ECEn 370

Homework Problem Set 13 (THE LAST ONE!)

Due on Wednesday, April 9, 2014.

From Bertsekas and Tsitsiklis, Introduction to Probability, 2nd Ed.

1. (5 pts) Chapter 7 Problem 1.
2. (5 pts) Chapter 7 Problem 3.
3. (5 pts) Chapter 7 Problem 4.
4. (5 pts) Chapter 7 Problem 10.
5. (5 pts) Chapter 7 Problem 11.
6. (5 pts) Chapter 7 Problem 13.
7. MATLAB Problem (25 points)

Here we will employ some of your linear algebra skills to be able to find steady-state probabilities.
a) Find the Markov probability matrix \mathbf{M} associated with Problem 7.13 above.
b) Perform the following decomposition in MATLAB.
$[\mathrm{V}, \mathrm{D}]=\operatorname{eig}(\mathrm{M})$
V is your matrix of eigenvectors. D is your matrix of eigenvalues. What you will notice is that you will have eigenvalues of 1 (steady-state solution) and eigenvalues of <1 which correspond to the transient.
c) Find the steady-state values by the following code:

SS _matrix $=\mathrm{V} *\left[\begin{array}{ccccccccc}0 & 0 & 0 ; & 0 & 0 & 0 ; & 0 & 0 & 1\end{array}\right] / \mathrm{V}$
You should then see that you have a steady-state solution which corresponds to the steady-state values that you calculated in Problem 13.
d) Notice that you can achieve the same by executing the code:
$\mathrm{V} * \mathrm{D}^{\wedge} 100 / \mathrm{V}$
This is basically just showing how the transients decay.
e) Then perform the following:

M^1000

Why does this give you the same result as part d and c?
f) What happens if you take SS_matrix to the nth power? Why do you get the result that you do?
g) Consider the matrix, $\mathbf{M}=\left[\begin{array}{ccc}0.2 & 0.8 & 0 \\ 0.3 & 0.6 & 0.1 \\ 0 & 0 & 1\end{array}\right]$. What happens to \mathbf{M}^{n} for large n ?
h) Consider the chain given by $\mathbf{M}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0.1 & 0.8 & 0.1 \\ 0 & 0 & 1\end{array}\right]$. What happens to \mathbf{M}^{n} for large n ? Why?

