ECEn 487 - Introduction to Digital Signal Processing

Winter 2013

Quiz 5

1. I have the following pole-zero diagrams for four different filters.

 ![Pole-Zero Diagrams](image)

 I) (1 pt) Which filters are stable?
 \[B, C, D \]

 II) (1 pt) Which filters are FIR?
 \[C \]

 III) (1 pt) Which filters are minimum-phase?
 \[D \]

 IV) (1 pt) Which filters are generalized linear-phase?
 \[C \]

 V) (2 pts) Indicate for each filter if it is all-pass, low-pass, high-pass, or band-pass.
 a) \textit{All-pass}
 b) \textit{Band-pass}
 c) \textit{High-pass}
 d) \textit{Low-pass}

2. (2 pts) Suppose you have a sequence \(\tilde{x}[n] \), which is periodic with a period of \(N = 10 \). What is the resulting sequence \(\tilde{x}[n-10] + \tilde{x}[n+20] \)?

 \[2 \tilde{x}[n] \]

3. (2 pts) Suppose I have sequences \(\tilde{x}[n] \) and \(\tilde{y}[n] \) that are periodic with a period of 7. If I find the discrete Fourier Series for each of these, \(\tilde{X}[k] \) and \(\tilde{Y}[k] \), respectively, then what is the resulting sequence, \(\tilde{z}[n] \), if \(\tilde{Z}[k] = 2\tilde{X}[k] - 3\tilde{Y}[k] \).

 \[\tilde{z}[n] = 2\tilde{x}[n] - 3\tilde{y}[n] \]