Schedule...

Date	Day	Class No.	Title	Chapters	HW Due date	Lab Due date	Exam
17 Sept	Wed	5	Ohm's Law	2.6			
18 Sept	Thu					LAB 1	
19 Sept	Fri		Recitation		HW 2		
20 Sept	Sat						
21 Sept	Sun						
22 Sept	Mon	6	Things Practical	2.6 - 2.8		LAB 2	
23 Sept	Tue						
24 Sept	Wed	7	Network Analysis	3.1 - 3.2	1		1

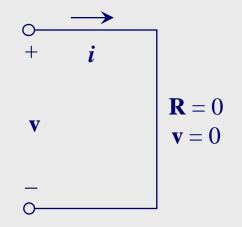
Divided We Fall

Matthew 12:25-26

25 And Jesus knew their thoughts, and said unto them, Every kingdom **divided** against itself is brought to desolation; and every city or house **divided** against itself shall not stand:

<u>Nephi 7:2</u>

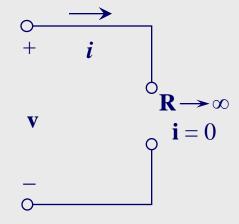
2 And the people were **divided** one against another; and they did **separate** one from another into tribes, every man according to his family and his kindred and friends; and thus they did destroy the government of the land.


Lecture 5 – Resistance & Ohm's Law

3

ECEN 301

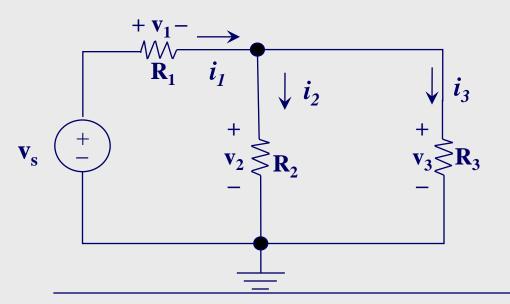
- Short circuit: a circuit element across which the voltage is zero regardless of the current flowing through it
 - ▲ Resistance approaches zero
 - ▲ Flow of current is unimpeded
 - ▲<u>ex</u>: an ideal wire
 - In reality there is a small resistance



Undesirable short circuit – accidental connection between two nodes that are meant to be at different voltages. The resulting excessive current causes: overheating, fire, or explosion

ECEN 301

- Open circuit: a circuit element through which zero current flows regardless of the voltage applied to it
 - Resistance approaches infinity
 - ▲No current flows
 - ▲<u>ex</u>: a break in a circuit
 - At sufficiently high voltages arcing occurs

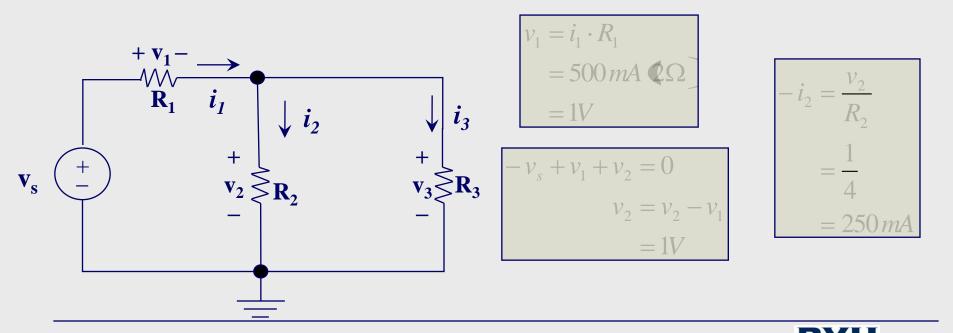


Example: What happens to \mathbf{R}_2 and \mathbf{R}_3 if \mathbf{R}_1 is shorted?

►
$$\mathbf{V_s} = \mathbf{2}\mathbf{V}, \, \mathbf{R_1} = 2\Omega, \, \mathbf{R_2} = \, \mathbf{R_3} = 4\Omega, \, \mathbf{i_1} = 500 \, \mathrm{mA}$$

>
$$\mathbf{R_2}$$
 and $\mathbf{R_3} = \frac{1}{4}$ W rating, $\mathbf{R_1} = \frac{1}{2}$ W rating

ECEN 301

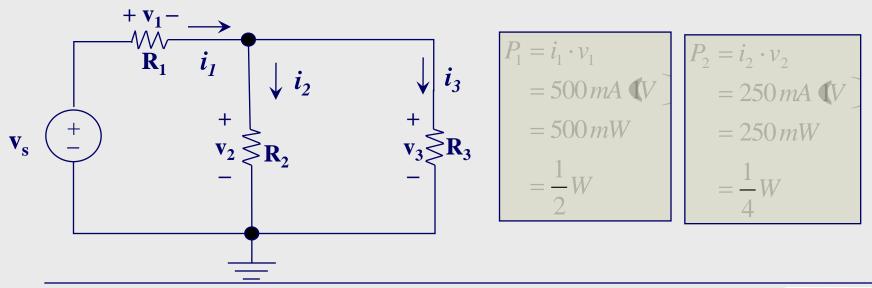

Discussion #7 – Node and Mesh Methods

Example: What happens to \mathbf{R}_2 and \mathbf{R}_3 if \mathbf{R}_1 is shorted?

►
$$\mathbf{V_s} = \mathbf{2}\mathbf{V}, \, \mathbf{R_1} = 2\Omega, \, \mathbf{R_2} = \, \mathbf{R_3} = 4\Omega, \, \mathbf{i_1} = 500 \, \mathrm{mA}$$

$$\blacktriangleright$$
 R₂ and **R**₃ = ¹/₄ W rating, **R**₁ = ¹/₂ W rating

ECEN 301


Discussion #7 – Node and Mesh Methods

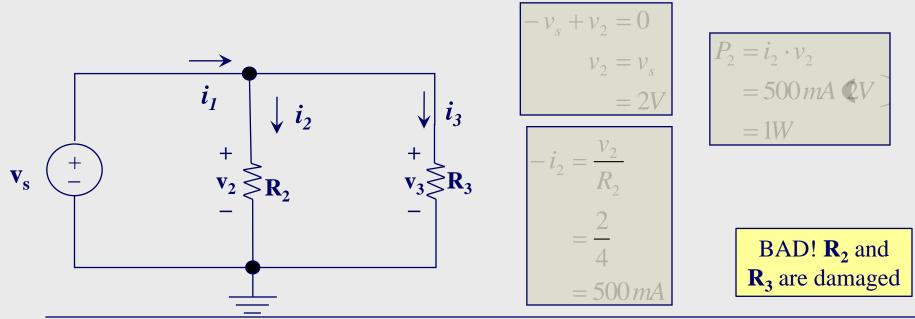
Electrical Engineering Computer Engineering

Example: What happens to \mathbf{R}_2 and \mathbf{R}_3 if \mathbf{R}_1 is shorted?

►
$$\mathbf{V_s} = \mathbf{2}\mathbf{V}, \, \mathbf{R_1} = 2\Omega, \, \mathbf{R_2} = \, \mathbf{R_3} = 4\Omega, \, \mathbf{i_1} = 500 \, \mathrm{mA}$$

$$\blacktriangleright$$
 R₂ and **R**₃ = ¹/₄ W rating, **R**₁ = ¹/₂ W rating

ECEN 301

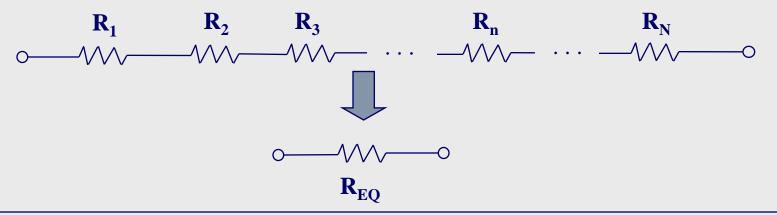

Discussion #7 – Node and Mesh Methods

Example: What happens to \mathbf{R}_2 and \mathbf{R}_3 if \mathbf{R}_1 is shorted?

►
$$\mathbf{V_s} = \mathbf{2}\mathbf{V}, \, \mathbf{R_1} = 2\Omega, \, \mathbf{R_2} = \, \mathbf{R_3} = 4\Omega, \, \mathbf{i_1} = 500 \, \mathrm{mA}$$

$$\blacktriangleright$$
 R₂ and **R**₃ = ¹/₄ W rating, **R**₁ = ¹/₂ W rating

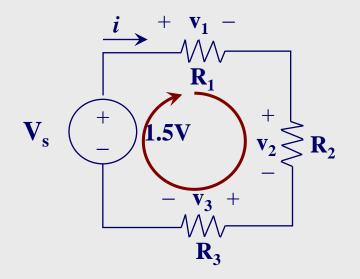
10


ECEN 301

Discussion #7 – Node and Mesh Methods

Series Rule: two or more circuit elements are said to be **in series** if the current from one element *exclusively* flows into the next element.

▲ <u>From KCL</u>: all series elements have the same current

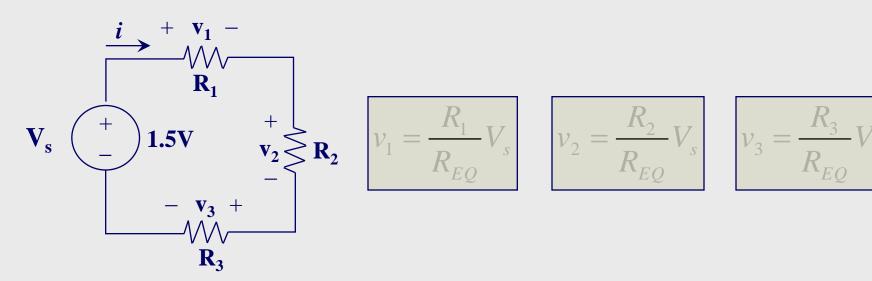

$$R_{EQ} = \sum_{n=1}^{N} R_n$$

11

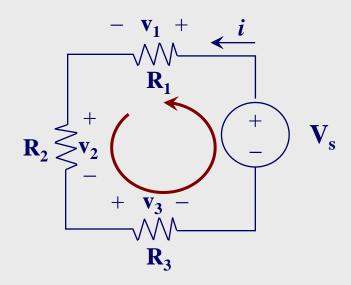
Demonstration of series rule: apply KVL and Ohm's law on the circuit

$$\begin{aligned} -V_s + v_1 + v_2 + v_3 &= 0 \\ V_s &= v_1 + v_2 + v_3 \\ &= (i \cdot R_1) + (i \cdot R_2) + (i \cdot R_3) \\ &= i \cdot (R_1 + R_2 + R_3) \\ &= i \cdot R_{EQ} \\ R_{EQ} &= \frac{V_s}{i} \end{aligned}$$

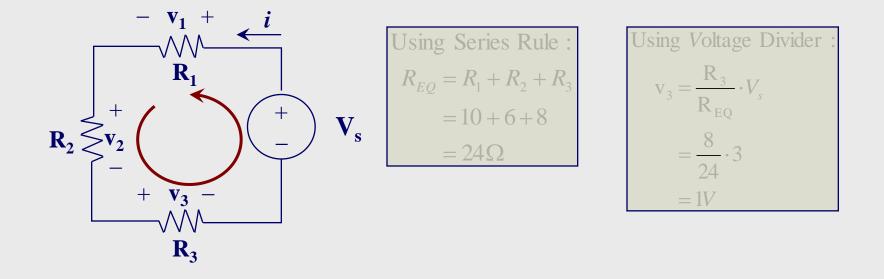
Voltage divider: the voltage across each resistor in a series circuit is directly proportional to the ratio of its resistance to the total series resistance of the circuit


$$V_n = \frac{R_n}{R_1 + R_2 + R_3 + \dots + R_n + \dots + R_N} V_s$$
$$= \frac{R_n}{R_{EQ}} V_s$$
NB: the ratio $\frac{R_n}{R_{EQ}}$ will always be <= 1

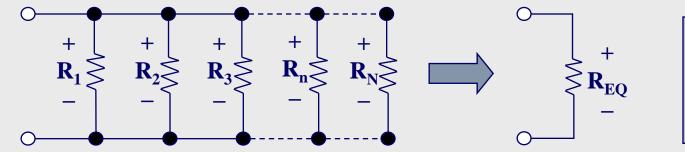
13


ECEN 301

Voltage divider: the voltage across each resistor in a series circuit is directly proportional to the ratio of its resistance to the total series resistance of the circuit

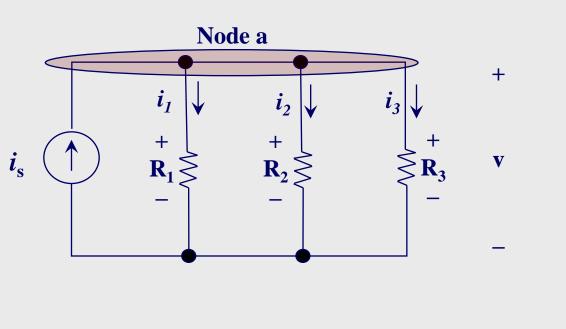


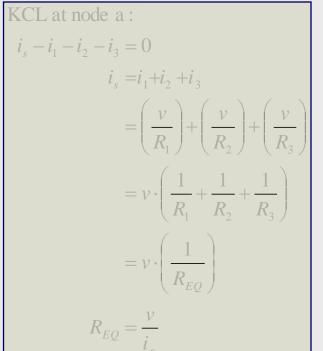
• Example1: Determine \mathbf{v}_3 • $\mathbf{V}_s = 3\mathbf{V}, \mathbf{R1} = 10\Omega, \mathbf{R}_2 = 6\Omega, \mathbf{R}_3 = 8\Omega$


• Example1: Determine \mathbf{v}_3 • $\mathbf{V}_s = 3\mathbf{V}, \mathbf{R1} = 10\Omega, \mathbf{R}_2 = 6\Omega, \mathbf{R}_3 = 8\Omega$

Parallel Rule: two or more circuit elements are said to be in parallel if the elements share the *same* terminals
 From KVL: the elements will have the same voltage

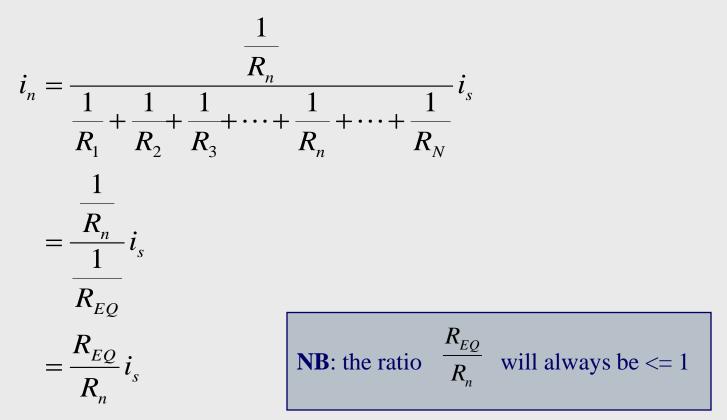
$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N} \qquad R_{EQ} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$



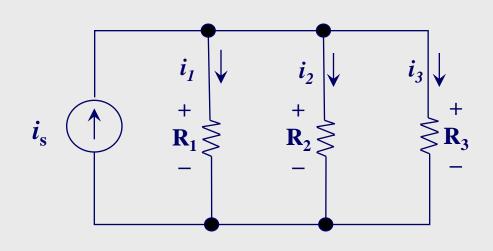

NB: the parallel combination of two resistors is often written: $\mathbf{R}_1 \parallel \mathbf{R}_2$

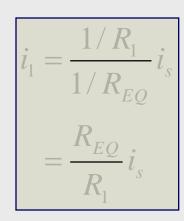
17

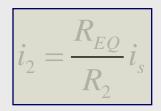
Demonstration of parallel rule: apply KCL and Ohm's law on the circuit

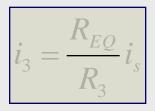


ECEN 301

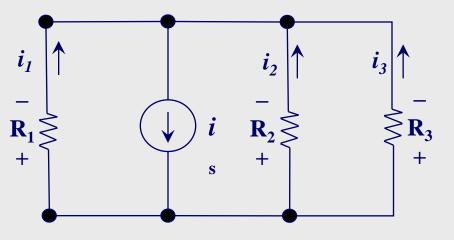

Current divider: the current in a parallel circuit divides in proportion to the resistances of the individual parallel elements



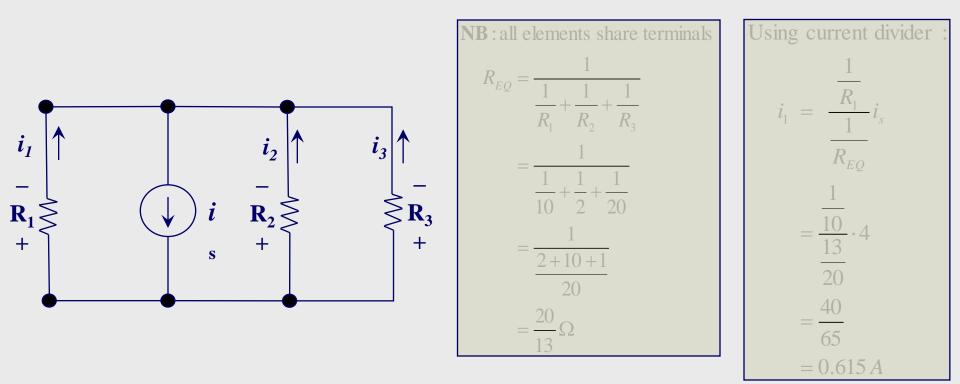



ECEN 301

Current divider: the current in a parallel circuit divides in proportion to the resistances of the individual parallel elements

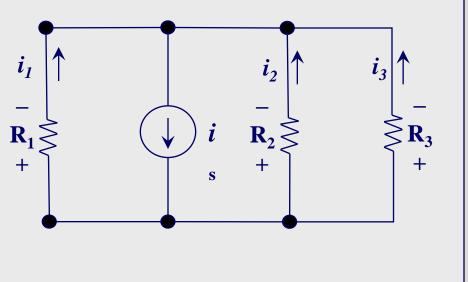


NB: it makes sense that the smaller the resistor, the larger the amount of current that will flow.



• Example2: find
$$i_1$$

• $\mathbf{R}_1 = 10\Omega$, $\mathbf{R}_2 = 2 \Omega$, $\mathbf{R}_3 = 20 \Omega$, $I_s = 4A$


• Example2: find i_1 • $\mathbf{R}_1 = 10\Omega$, $\mathbf{R}_2 = 2 \Omega$, $\mathbf{R}_3 = 20 \Omega$, $I_s = 4A$

ECEN 301

• Example2: find i_1 • $\mathbf{R}_1 = 10\Omega$, $\mathbf{R}_2 = 2 \Omega$, $\mathbf{R}_3 = 20 \Omega$, $I_s = 4A$

Verify that KCL holds with current dividing :

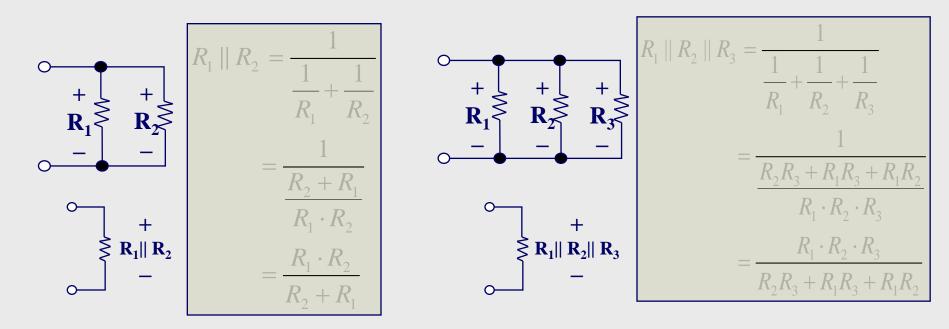
$$i_{s} - i_{1} - i_{2} - i_{3} = 0$$

$$i_{s} = i_{1} + i_{2} + i_{3}$$

$$= \frac{1/R_{1}}{1/R_{EQ}} \cdot i_{s} + \frac{1/R_{2}}{1/R_{EQ}} \cdot i_{s} + \frac{1/R_{3}}{1/R_{EQ}} \cdot i_{s}$$

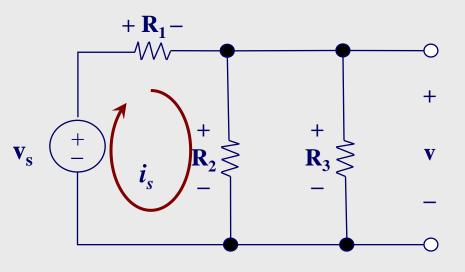
$$= i_{s} \cdot \left(\frac{1/R_{1} + 1/R_{2} + 1/R_{3}}{1/R_{EQ}}\right)$$

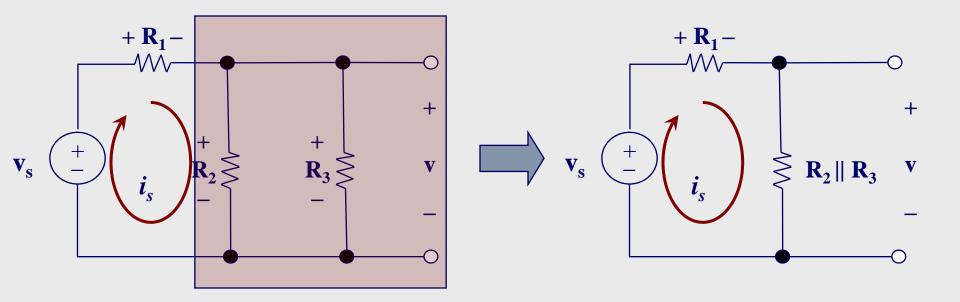
$$= i_{s} \cdot \frac{1/R_{EQ}}{1/R_{EQ}}$$


$$= i$$

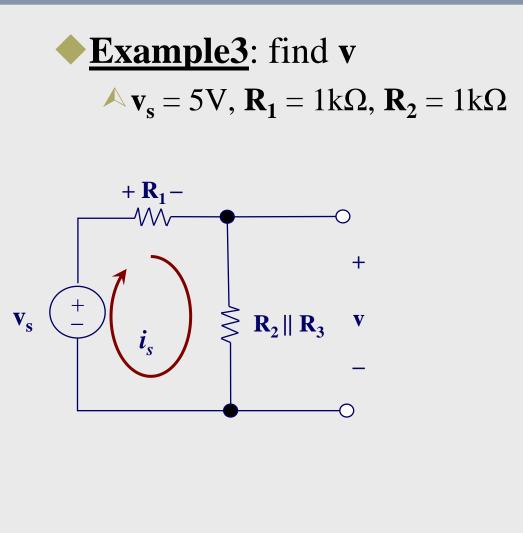
The parallel combination of resistors is often written:

- A For two resistors: $\mathbf{R}_1 \parallel \mathbf{R}_2$
- \checkmark For three resistors: $\mathbf{R}_1 \parallel \mathbf{R}_2 \parallel \mathbf{R}_3$
- 🔺 etc.


In each case $\mathbf{R}_{\mathbf{EQ}}$ for the parallel combination must be found

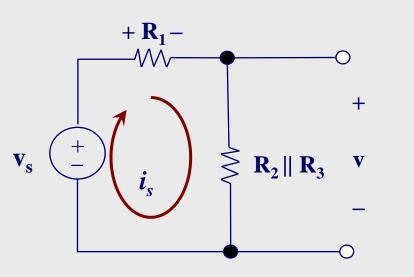

24

• Example3: find v
•
$$\mathbf{v}_{s} = 5V, \mathbf{R}_{1} = 1k\Omega, \mathbf{R}_{2} = 1k\Omega$$



• Example3: find v
•
$$\mathbf{v}_{s} = 5\mathbf{V}, \mathbf{R}_{1} = 1k\Omega, \mathbf{R}_{2} = 1k\Omega$$

ECEN 301


Using voltage divider :
$v = \frac{R_2 \parallel R_3}{R_{EQ}} v_s$
$=\frac{R_2 R_3}{(R_1 + R_2 R_3)} v_s$
$= \frac{R_2 \cdot R_3}{R_2 + R_3} \cdot \frac{1}{\left[R_1 + \left(\frac{R_2 \cdot R_3}{R_2 + R_3}\right)\right]} v_s$
$= \frac{R_2 \cdot R_3}{R_2 + R_3} \cdot \frac{1}{\left(\frac{R_1 \cdot R_2 + R_1 \cdot R_3 + R_2 \cdot R_3}{R_2 + R_3}\right)} v_s$
$= \frac{R_2 \cdot R_3}{(R_2 + R_3)} \cdot \frac{R_2 + R_3}{(R_1 \cdot R_2 + R_1 \cdot R_3 + R_2 \cdot R_3)} v_s$ $= \frac{R_2 \cdot R_3}{(R_2 + R_2 + R_3 + R_2 + R_3)} v_s$
$(\boldsymbol{R}_1 \cdot \boldsymbol{R}_2 + \boldsymbol{R}_1 \cdot \boldsymbol{R}_3 + \boldsymbol{R}_2 \cdot \boldsymbol{R}_3)^{+s}$

27

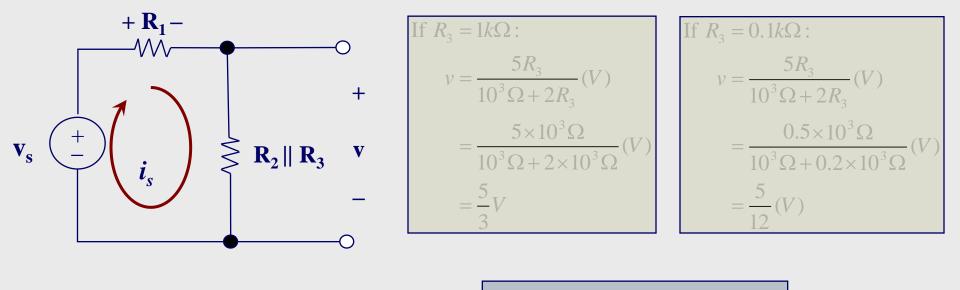
ECEN 301

• Example3: find v • $\mathbf{v}_{s} = 5\mathbf{V}, \mathbf{R}_{1} = 1k\Omega, \mathbf{R}_{2} = 1k\Omega$

Jsing voltage divider :

$$v = \frac{R_2 \cdot R_3}{(R_1 \cdot R_2 + R_1 \cdot R_3 + R_2 \cdot R_3)} v_s$$

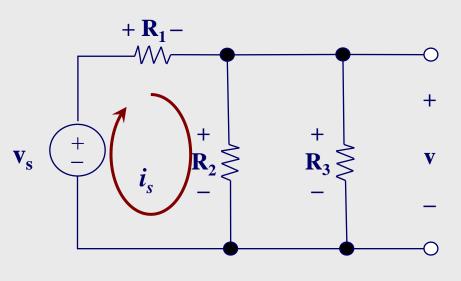
$$= \frac{R_3 \times 10^3 \Omega}{(10^6 \Omega^2 + R_3 \times 10^3 \Omega + R_3 \times 10^3 \Omega)} (5V)$$


$$= \frac{5R_3}{10^3 \Omega + 2R_3} (V)$$

NB: notice how \mathbf{R}_3 controls \mathbf{v}

28

• Example3: find v • $\mathbf{v}_{s} = 5\mathbf{V}, \mathbf{R}_{1} = 1k\Omega, \mathbf{R}_{2} = 1k\Omega$

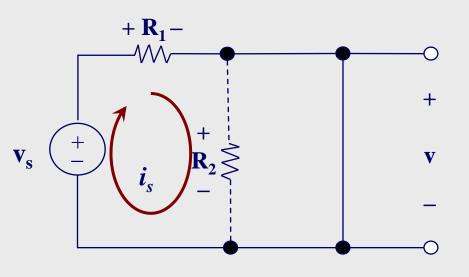


NB: notice how R₃ controls v

29

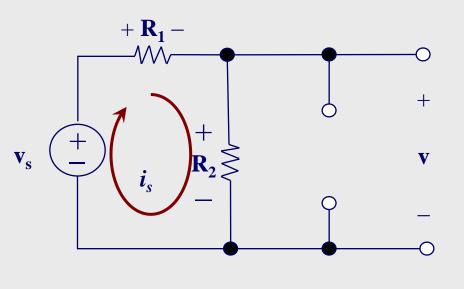
Example3: find v $\wedge \mathbf{v}_{\mathbf{s}} = 5 \mathbf{V}, \mathbf{R}_{\mathbf{1}} = 1 \mathbf{k} \Omega, \mathbf{R}_{\mathbf{2}} = 1 \mathbf{k} \Omega$

As $R_3 \rightarrow \infty$: As $R_3 \rightarrow 0$:


$v \rightarrow \frac{5}{2}$ In other words : $V \rightarrow V_2$

NB: notice how **R**₃ controls **v**

30


• Example3: find v • $\mathbf{v}_{s} = 5V, \mathbf{R}_{1} = 1k\Omega, \mathbf{R}_{2} = 1k\Omega$

As
$$R_3 \rightarrow 0$$
:
 $v \rightarrow 0$
In other w ords, no current
goes throu gh R₂

• Example3: find v • $\mathbf{v}_{s} = 5V, \mathbf{R}_{1} = 1k\Omega, \mathbf{R}_{2} = 1k\Omega$

As
$$R_3 \rightarrow \infty$$
:
 $v \rightarrow \frac{5}{2}$
In other words :
 $v \rightarrow v_2$
(no current goes through R_3)

