}$)
- Hexadecimal base = 16 (digit set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F})
- Other? \longrightarrow base = r (digit set: {0, ... r-1})

For base 10

 $\land 1011.101_{10} = 1 \times 10^{3} + 0 \times 10^{2} + 1 \times 10^{1} + 1 \times 10^{0} + 1 \times 10^{-1} + 0 \times 10^{-2} + 1 \times 10^{-3}$

For base 2

 $\land 1011.101_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$

For base r

 $\wedge 1011.101_{r} = 1 \times r^{3} + 0 \times r^{2} + 1 \times r^{1} + 1 \times r^{0} + 1 \times r^{-1} + 0 \times r^{-2} + 1 \times r^{-3}$

Binary Numbers

• **Binary** means that we have <u>two</u> digits to use in our representation:

▲ the symbols 0 and 1

Example: What is 1011₂?

 $\land one \ \underline{eights} + \underline{zero} \ \underline{fours} + one \ \underline{twos} + one \ \underline{ones}.$ $\land 1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

Binary Numbers



Bits rely only on *approximate* physical values.
A logical '1' is a relatively high voltage (1.2V, 3.3V, 5V).
A logical '0' is a relatively low voltage (0V - 1V).

<u>Byte</u>: a sequence of 8 bits

Binary Numbers

- Numbers are represented by a sequence of bits:
 - ▲ A collection of two bits has four possible values or states: 00, 01, 10, 11
 - A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
 - $\wedge A$ collection of <u>n</u> bits has 2^n possible states.
- •By using groups of bits, we can achieve high **precision**.
 - 8 bits mumber of states: 256.
 - 16 bits **mathef** number of states: 65,536
 - 32 bits ===> number of states: 4,294,967,296
 - 64 bits **mumber** of states: 18,446,744,073,709,550,000

Data Types

Bits alone don't give information – they must be interpreted

▲ Data types are what interpret bits

Example: interpret the following bits 0100100001000101 0101100001000001

The integers: 18501₁₀ and 22593₁₀?
 The characters: H E X A ?
 The floating-point number: 202081.015625₁₀?
 Other?

Data Types

Unsigned integers

▲0, 1, 2, 3, 4, ...

Signed integers

▲ ..., -3, -2, -1, 0, 1, 2, 3, ...

Floating point numbers

 \wedge PI = 3.14159 x 10⁰

Characters

. . .

∧ `0', `1', `2', ..., `a', `b', `c', ..., `A', `B', `C', ..., `@', `#',

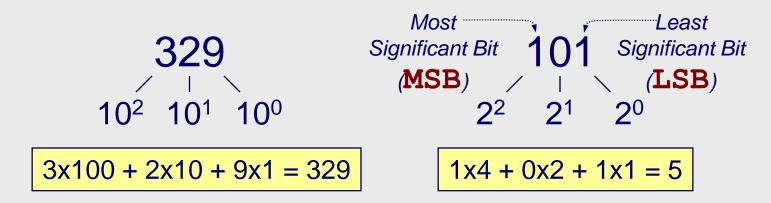
16

ECEN 301

Unsigned Integers

Weighted positional notation

▲"3" is worth 300, because of its **position**, while "9" is only worth 9



• What do these **unsigned** binary numbers represent?

0000	1111	0001	0111	1011
0110	1010	1000	1100	1001

Unsigned Integers

Example2: What numbers can be represented with 3 bits?

Unsigned Integers

Example2: What numbers can be represented with 3 bits?

2^{2}	2^{1}	2^{0}	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

ECEN 301

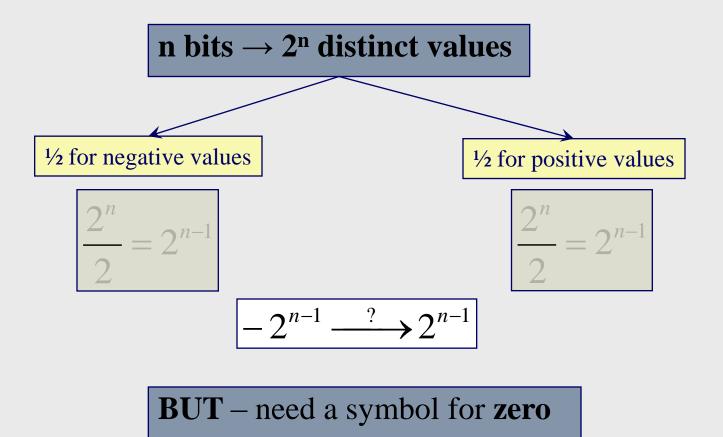
Binary Arithmetic

Base-2 addition – just like base-10! A add from right to left, propagating carry carry 10010 10010 + 1011+ 100111011 11101 10000 10111 111 11110

Subtraction, multiplication, division,...

Signed Binary Integers

Determine the range of values for n bits



21

ECEN 301

Signed Binary Integers

3 common representations for signed integers:

- 1. Sign magnitude
- 2. 1's compliment
- 3. 2's compliment

Most common for computers

Sign-Magnitude

$$\underline{\mathbf{Range}}: \qquad - \mathbf{P}^{n-1} - 1 \xrightarrow{} \mathbf{P}^{n-1} -$$

Representations

▲ 01111_{binary}
 ▲ 11111
 ▲ 00000
 ▲ 10000

$$\Rightarrow 15_{\text{decimal}}$$

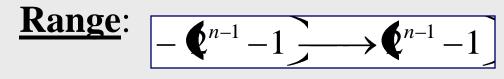
 $\Rightarrow -15$

=> 0 => -0 The **MSB** encodes the sign: 0 = +1 = -

Problem

Difficult addition/subtraction

- check signs
- convert to positive
- use adder or subtractor as required
- ▲ How to add two sign-magnitude numbers?
 - Ex: 1 + (-4)



Representations

\wedge 00110 _{binary}	
▲ 11001 [°]	
▲ 00000	
▲11111	

 $=> 6_{\text{decimal}}$ => -6=> 0=> -0

Problem

Difficult addition/subtraction

- no need to check signs as before
- cumbersome logic circuits
 - end-around-carry

▲ How to add to one's complement numbers?

• Ex: 4 + (-3)

To negate a number, Invert it, bit-by-bit. **MSB** still encodes the sign: 0 = +1 = -

Problems with sign-magnitude and 1's complement

▲two representations of zero (+0 and -0)

▲ arithmetic circuits are complex

• *Two's complement* representation developed to make circuits easy for arithmetic.

∧ only one representation for zero

just ADD the two numbers to get the right answer
 (regardless of sign)

Range:
$$- \mathbf{q}^{n-1} \longrightarrow \mathbf{q}^{n-1} - 1$$

Representation:

- ▲ If number is **positive** or **zero**,
 - normal binary representation, zeroes in upper bit(s)
- ▲ If number is **negative**,
 - start with positive number
 - flip every bit (i.e., take the one's complement)
 - then add one

MSB still encodes the sign: 0 = + 1 = -

Example3: What is **0110101**₂ in decimal? What is it's 2's complement?

Example3: What is 0110101_2 in decimal? What is it's 2's complement?

$0110101_2 = 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ = 53₁₀

Example3: What is **0110101**₂ in decimal? What is it's 2's complement?

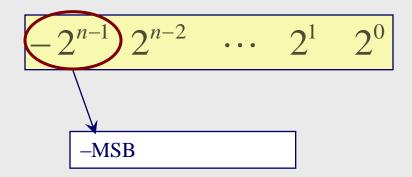
 $0110101_2 = 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ = 53₁₀

Positional number representation with a twist
 MSB has a *negative* weight

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^{2} + 2^{1} = 6$ $1110 = -2^{3} + 2^{2} + 2^{1} = -2$

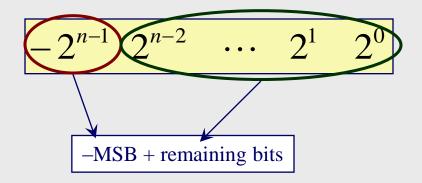
$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$



Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^2 + 2^1 = 6$ $1110 = -2^3 + 2^2 + 2^1 = -2$

$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$

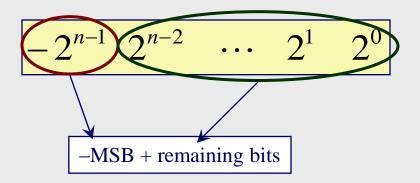


ECEn/CS 124

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^2 + 2^1 = 6$ $1110 = -2^3 + 2^2 + 2^1 = -2$

$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$



11111111

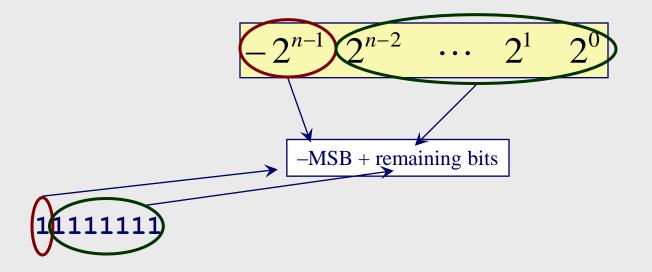
33

Discussion #2 – Chapter 2

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^2 + 2^1 = 6$ $1110 = -2^3 + 2^2 + 2^1 = -2$

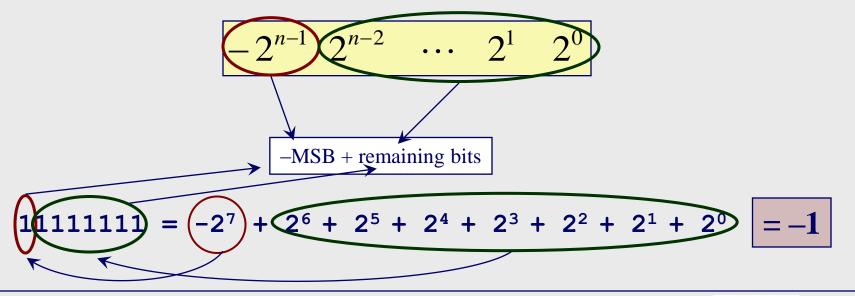
$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$



Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^{2} + 2^{1} = 6$ $1110 = -2^{3} + 2^{2} + 2^{1} = -2$

$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$



BYU Electrical Engineering Computer Engineering

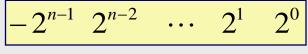
35

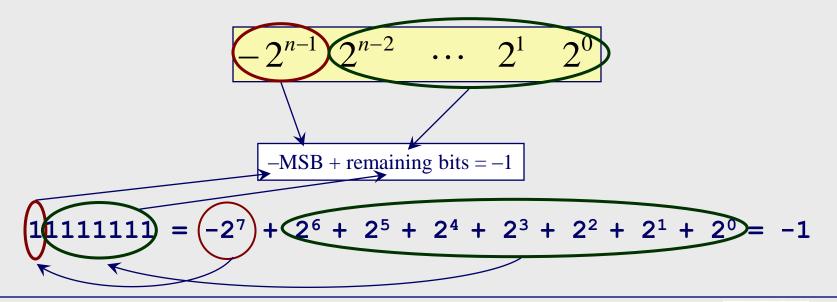
ECEn/CS 124

Discussion #2 – Chapter 2

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^{2} + 2^{1} = 6$ $1110 = -2^{3} + 2^{2} + 2^{1} = -2$





Discussion #19 – Binary Numbers

Two's Complement Shortcut

- To take the two's complement of a number:
 - copy bits from right to left until (and including) the first 1
 - 2. flip remaining bits to the left

Two's Complement Negation

To negate a number, invert all the bits and add 1 (or use shortcut)

Number	Decimal Value	Negated Binary Value
0110	6	1010
0111	7	1001
0000	0	0000
1111	-1	0001
0100	4	1100
1000	-8	1000 (??)

Decimal to Binary Conversion

Positive numbers

- start with empty result
- if decimal number is odd, prepend '1' to result else prepend '0'
- divide number by 2, throw away fractional part (INTEGER divide)
- ④ if number is non-zero, go back to ❷ else you are done

Negative numbers

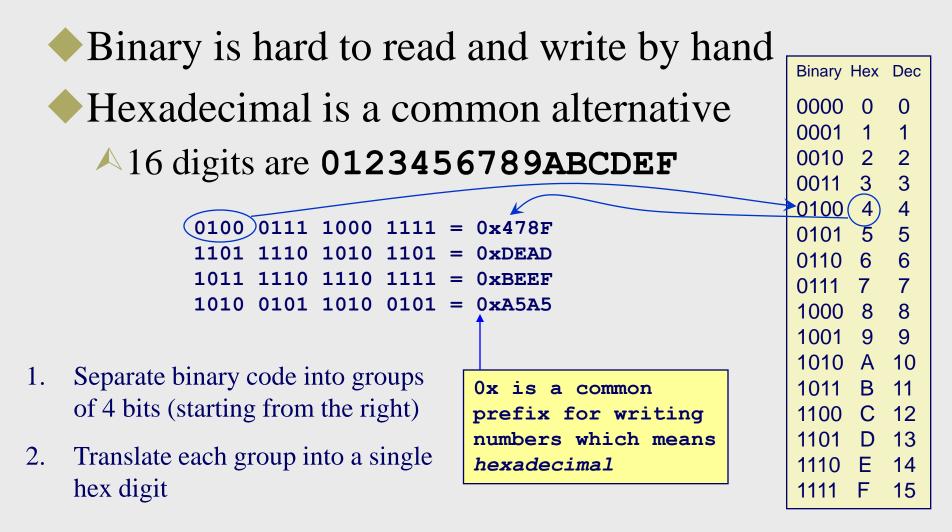
▲ do above for positive version of number and negate result.

Decimal to Binary Conversion

Number	Binary Value	
5	0101	
6	0110	
123	01111011	
35	00100011	
-35	11011101	
1007	01111101111	

ECEN 301

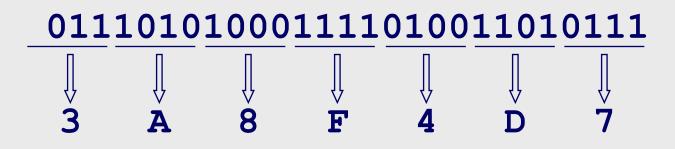
Hexadecimal Notation



Binary to Hex Conversion

• Every four bits is a hex digit.

▲ start grouping from right-hand side



This is not a new machine representation, just a convenient way to write the number.

