Schedule...

Date	Day	Class No.	Title	Chapters	HW Due date	Lab Due date	Exam
12 Nov	Wed	21	Boolean Algebra	13.2 – 13			
13 Nov	Thu						EXAM 2
14 Nov	Fri		Recitation				
15 Nov	Sat						
16 Nov	Sun						
17 Nov	Mon	22	Combinational Logic	13.3 – 13.5		LAB 10	
18 Nov	Tue						
19 Nov	Wed	23	Sequential Logic	14.1			

Hardened or Softened by Afflictions

<u>Alma 62:41</u>

41 But behold, because of the exceedingly great length of the war between the Nephites and the Lamanites **many had become hardened**, because of the exceedingly great length of the war; and **many were softened because of their afflictions**, insomuch that they did humble themselves before God, even in the depth of humility.

Lecture 21 – Binary Numbers & Boolean Algebra

Signed Binary Integers

3 common representations for signed integers:

- 1. Sign magnitude
- 2. 1's compliment
- 3. 2's compliment

Most common for computers

For all 3 the **MSB** encodes the sign: 0 = +1 = -

Sign-Magnitude

$$\underline{\mathbf{Range}}: \qquad - \mathbf{P}^{n-1} - 1 \xrightarrow{} \mathbf{P}^{n-1} - 1 \xrightarrow{}$$

Representations

▲ 01111_{binary}
 ▲ 11111
 ▲ 00000
 ▲ 10000

$$\Rightarrow 15_{decimal}$$

 $\Rightarrow -15$

=> 0 => -0 The **MSB** encodes the sign: 0 = +1 = -

Problem

Difficult addition/subtraction

- check signs
- convert to positive
- use adder or subtractor as required
- ▲ How to add two sign-magnitude numbers?
 - Ex: 1 + (-4)

Representations

\wedge 00110 _{binary}	
▲11001 [°]	
▲ 00000	
▲11111	

 $=> 6_{\text{decimal}}$ => -6=> 0=> -0

Problem

Difficult addition/subtraction

- no need to check signs as before
- cumbersome logic circuits
 - end-around-carry

▲ How to add to one's complement numbers?

• Ex: 4 + (-3)

To negate a number, Invert it, bit-by-bit. **MSB** still encodes the sign: 0 = +1 = -

Problems with sign-magnitude and 1's complement

 \wedge two representations of zero (+0 and -0)

▲ arithmetic circuits are complex

• *Two's complement* representation developed to make circuits easy for arithmetic.

∧ only one representation for zero

▲ just ADD the two numbers to get the right answer (regardless of sign)

Range:
$$- \mathbf{q}^{n-1} \longrightarrow \mathbf{q}^{n-1} - 1$$

Representation:

- ▲ If number is **positive** or **zero**,
 - normal binary representation, zeroes in upper bit(s)
- ▲ If number is **negative**,
 - start with positive number
 - flip every bit (i.e., take the one's complement)
 - then add one

MSB still encodes the sign: 0 = + 1 = -

Positional number representation with a twist
 MSB has a *negative* weight

$$\begin{array}{rcl} 0110 &=& 2^2 + 2^1 &=& 6 \\ 1110 &=& -2^3 + 2^2 + 2^1 &=& -2 \end{array} \begin{array}{rcl} -2^{n-1} & 2^{n-2} & \cdots & 2^1 & 2^0 \end{array}$$

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^{2} + 2^{1} = 6$ $1110 = -2^{3} + 2^{2} + 2^{1} = -2$

$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^2 + 2^1 = 6$ $1110 = -2^3 + 2^2 + 2^1 = -2$

$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^2 + 2^1 = 6$ $1110 = -2^3 + 2^2 + 2^1 = -2$

$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$

11111111

12

Discussion #2 – Chapter 2

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^{2} + 2^{1} = 6$ $1110 = -2^{3} + 2^{2} + 2^{1} = -2$

$$-2^{n-1} 2^{n-2} \cdots 2^1 2^0$$

Positional number representation with a twist
 MSB has a *negative* weight

 $0110 = 2^{2} + 2^{1} = 6$ $1110 = -2^{3} + 2^{2} + 2^{1} = -2$

Discussion #2 – Chapter 2

Two's Complement Shortcut

- To take the two's complement of a number:
 - copy bits from right to left until (and including) the first 1
 - 2. flip remaining bits to the left

Example3: What is **0110101**₂ in decimal? What is it's 2's complement?

Example3: What is 0110101_2 in decimal? What is it's 2's complement?

$0110101_2 = 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ = 53₁₀

Example3: What is **0110101**₂ in decimal? What is it's 2's complement?

 $0110101_2 = 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ = 53₁₀

0110101 (53) 1001010 (1's comp) + 1 1001011 (-53)

Two's Complement Negation

To negate a number, invert all the bits and add 1 (or use shortcut)

Number	Decimal Value	Negated Binary Value
0110	6	1010
0111	7	1001
0000	0	0000
1111	-1	0001
0100	4	1100
1000	-8	1000 (??)

Signed Binary Numbers

Binary	Sign-magnitude	1's compliment	2's complement
0 0 0	0	0	0
0 0 1	1	1	1
0 1 0	2	2	2
0 1 1	3	3	3
1 0 0	-0	-3	-4
1 0 1	-1	-2	-3
1 1 0	-2	-1	-2
1 1 1	-3	-0	-1

Decimal to Binary Conversion

Positive numbers

- start with empty result
- if decimal number is odd, prepend '1' to result else prepend '0'
- divide number by 2, throw away fractional part (INTEGER divide)
- ④ if number is non-zero, go back to ❷ else you are done

Negative numbers

▲ do above for positive version of number and negate result.

Decimal to Binary Conversion

Number	Binary Value
5	0101
6	0110
123	01111011
35	00100011
-35	1011101
1007	01111101111

Hexadecimal Notation

Binary to Hex Conversion

• Every four bits is a hex digit.

▲ start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Boolean Algebra

Boolean Algebra

Boolean Algebra: the mathematics associated with binary numbers

▲ Developed by George Boole in 1854

Variables in boolean algebra can take only one of two possible values: $0 \rightarrow FALSE$ $1 \rightarrow TRUE$

Logic Functions

3 different ways to represent logic functions:

1. **Equation**: a mathematical representation of a logic function A bar over a variable represent an inverting or a NOT operation $out = \overline{s}ab + \overline{s}ab + s\overline{a}b + sab$ Final logic output Each letter variable represents Mathematical operations (i.e. addition and multiplication) are a top-level input to the logic function boolean algebra operations

27

Logic Functions

3 different ways to represent logic functions:

2. <u>Gates</u>: a visual block representation of the function

Four 3-input **AND** gates feeding into one 4-input **OR** gate

28

Logic Functions

3 different ways to represent logic functions:

3. Truth Table: indicates what the output will be for every possible input combination Ζ B C А 0 0 0 0 There will always be 0 1 0 0 at least one output If there are n inputs (left-hand (right-hand columns) 1 0 0 0 columns) there will be 2^n entries (rows) in the table 1 0 1 **<u>EX</u>**: 3 inputs require $2^3 = 8$ rows 0 0 0 For each input combination (row) 0 1 outputs will be 0 either 0 or 1 1 1

29

The Inverter

30

ECEN 301

The AND Gate

31

ECEN 301

The OR Gate

32

ECEN 301

The NAND Gate (NOT-AND)

The NOR Gate (NOT-OR)

34

You should know how to Translate

Equations to Gates

Equations to Gates

37

Gates to Equations

Gates to Equations

39

ECEN 301

Truth Tables to Gates

Each row of truth table is an AND gate
Each output column is an OR gate

S	A	В	OUT
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Truth Tables to Gates

Each row of truth table is an AND gate
Each output column is an OR gate

Truth Table to Equations

Write out truth table a combination of **AND**'s and **OR**'s

- ▲ equivalent to gates
- ▲ easily converted to gates

Truth Table to Equations

Write out truth table a combination of **AND**'s and **OR**'s

- ▲ equivalent to gates
- ▲ easily converted to gates

$$out = \overline{sab} + \overline{sab} + s\overline{ab} + \underline{sab}$$

Equations to Truth Tables

For each AND term

 \wedge fill in the proper row on the truth table

$$out = \overline{s}a\overline{b} + \overline{s}ab + s\overline{a}b + sab$$

Equations to Truth Tables

For each AND term

 \checkmark fill in the proper row on the truth table

$$out = \overline{sab} + \overline{sab} + s\overline{ab} + s\overline{ab}$$

45