Homework 1 Solutions
ECEn 670, Fall 2009

A.1. Use the first seven relations to prove relations (A.10), (A.13), and (A.16).
Prove (FUG)" = F°nN G° (A.10).

(FUG) = ((F°NG9)°)" by A.6.

(FUQR)“=F°NG°by A4

Prove FU(FNG)=F=FN(FUG) (A.13).
FN(FUG)=(FNF)U(FNG) by A3.
FN(FUG)=FU(FNG) by A.20 (proved in book)
Now let’s look at:

FCFUX FCFU(FNG)
FNXCF. . FN(FUG)CF

BecauseFN (FUG) = FU (FNG),
FCcFN(FUG)and FN(FUG)CF

L F=FN(FUG)
FU(FNG)=F=Fn(FUG).

Prove FUG = FU(F°NG)=FU(G—F) (A.16).
FUG=(FUG)NQ by A.T.
(FUG)NQ = (FUG)N(FUF*°) by A.10.
(FUG)N(FUF°) =FU(GNF°) by A.17.

L FUGNF)=FU(F°NG) by A8.
G-F=2GNFe°

S FU(GNF)=FU(G-F)

L FUG=FU(F°NG)=FU(G-F)

A.} Show that F C G wmplies that FNG=F, FUG =G, and G° C F°.
FCcG=FnNnG=F

F C G means that w € F = w € G.

weFNGsweFandweG@=weF

=FNGCFand FCGNF

=FNG=F

FCG=FUG=G

weFUG=>weForwelG
= w € G orw € G because F' C G.
s>wedG

= FUGCAQG.

weEG=welGNN
=weGN(FUF°)
we(GNF)U(GNF°)
=swecForwe (GNF°
sweForwedG
=sweFUG

=GCFUG

=FUG=(G

FCG=G°CFe
weGswd¢dG
=>wé¢F
=weF°

= G° C F°



”

A.8 Prove the countably infinite version of deMorgan’s “laws.” For example, given a

sequence of sets F;; i=1, 2, . . . , then
oo ) ¢
(F= (U F)
i=1 i=1

To do this, we start by proving two subset relationships
we Nz Fi

= w € F; for all i.

= w ¢ Ff for any i.
=wé¢ U, Ff

=we (U2, FH)°
SN B (Ui S
we Uz, Fr)”

=w¢ Ul Ff

= w ¢ FY for any 1.

= w € F; for all i.
=weN2 1 F;

(U E) CNE F

Because these two are subsets of each other,

mz?il F; = (U:il Ff)c

A.12 Show that inverse images preserve set theoretic operations, that is, given f:Q — A
and sets F' and G in A, then

FTHE) = (71 F)°,
fTHFUG) = U UG,
and
fTPENG) =1 F)NfHE).

If {F;, i € I} is an indexed family of subsets of A that partitions A, show that {ffl (Fy), i€ I}
is a partition of Q). Do images preserve set theoretic operations in general? (Prove that
they do or provide a counterexample).

For f=1(F) = (f~' (F))",

we fTHF) & ()EFC@}C()¢F@w¢ffl(F)@we[ffl(w)]c
For f (FUG) “HF)UFHG),

wef (FUG)@f()eFUG(:)f()eForf(w)eG
sweftF)owef G ewe fHF)UFLG)

For f~(FNG)=f"1(F)nf~(G),
wefTFNG) & f(w)eFNG & f(w) e Fand f(w) €G

swefl(F)andwe fFHG)swe fFHF)NFH(G)

Take {F;, i € Z}. If it is an indexed family of subests of A that partitions A, this means that
FENFj=0;ali, jeZ, i#]

and that

UzGI F A

We now need to show the same for the inverse image {f~! (F;), i € Z}.

Our proofs above show that set theoretic operations are preserved for inverse images.
FHE N E) = fE0) =0 alli, j €T, i £

We now need to show that (J,c, f~' (F;) = Q.

This is true because J,c7 f7 (Fy) = [ (Ujez ) = F7H(A) = Q.



Images do not preserve set theoretic operations in general. This is particularly well-illustrated for the
case of non one-to-one mappings.

Let Q@ ={a, b, ¢}, A={d, e} with f(a) = f(b) =d and f (c) =e.

Let F = {a}, F° = {b, c}.

f(F) =A{d}

fFF) =f{b, c}) ={d e} # [f (F)]° = {e}

2.8 Describe the sigma-field of subsets of R generated by the points or singleton sets.
Does this sigma-field contain interals of the form (a, b) for b > a?
The sigma-field S generated by the points must have all countable unions of distinct points of the
form U; {a;} together with the complements of such sets of the form (U; {b;})° = n; {b;}°, which are
intersections of the sample space minus an individual point. Since S is a field, it must contain simple
unions of the form

F = Ui {CL,L} U ﬂj {bj}c .

The sigma-field does not contain intervals since intervals do not have the form of F.

2.7 Let Q) = [0, o0) be a sample space and let F be the sigma-field of subsets of 2 generated
by all sets of the form (n, n+1) for n=0, 1, 2, ...

(a) Are the following subsets of Q in F? (i) [0, o), (i) Z4 = {0,1,2,...}, (%z) [0, k] U
[k + 1, 00) for any positive integer k, (iv) {k} for any positive integer k, (v) [0, k] for any
positive integer k, (vi) (1/3, 2).

(b) Define the following set function on subsets of

P(F)y=c Y 37"

i€Z41it1/2€F

(If there is no i for which i +1/2 € F, then the sum is taken as zero.) Is P a probability
measure on (2, F) for an appropriate choice of c? If so, what is c?

(¢) Repeat part (b) with B, the Borel field, replacing F as the event space.

(d) Repeat part (b) with the power set of [0, co) replacing F as the event space.

(e) Find P (F) for the sets F' considered in part (a).

(a) i) Yes, because Q is always in F.
ii) Yes, because this is the set that is formed by the complement of all of the subsets (n, n+ 1) for all
n= 0, 1, 2, ... This can be written

Z, = (D(n,n—i—l)) eF

n=0

iii) [0, KUk + 1, 00) = (k, k+ 1) € F

iv) {k} ¢ F since the set cannot be constructed as a countable combination of set theoretic operations
on generating sets.

v) [0, k] ¢ F since the set cannot be constructed as a countable combination of set theoretic operations
on generating sets.

vi) (1/3, 2) since the set cannot be constructed as a countable combination of set theoretic operations
on generating sets.

b) This is a suitable probability measure if P(€2) = 1. It also satisifies the properties of nonnegativity
and countable additivity.

> , c 3c
() c}; 1-1/3 2

This means that ¢ = 2/3.

c) This is going to be the same as in part (b), so P is a valid probability measure with ¢ = 2/3.

d) This is going to be the same as in part (b) since P was defined for all sets and is thus a probability
measure on the power set.

e)i) 2 =[0, oo) and thus P(F') = 1.



ii) P(Z4) =0 as there are no 4 for which i +1/2 € Z,.

iii) P ([0, U k+1,00) = P((k, k+1)9) = 1= P((k, k+1) =1 - % (37%),
iv) P ({k}) = 0 as there are no k for which k +1/2 € Z,.

V) P (0, k) = Fig 8 =137+

vi) P((1/3, 2)=c(3°+3 1) =2(1+3)=4&

2.9 Consider the measurable space ([0, 1], B ([0, 1])) .Define a set function P on this space
as follows:
1/2 it 0€ F or 1 € F but not both

P(F)=41 if0eFand 1€ F

0 otherwise

Is P a probability measure?

Yes. P is a probability measure if it satisifes the three axioms for probability measures. It satisfies the
property of nonnegativity and the property P (2) = 1. We need to demonstrate countable additivity:
(a) 0 ¢ F; and 0 ¢ F; for all ¢. Then P(U;F;) =0=>_, P(F}).

(b) 0 € F; for some ¢ and 0 ¢ F; for all 4, or 1 € F; for some i and 1 ¢ F; for all i. Then
P F;) =1/2=3, P(F;).

(c) 0 € F; for some i and 0 € Fj for some j # k. Then P (U;F;) =1 =), P (F;).

(d) 0 € F; and 0 € F}, for some k. Then P (U;F;) =1 =), P(F;).

Thus P is a probability measure.

2.10 Let S be a sphere in R3: S = {(z, y, z) : x* +y* + 2% <r?}, wherer is a fized radius. In
the sphere are fired N molecules of gas, each molecule being considered as an infinitesimal
volume (that is, it occupies only a point in space). Define for any subset F of S the

function
# (F) = {the number of molecules in F'}

Show that P (F) = # (F) /N is a probability measure on the measurable space consisting
of S and its power set.

We need to demonstrate that this measure satifies the three axioms for probability measures.
#(F)>0= P(F)=P(F)=4#(F)/N > 0 Nonnegativity

#(S) =N = P(Q2) = N/N =1 Normalization

Now we need to prove countable additivity.

For disjoint sets described by {F;; i =0, 1, — 1}, we can say that any particle in F; is not in F}

for i # j. Then # (Uf: ) Zf 01#( ) and this implies P (U ) = Zf;ol P (F;)
Suppose now that the disjoint sets are a countable collection {F;; i =0, 1, ...}, let M be the largest
integer ¢ such that # (F') > 0 (there must be such a finite integer since there are only N particles).

Then # (U;2 54, Fi) = 0 and
#UZF) =# (UL F) +# UZ i F)
=# UiAiO F;
=S M # (F) = S5 # (F)

This implies that P ({J;2, F;) = Yo P (F;) and hence P is a probability measure.

2.16 Prove that P(FUG) < P(F)+ P(G). Prove more generally that for any sequence
(i-e., countable collection) of events F;,



This inequality is called the union bound or the Bonferroni inequality. (Hint: use Prob-
lem A.2 or Problem 2.1).

We know from 2.1 that in general, P (FUG) = P(F)+ P(G) — P(FNGQG)

From non-negativity, we know that P (FNG) > 0 and thus P(FUG) < P(F)+ P (G).

Let G; = F; — Uj<i F; which makes these sets of G disjoint.
P(Uz Fz) = P(Ui Gi)
= ZiP(Gi)

=P (F-U B)
We know that P (FZ —Uj<i Fj) < P(F)
<2 P(F)

2.23 Answer true or false for each of the following statements. Answers must be justified.
(a) The following is a valid probability measure on the sample space Q = {1,2,3,4,5,6}
with event space F = all subsets of ().

1
P(F)=—>i;al FeF
i€EF

True.
To prove this, we have to show that the probability measure satisifies the different axioms.
P (F) > 0 so nonnegativity is satisifed.
P (©2) = 1 so normalization is satisfied.
Now countable additivity needs to be proved.
If F and G are disjoint, then P (FUG) = P (F)+ P (G)
— 1 ;
P(F)=512 jep !
i¢G
— 1 ;
PO =% 4p i
ieG

P(FUG) =3 Yicrueyi =31 | L jep i+2 igr 1| =PE)+PG)
i¢ G ieG

(b) The following is a valid probaility measure on the sample space Q = {1,2,3,4,5,6} with
event space F = all subsets of Q):

P(F) = 1 if2eFor6ekF
" ]0 otherwise

False.
This is not a valid probability measure because countable additivity is not satisfied.
P({2}) = 1.

P({6)) =1.
P({2,6}) = 1.
P({2,6}) # P ({2}) + P ({6})

(¢c) If P(GUF)=P(F)+ P(G), then F and G are independent.

False.

If F' and G are independent, then P (FNG) = P (F) P (G)

By definition, P (GU F) = P (F)+ P (G) — P(FNG).

Because P (F) > 0 and P (G) > 0, then if F and G are independent, P (FNG) > 0 and
P(GUF)#P(F)+ P(G)



(d) P (F|G) > P(Q) for all events F' and G.

False.

Just pick two disjoint events F' and G with nonzero probability for P (G).
Then, P (F|G) =0 and P (G) > 0.

(e) Muturally exclusive (disjoint) events with nonzero probability cannot be independent.
True.

Suppose that F' and G have nonzero probability so that P (F') P (G) > 0. Since the events are disjoint,
P(FNG) = 0 and thus P(F|G) = P(FNG)/P(G) = 0 # P(F). Thus, the events cannot be
independent.

(f) For any finite collection of events F.i =1,2,...,N

UV, F) ZP

True.
Define G,, = F;, — U;j<;Fj. Then G,, C Fy,and the G,, are disjoint so that

N N

P(UN,F) =P (UL,Gi) =) P(G) <> P(F)

2.26 Given a sample space O =1{0,1,2,...} define

(a) What must v be in order for p(k) to be a pmf?
To be a valid pmf, it must be positive for all values of k and satisfy Y, p (k) = 1.
The infinite sum of a geometric progression with ratio a, |a] < 1 is

9]
E ak =
k=0

Thus, we can write

1k _ _o9_1
Z:o:o (5) - 1- 1/2 2= ¥
v = % and our pmf is p(k) = ﬁ

(b) Find the probabilities P ({0,2,4,6,...}), P({1,3,5,7,...}), and P ({1,2,3,4,...,20}).
Even outcomes:

P({07274’67"'}) Zp(O) +.p(2)+p(4)+~-~zzioiop(2i) :E;ZOQ%%

=5 o =5 ie0 (1) =3 o7 = 3¢
Odd outcomes:
P({1,3,5,6,...})=1—P({0,2,4,5,...}) =1—
Finite outcomes:

Formula for finite sum of N + 1 successive terms of geometric progression with ratio a:
N+n

1_aN+1
> ke
1-a
20 20 k 1—(1/2)%! 21
P({172a374a"'720}) Zk Op( ) = k:OZ’&‘% = % k=0 (%) = %1(77{/; =1- (%) ~

1-48x1077



(c) Suppose that K is a fized integer. Find P ({0, K,2K,3K,...}).
This is very similar to computing the even outcomes case above:

_1 11 1\ _ 1 1 _ oK1
= 5220 2K — 522’20 (27) — 2 1-(1/2)F — 2F-1°

(d) Find the mean, second moment, and variance of this pmf.
We know from a geometric pmf that p(k) = (1 —p)k_lp; k=1,2,. . . , wherep € (0, 1) is a
parameter that the mean is 1/p and the variance is (1 — p) /p?. Suppose that p = 1/2. This means
that p(1/2) = (1/2)(1/2)*" = (1/2)*. This is useful because this define the following sums:
oo k
m=3 4 ok (%) = 1/]9; 2
%) 2 — 1/2
o2 =Y, (k—m)* (3)" = =1 =2
m? =024+m?=2+4=6=> 77,k (%)k
The pmf of this problem can then be considered in relation to the geometric pmf
0o 00 0o k 00 k
m =3 _okp(k) =220 QTkH =2 k=0 % k (%) :2% Dok (%)2 = % 2=1
m(”:Ziiok"’p(k):ZEiok”g%:Z?’:o%'%:éiﬁo%:%ﬁ:i"
o?=m® —m?=3-1=2



