Homework 1 Solutions

ECEn 670, Fall 2009
A.1. Use the first seven relations to prove relations (A.10), (A.13), and (A.16). Prove $(F \cup G)^{c}=F^{c} \cap G^{c}$ (A.10).
$(F \cup G)^{c}=\left(\left(F^{c} \cap G^{c}\right)^{c}\right)^{c}$ by A.6.
$(F \cup G)^{c}=F^{c} \cap G^{c}$ by A. 4

Prove $F \cup(F \cap G)=F=F \cap(F \cup G)$ (A.13).
$F \cap(F \cup G)=(F \cap F) \cup(F \cap G)$ by A.3.
$F \cap(F \cup G)=F \cup(F \cap G)$ by A. 20 (proved in book)
Now let's look at:
$F \subset F \cup X \therefore F \subset F \cup(F \cap G)$
$F \cap X \subset F \therefore F \cap(F \cup G) \subset F$
Because $F \cap(F \cup G)=F \cup(F \cap G)$,
$F \subset F \cap(F \cup G)$ and $F \cap(F \cup G) \subset F$
$\therefore F=F \cap(F \cup G)$
$F \cup(F \cap G)=F=F \cap(F \cup G)$.
Prove $F \cup G=F \cup\left(F^{c} \cap G\right)=F \cup(G-F)$ (A.16).
$F \cup G=(F \cup G) \cap \Omega$ by A.7.
$(F \cup G) \cap \Omega=(F \cup G) \cap\left(F \cup F^{c}\right)$ by A. 10 .
$(F \cup G) \cap\left(F \cup F^{c}\right)=F \cup\left(G \cap F^{c}\right)$ by A.17.
$\therefore F \cup\left(G \cap F^{c}\right)=F \cup\left(F^{c} \cap G\right)$ by A.8.
$G-F \triangleq G \cap F^{c}$
$\therefore F \cup\left(G \cap F^{c}\right)=F \cup(G-F)$
$\therefore F \cup G=F \cup\left(F^{c} \cap G\right)=F \cup(G-F)$
A. 4 Show that $F \subset G$ implies that $F \cap G=F, F \cup G=G$, and $G^{c} \subset F^{c}$.
$F \subset G \Rightarrow F \cap G=F$
$F \subset G$ means that $\omega \in F \Rightarrow \omega \in G$.
$\omega \in F \cap G \Leftrightarrow \omega \in F$ and $\omega \in G \Rightarrow \omega \in F$
$\Rightarrow F \cap G \subset F$ and $F \subset G \cap F$
$\Rightarrow F \cap G=F$
$F \subset G \Rightarrow F \cup G=G$
$\omega \in F \cup G \Rightarrow \omega \in F$ or $\omega \in G$
$\Rightarrow \omega \in G$ or $\omega \in G$ because $F \subset G$.
$\Rightarrow \omega \in G$
$\Rightarrow F \cup G \subset G$.
$\omega \in G \Rightarrow \omega \in G \cap \Omega$
$\Rightarrow \omega \in G \cap\left(F \cup F^{c}\right)$
$\Rightarrow \omega \in(G \cap F) \cup\left(G \cap F^{c}\right)$
$\Rightarrow \omega \in F$ or $\omega \in\left(G \cap F^{c}\right)$
$\Rightarrow \omega \in F$ or $\omega \in G$
$\Rightarrow \omega \in F \cup G$
$\Rightarrow G \subset F \cup G$
$\Rightarrow F \cup G=G$
$F \subset G \Rightarrow G^{c} \subset F^{c}$
$\omega \in G^{c} \Leftrightarrow \omega \notin G$
$\Rightarrow \omega \notin F$
$\Rightarrow \omega \in F^{c}$
$\Rightarrow G^{c} \subset F^{c}$
A. 8 Prove the countably infinite version of deMorgan's "laws." For example, given a sequence of sets $F_{i} ; i=1$, 2, . . ., then

$$
\bigcap_{i=1}^{\infty} F_{i}=\left(\bigcup_{i=1}^{\infty} F_{i}^{c}\right)^{c}
$$

To do this, we start by proving two subset relationships
$\omega \in \bigcap_{i=1}^{\infty} F_{i}$
$\Rightarrow \omega \in F_{i}$ for all i.
$\Rightarrow \omega \notin F_{i}^{c}$ for any i.
$\Rightarrow \omega \notin \bigcup_{i=1}^{\infty} F_{i}^{c}$
$\Rightarrow \omega \in\left(\bigcup_{i=1}^{\infty} F_{i}^{c}\right)^{c}$
$\therefore \bigcap_{i=1}^{\infty} F_{i} \subset\left(\bigcup_{i=1}^{\infty} F_{i}^{c}\right)^{c}$
$\omega \in\left(\bigcup_{i=1}^{\infty} F_{i}^{c}\right)^{c}$
$\Rightarrow \omega \notin \bigcup_{i=1}^{\infty} F_{i}^{c}$
$\Rightarrow \omega \notin F_{i}^{c}$ for any i.
$\Rightarrow \omega \in F_{i}$ for all i.
$\Rightarrow \omega \in \bigcap_{i=1}^{\infty} F_{i}$
$\therefore\left(\bigcup_{i=1}^{\infty} F_{i}^{c}\right)^{c} \subset \bigcap_{i=1}^{\infty} F_{i}$
Because these two are subsets of each other,
$\bigcap_{i=1}^{\infty} F_{i}=\left(\bigcup_{i=1}^{\infty} F_{i}^{c}\right)^{c}$
A.12 Show that inverse images preserve set theoretic operations, that is, given $f: \Omega \rightarrow A$ and sets F and G in A, then

$$
\begin{gathered}
f^{-1}\left(F^{c}\right)=\left(f^{-1}(F)\right)^{c}, \\
f^{-1}(F \cup G)=f^{-1}(F) \cup f^{-1}(G),
\end{gathered}
$$

and

$$
f^{-1}(F \cap G)=f^{-1}(F) \cap f^{-1}(G)
$$

If $\left\{F_{i}, i \in \mathcal{I}\right\}$ is an indexed family of subsets of A that partitions A, show that $\left\{f^{-1}\left(F_{i}\right), i \in \mathcal{I}\right\}$ is a partition of Ω. Do images preserve set theoretic operations in general? (Prove that they do or provide a counterexample).

For $f^{-1}\left(F^{c}\right)=\left(f^{-1}(F)\right)^{c}$,
$\omega \in f^{-1}\left(F^{c}\right) \Leftrightarrow f(\omega) \in F^{c} \Leftrightarrow f(\omega) \notin F \Leftrightarrow \omega \notin f^{-1}(F) \Leftrightarrow \omega \in\left[f^{-1}(\omega)\right]^{c}$
For $f^{-1}(F \cup G)=f^{-1}(F) \cup f^{-1}(G)$,
$\omega \in f^{-1}(F \cup G) \Leftrightarrow f(\omega) \in F \cup G \Leftrightarrow f(\omega) \in F$ or $f(\omega) \in G$
$\Leftrightarrow \omega \in f^{-1}(F)$ or $\omega \in f^{-1}(G) \Leftrightarrow \omega \in f^{-1}(F) \cup f^{-1}(G)$
For $f^{-1}(F \cap G)=f^{-1}(F) \cap f^{-1}(G)$,
$\omega \in f^{-1}(F \cap G) \Leftrightarrow f(\omega) \in F \cap G \Leftrightarrow f(\omega) \in F$ and $f(\omega) \in G$
$\Leftrightarrow \omega \in f^{-1}(F)$ and $\omega \in f^{-1}(G) \Leftrightarrow \omega \in f^{-1}(F) \cap f^{-1}(G)$

Take $\left\{F_{i}, i \in \mathcal{I}\right\}$. If it is an indexed family of subests of A that partitions A, this means that $F_{i} \cap F_{j}=\emptyset ;$ all $i, j \in \mathcal{I}, i \neq j$
and that
$\bigcup_{i \in \mathcal{I}} F_{i}=A$
We now need to show the same for the inverse image $\left\{f^{-1}\left(F_{i}\right), i \in \mathcal{I}\right\}$.
Our proofs above show that set theoretic operations are preserved for inverse images.
$f^{-1}\left(F_{i}\right) \cap f^{-1}\left(F_{j}\right)=f^{-1}(\emptyset)=\emptyset$; all $i, j \in \mathcal{I}, i \neq j$
We now need to show that $\bigcup_{i \in \mathcal{I}} f^{-1}\left(F_{i}\right)=\Omega$.
This is true because $\bigcup_{i \in \mathcal{I}} f^{-1}\left(F_{i}\right)=f^{-1}\left(\bigcup_{i \in \mathcal{I}} F_{i}\right)=f^{-1}(A)=\Omega$.

Images do not preserve set theoretic operations in general. This is particularly well-illustrated for the case of non one-to-one mappings.
Let $\Omega=\{a, b, c\}, A=\{d, e\}$ with $f(a)=f(b)=d$ and $f(c)=e$.
Let $F=\{a\}, F^{c}=\{b, c\}$.
$f(F)=\{d\}$
$f\left(F^{c}\right)=f(\{b, c\})=\{d, e\} \neq[f(F)]^{c}=\{e\}$
2.3 Describe the sigma-field of subsets of \Re generated by the points or singleton sets. Does this sigma-field contain interals of the form (a, b) for $b>a$?
The sigma-field \mathcal{S} generated by the points must have all countable unions of distinct points of the form $\cup_{i}\left\{a_{i}\right\}$ together with the complements of such sets of the form $\left(\cup_{i}\left\{b_{i}\right\}\right)^{c}=\cap_{i}\left\{b_{i}\right\}^{c}$, which are intersections of the sample space minus an individual point. Since \mathcal{S} is a field, it must contain simple unions of the form

$$
F=\cup_{i}\left\{a_{i}\right\} \cup \cap_{j}\left\{b_{j}\right\}^{c} .
$$

The sigma-field does not contain intervals since intervals do not have the form of F.
2. 7 Let $\Omega=[0, \infty)$ be a sample space and let \mathcal{F} be the sigma-field of subsets of Ω generated by all sets of the form ($n, n+1$) for $n=0$, 1, 2, ...
(a) Are the following subsets of Ω in \mathcal{F} ? (i) $\left[0, \infty\right.$, (ii) $\mathcal{Z}_{+}=\{0,1,2, \ldots\}$, (iii) $[0, k] \cup$ $[k+1, \infty)$ for any positive integer k, (iv) $\{k\}$ for any positive integer k, (v) $[0, k]$ for any positive integer k, (vi) $(1 / 3,2)$.
(b) Define the following set function on subsets of Ω :

$$
P(F)=c \sum_{i \in \mathcal{Z}_{+}: i+1 / 2 \in F} 3^{-i}
$$

(If there is no i for which $i+1 / 2 \in F$, then the sum is taken as zero.) Is P a probability measure on (Ω, \mathcal{F}) for an appropriate choice of c ? If so, what is c ?
(c) Repeat part (b) with \mathcal{B}, the Borel field, replacing \mathcal{F} as the event space.
(d) Repeat part (b) with the power set of $[0, \infty)$ replacing \mathcal{F} as the event space.
(e) Find $P(F)$ for the sets F considered in part (a).
(a) i) Yes, because Ω is always in \mathcal{F}.
ii) Yes, because this is the set that is formed by the complement of all of the subsets $(n, n+1)$ for all $n=0,1,2, \ldots$ This can be written

$$
\mathcal{Z}_{+}=\left(\bigcup_{n=0}^{\infty}(n, n+1)\right)^{c} \in \mathcal{F}
$$

iii) $[0, k] \cup[k+1, \infty)=(k, k+1)^{c} \in \mathcal{F}$
iv) $\{k\} \notin \mathcal{F}$ since the set cannot be constructed as a countable combination of set theoretic operations on generating sets.
v) $[0, k] \notin \mathcal{F}$ since the set cannot be constructed as a countable combination of set theoretic operations on generating sets.
vi) $(1 / 3,2)$ since the set cannot be constructed as a countable combination of set theoretic operations on generating sets.
b) This is a suitable probability measure if $P(\Omega)=1$. It also satisifies the properties of nonnegativity and countable additivity.

$$
P(\Omega)=1=c \sum_{k=0}^{\infty} 3^{-i}=\frac{c}{1-1 / 3}=\frac{3 c}{2}
$$

This means that $c=2 / 3$.
c) This is going to be the same as in part (b), so P is a valid probability measure with $c=2 / 3$.
d) This is going to be the same as in part (b) since P was defined for all sets and is thus a probability measure on the power set.
e) i) $\Omega=[0, \infty)$ and thus $P(F)=1$.
ii) $P\left(\mathcal{Z}_{+}\right)=0$ as there are no i for which $i+1 / 2 \in \mathcal{Z}_{+}$.
iii) $P([0, k] \cup[k+1, \infty))=P\left((k, k+1)^{c}\right)=1-P((k, k+1))=1-\frac{2}{3}\left(3^{-k}\right)$.
iv) $P(\{k\})=0$ as there are no k for which $k+1 / 2 \in \mathcal{Z}_{+}$.
v) $P([0, k])=\sum_{i=0}^{k} c 3^{-i}=1-3^{-(k+1)}$
vi) $P((1 / 3,2))=c\left(3^{-0}+3^{-1}\right)=\frac{2}{3}\left(1+\frac{1}{3}\right)=\frac{8}{9}$.
2.9 Consider the measurable space $([0,1], \mathcal{B}([0,1]))$.Define a set function P on this space as follows:

$$
P(F)= \begin{cases}1 / 2 & \text { if } 0 \in F \text { or } 1 \in F \text { but not both } \\ 1 & \text { if } 0 \in F \text { and } 1 \in F \\ 0 & \text { otherwise }\end{cases}
$$

Is P a probability measure?

Yes. P is a probability measure if it satisifes the three axioms for probability measures. It satisfies the property of nonnegativity and the property $P(\Omega)=1$. We need to demonstrate countable additivity:
(a) $0 \notin F_{i}$ and $0 \notin F_{i}$ for all i. Then $P\left(\cup_{i} F_{i}\right)=0=\sum_{i} P\left(F_{i}\right)$.
(b) $0 \in F_{i}$ for some i and $0 \notin F_{i}$ for all i, or $1 \in F_{i}$ for some i and $1 \notin F_{i}$ for all i. Then $P\left(\cup_{i} F_{i}\right)=1 / 2=\sum_{i} P\left(F_{i}\right)$.
(c) $0 \in F_{i}$ for some i and $0 \in F_{j}$ for some $j \neq k$. Then $P\left(\cup_{i} F_{i}\right)=1=\sum_{i} P\left(F_{i}\right)$.
(d) $0 \in F_{i}$ and $0 \in F_{k}$ for some k. Then $P\left(\cup_{i} F_{i}\right)=1=\sum_{i} P\left(F_{i}\right)$.

Thus P is a probability measure.
2. 10 Let \mathcal{S} be a sphere in $\Re^{3}: \mathcal{S}=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq r^{2}\right\}$, where r is a fixed radius. In the sphere are fixed N molecules of gas, each molecule being considered as an infinitesimal volume (that is, it occupies only a point in space). Define for any subset F of \mathcal{S} the function

$$
\#(F)=\{\text { the number of molecules in } F\}
$$

Show that $P(F)=\#(F) / N$ is a probability measure on the measurable space consisting of \mathcal{S} and its power set.
We need to demonstrate that this measure satifies the three axioms for probability measures.
$\#(F) \geq 0 \Rightarrow P(F)=P(F)=\#(F) / N \geq 0$ Nonnegativity
$\#(\mathcal{S})=N \Rightarrow P(\Omega)=N / N=1$ Normalization
Now we need to prove countable additivity.
For disjoint sets described by $\left\{F_{i} ; i=0,1, \ldots, k-1\right\}$, we can say that any particle in F_{i} is not in F_{j} for $i \neq j$. Then $\#\left(\bigcup_{i=0}^{k-1} F_{i}\right)=\sum_{i=0}^{k-1} \#\left(F_{i}\right)$ and this implies $P\left(\bigcup_{i=0}^{k-1} F_{i}\right)=\sum_{i=0}^{k-1} P\left(F_{i}\right)$
Suppose now that the disjoint sets are a countable collection $\left\{F_{i} ; i=0,1, \ldots\right\}$, let M be the largest integer i such that $\#(F)>0$ (there must be such a finite integer since there are only N particles). Then $\#\left(\bigcup_{i=M+1}^{\infty} F_{i}\right)=0$ and

$$
\begin{aligned}
\#\left(\bigcup_{i=0}^{\infty} F_{i}\right) & =\#\left(\bigcup_{i=0}^{M} F_{i}\right)+\#\left(\bigcup_{i=M+1}^{\infty} F_{i}\right) \\
& =\#\left(\bigcup_{i=0}^{M} F_{i}\right) \\
& =\sum_{i=0}^{M} \#\left(F_{i}\right)=\sum_{i=0}^{\infty} \#\left(F_{i}\right)
\end{aligned}
$$

This implies that $P\left(\bigcup_{i=0}^{\infty} F_{i}\right)=\sum_{i=0}^{\infty} P\left(F_{i}\right)$ and hence P is a probability measure.
2.16 Prove that $P(F \cup G) \leq P(F)+P(G)$. Prove more generally that for any sequence (i.e., countable collection) of events F_{i},

$$
P\left(\bigcup_{i=1}^{\infty} F_{i}\right) \leq \sum_{i=1}^{\infty} P\left(F_{i}\right) .
$$

This inequality is called the union bound or the Bonferroni inequality. (Hint: use Problem A.2 or Problem 2.1).
We know from 2.1 that in general, $P(F \cup G)=P(F)+P(G)-P(F \cap G)$
From non-negativity, we know that $P(F \cap G) \geq 0$ and thus $P(F \cup G) \leq P(F)+P(G)$.
Let $G_{i}=F_{i}-\bigcup_{j<i} F_{j}$ which makes these sets of G disjoint.

$$
\begin{aligned}
P\left(\bigcup_{i} F_{i}\right) & =P\left(\bigcup_{i} G_{i}\right) \\
& =\sum_{i} P\left(G_{i}\right) \\
& =\sum_{i} P\left(F_{i}-\bigcup_{j<i} F_{j}\right)
\end{aligned}
$$

We know that $P\left(F_{i}-\bigcup_{j<i} F_{j}\right) \leq P\left(F_{i}\right)$

$$
\leq \sum_{i} P\left(F_{i}\right)
$$

2.23 Answer true or false for each of the following statements. Answers must be justified. (a) The following is a valid probability measure on the sample space $\Omega=\{1,2,3,4,5,6\}$ with event space $\mathcal{F}=$ all subsets of Ω.

$$
P(F)=\frac{1}{21} \sum_{i \in F} i ; \text { all } F \in \mathcal{F}
$$

True.
To prove this, we have to show that the probability measure satisifies the different axioms.
$P(F) \geq 0$ so nonnegativity is satisifed.
$P(\Omega)=1$ so normalization is satisfied.
Now countable additivity needs to be proved.
If F and G are disjoint, then $P(F \cup G)=P(F)+P(G)$
$P(F)=\frac{1}{21} \sum_{i \in F} i$
$i \notin G$
$P(G)=\frac{1}{21} \sum_{i \notin F} i$
$i \in G$

(b) The following is a valid probaility measure on the sample space $\Omega=\{1,2,3,4,5,6\}$ with event space $\mathcal{F}=$ all subsets of Ω :

$$
P(F)= \begin{cases}1 & \text { if } 2 \in F \text { or } 6 \in F \\ 0 & \text { otherwise }\end{cases}
$$

False.
This is not a valid probability measure because countable additivity is not satisfied.
$P(\{2\})=1$.
$P(\{6\})=1$.
$P(\{2,6\})=1$.
$P(\{2,6\}) \neq P(\{2\})+P(\{6\})$
(c) If $P(G \cup F)=P(F)+P(G)$, then F and G are independent.

False.
If F and G are independent, then $P(F \cap G)=P(F) P(G)$
By definition, $P(G \cup F)=P(F)+P(G)-P(F \cap G)$.
Because $P(F)>0$ and $P(G)>0$, then if F and G are independent, $P(F \cap G)>0$ and $P(G \cup F) \neq P(F)+P(G)$
(d) $P(F \mid G) \geq P(G)$ for all events F and G.

False.
Just pick two disjoint events F and G with nonzero probability for $P(G)$.
Then, $P(F \mid G)=0$ and $P(G)>0$.
(e) Muturally exclusive (disjoint) events with nonzero probability cannot be independent. True.
Suppose that F and G have nonzero probability so that $P(F) P(G)>0$. Since the events are disjoint, $P(F \cap G)=0$ and thus $P(F \mid G)=P(F \cap G) / P(G)=0 \neq P(F)$. Thus, the events cannot be independent.
(f) For any finite collection of events $F_{i} ; i=1,2, \ldots, N$

$$
P\left(\cup_{i=1}^{N} F_{i}\right) \leq \sum_{i=1}^{N} P\left(F_{i}\right)
$$

True.
Define $G_{n}=F_{n}-\cup_{j<i} F_{j}$. Then $G_{n} \subset F_{n}$ and the G_{n} are disjoint so that

$$
P\left(\cup_{i=1}^{N} F_{i}\right)=P\left(\cup_{i=1}^{N} G_{i}\right)=\sum_{i=1}^{N} P\left(G_{i}\right) \leq \sum_{i=1}^{N} P\left(F_{i}\right)
$$

2.26 Given a sample space $\Omega=\{0,1,2, \ldots\}$ define

$$
p(k)=\frac{\gamma}{2^{k}} ; k=0,1,2, \ldots
$$

(a) What must γ be in order for $p(k)$ to be a pmf?

To be a valid pmf, it must be positive for all values of k and satisfy $\sum_{k=0}^{\infty} p(k)=1$.
The infinite sum of a geometric progression with ratio $a,|a|<1$ is

$$
\sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a}
$$

Thus, we can write:
$\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}=\frac{1}{1-1 / 2}=2=\frac{1}{\gamma}$
$\gamma=\frac{1}{2}$ and our pmf is $p(k)=\frac{1}{2^{k+1}}$.
(b) Find the probabilities $P(\{0,2,4,6, \ldots\}), P(\{1,3,5,7, \ldots\})$, and $P(\{1,2,3,4, \ldots, 20\})$.

Even outcomes:
$P(\{0,2,4,6, \ldots\})=p(0)+p(2)+p(4)+\cdots=\sum_{i=0}^{\infty} p(2 i)=\sum_{i=0}^{\infty} \frac{1}{2^{2 i+1}}$
$=\frac{1}{2} \sum_{i=0}^{\infty} \frac{1}{2^{2 i}}=\frac{1}{2} \sum_{i=0}^{\infty}\left(\frac{1}{4}\right)^{i}=\frac{1}{2} \cdot \frac{1}{1-1 / 4}=\frac{2}{3}$.
Odd outcomes:
$P(\{1,3,5,6, \ldots\})=1-P(\{0,2,4,5, \ldots\})=1-\frac{2}{3}=\frac{1}{3}$.
Finite outcomes:
Formula for finite sum of $N+1$ successive terms of geometric progression with ratio a :

$$
\sum_{k=n}^{N+n} a^{k}=a^{n} \cdot \frac{1-a^{N+1}}{1-a}
$$

$P(\{1,2,3,4, \ldots, 20\})=\sum_{k=0}^{20} p(k)=\sum_{k=0}^{20} \frac{1}{2^{k+1}}=\frac{1}{2} \sum_{k=0}^{20}\left(\frac{1}{2}\right)^{k}=\frac{1}{2} \cdot \frac{1-(1 / 2)^{21}}{1-1 / 2}=1-\left(\frac{1}{2}\right)^{21} \approx$ $1-4.8 \times 10^{-7}$
(c) Suppose that K is a fixed integer. Find $P(\{0, K, 2 K, 3 K, \ldots\})$.

This is very similar to computing the even outcomes case above:
$P(\{0, K, 2 K, 3 K, \ldots\})=p(0)+p(K)+p(2 K)+\cdots=\sum_{i=0}^{\infty} p(K i)=\sum_{i=0}^{\infty} \frac{1}{2^{K i+1}}$
$=\frac{1}{2} \sum_{i=0}^{\infty} \frac{1}{2^{K i}}=\frac{1}{2} \sum_{i=0}^{\infty}\left(\frac{1}{2^{K}}\right)^{i}=\frac{1}{2} \cdot \frac{1}{1-(1 / 2)^{K}}=\frac{2^{K-1}}{2^{K}-1}$.
(d) Find the mean, second moment, and variance of this pmf.

We know from a geometric pmf that $p(k)=(1-p)^{k-1} p ; \mathrm{k}=1,2, . .$. , where $p \in(0,1)$ is a parameter that the mean is $1 / p$ and the variance is $(1-p) / p^{2}$. Suppose that $p=1 / 2$. This means that $p(1 / 2)=(1 / 2)(1 / 2)^{k-1}=(1 / 2)^{k}$. This is useful because this define the following sums:
$m=\sum_{k=0}^{\infty} k\left(\frac{1}{2}\right)^{k}=1 / p=2$
$\sigma^{2}=\sum_{k=0}^{\infty}(k-m)^{2}\left(\frac{1}{2}\right)^{k}=\frac{1-p}{p^{2}}=\frac{1 / 2}{1 / 4}=2$
$m^{(2)}=\sigma^{2}+m^{2}=2+4=6=\sum_{k=0}^{\infty} k^{2}\left(\frac{1}{2}\right)^{k}$
The pmf of this problem can then be considered in relation to the geometric pmf
$m=\sum_{k=0}^{\infty} k p(k)=\sum_{k=0}^{\infty} \frac{k}{2^{k+1}}=\sum_{k=0}^{\infty} \frac{1}{2} \cdot k\left(\frac{1}{2}\right)^{k}=\frac{1}{2} \cdot \sum_{k=0}^{\infty} k\left(\frac{1}{2}\right)^{k}=\frac{1}{2} \cdot 2=1$
$m^{(2)}=\sum_{k=0}^{\infty} k^{2} p(k)=\sum_{k=0}^{\infty} k^{2} \cdot \frac{1}{2^{k+1}}=\sum_{k=0}^{\infty} \frac{1}{2} \cdot \frac{k^{2}}{2^{k}}=\frac{1}{2} \cdot \sum_{k=0}^{\infty} \frac{k^{2}}{2^{k}}=\frac{1}{2} \cdot 6=3$
$\sigma^{2}=m^{(2)}-m^{2}=3-1=2$

