Homework 1 Solutions

ECEn 670, Fall 2009

```
A.1. Use the first seven relations to prove relations (A.10), (A.13), and (A.16).
Prove (F \cup G)^c = F^c \cap G^c (A.10).
(F \cup G)^c = ((F^c \cap G^c)^c)^c by A.6.
(F \cup G)^c = F^c \cap G^c by A.4
Prove F \cup (F \cap G) = F = F \cap (F \cup G) (A.13).
F \cap (F \cup G) = (F \cap F) \cup (F \cap G) by A.3.
F \cap (F \cup G) = F \cup (F \cap G) by A.20 (proved in book)
Now let's look at:
F \subset F \cup X : F \subset F \cup (F \cap G)
F \cap X \subset F : F \cap (F \cup G) \subset F
Because F \cap (F \cup G) = F \cup (F \cap G),
F \subset F \cap (F \cup G) and F \cap (F \cup G) \subset F
F = F \cap (F \cup G)
F \cup (F \cap G) = F = F \cap (F \cup G).
Prove F \cup G = F \cup (F^c \cap G) = F \cup (G - F) (A.16).
F \cup G = (F \cup G) \cap \Omega by A.7.
(F \cup G) \cap \Omega = (F \cup G) \cap (F \cup F^c) by A.10.
(F \cup G) \cap (F \cup F^c) = F \cup (G \cap F^c) by A.17.
F \cup (G \cap F^c) = F \cup (F^c \cap G) by A.8.
G - F \triangleq G \cap F^c
\therefore F \cup (G \cap F^c) = F \cup (G - F)
\therefore F \cup G = F \cup (F^c \cap G) = F \cup (G - F)
A.4 Show that F \subset G implies that F \cap G = F, F \cup G = G, and G^c \subset F^c.
F\subset G\Rightarrow F\cap G=F
  F \subset G means that \omega \in F \Rightarrow \omega \in G.
  \omega \in F \cap G \Leftrightarrow \omega \in F \text{ and } \omega \in G \Rightarrow \omega \in F
  \Rightarrow F \cap G \subset F and F \subset G \cap F
\Rightarrow F \cap G = F
F \subset G \Rightarrow F \cup G = G
  \omega \in F \cup G \Rightarrow \omega \in F \text{ or } \omega \in G
      \Rightarrow \omega \in G or \omega \in G because F \subset G.
      \Rightarrow \omega \in G
  \Rightarrow F \cup G \subset G.
  \omega \in G \Rightarrow \omega \in G \cap \Omega
      \Rightarrow \omega \in G \cap (F \cup F^c)
      \Rightarrow \omega \in (G \cap F) \cup (G \cap F^c)
      \Rightarrow \omega \in F \text{ or } \omega \in (G \cap F^c)
     \Rightarrow \omega \in F \text{ or } \omega \in G
     \Rightarrow \omega \in F \cup G
  \Rightarrow G \subset F \cup G
\Rightarrow F \cup G = G
F \subset G \Rightarrow G^c \subset F^c
  \omega \in G^c \Leftrightarrow \omega \not\in G
  \Rightarrow \omega \notin F
  \Rightarrow \omega \in F^c
\Rightarrow G^c \subset F^c
```

A.8 Prove the countably infinite version of deMorgan's "laws." For example, given a sequence of sets F_i ; $i = 1, 2, \ldots$, then

$$\bigcap_{i=1}^{\infty} F_i = \left(\bigcup_{i=1}^{\infty} F_i^c\right)^c.$$

To do this, we start by proving two subset relationships

$$\omega \in \bigcap_{i=1}^{\infty} F_i$$

$$\Rightarrow \omega \in F_i \text{ for all } i.$$

$$\Rightarrow \omega \notin F_i^c \text{ for any } i.$$

$$\Rightarrow \omega \notin \bigcup_{i=1}^{\infty} F_i^c$$

$$\Rightarrow \omega \in (\bigcup_{i=1}^{\infty} F_i^c)^c$$

$$\therefore \bigcap_{i=1}^{\infty} F_i \subset (\bigcup_{i=1}^{\infty} F_i^c)^c$$

$$\omega \in (\bigcup_{i=1}^{\infty} F_i^c)^c$$

$$\Rightarrow \omega \notin \bigcup_{i=1}^{\infty} F_i^c$$

$$\Rightarrow \omega \notin F_i^c \text{ for any } i.$$

$$\Rightarrow \omega \in F_i \text{ for all } i.$$

$$\Rightarrow \omega \in \bigcap_{i=1}^{\infty} F_i$$

$$\therefore (\bigcup_{i=1}^{\infty} F_i^c)^c \subset \bigcap_{i=1}^{\infty} F_i$$
Because these two are subsets of each other,
$$\bigcap_{i=1}^{\infty} F_i = (\bigcup_{i=1}^{\infty} F_i^c)^c$$

A.12 Show that inverse images preserve set theoretic operations, that is, given $f: \Omega \to A$ and sets F and G in A, then

$$f^{-1}(F^c) = (f^{-1}(F))^c,$$

$$f^{-1}(F \cup G) = f^{-1}(F) \cup f^{-1}(G),$$

and

$$f^{-1}\left(F\cap G\right)=f^{-1}\left(F\right)\cap f^{-1}\left(G\right).$$

If $\{F_i, i \in \mathcal{I}\}$ is an indexed family of subsets of A that partitions A, show that $\{f^{-1}(F_i), i \in \mathcal{I}\}$ is a partition of Ω . Do images preserve set theoretic operations in general? (Prove that they do or provide a counterexample).

$$\begin{split} & \text{For } f^{-1}\left(F^c\right) = \left(f^{-1}\left(F\right)\right)^c, \\ & \omega \in f^{-1}\left(F^c\right) \Leftrightarrow f\left(\omega\right) \in F^c \Leftrightarrow f\left(\omega\right) \notin F \Leftrightarrow \omega \notin f^{-1}\left(F\right) \Leftrightarrow \omega \in \left[f^{-1}\left(\omega\right)\right]^c \\ & \text{For } f^{-1}\left(F \cup G\right) = f^{-1}\left(F\right) \cup f^{-1}\left(G\right), \\ & \omega \in f^{-1}\left(F \cup G\right) \Leftrightarrow f\left(\omega\right) \in F \cup G \Leftrightarrow f\left(\omega\right) \in F \text{ or } f\left(\omega\right) \in G \\ & \Leftrightarrow \omega \in f^{-1}\left(F\right) \text{ or } \omega \in f^{-1}\left(G\right) \Leftrightarrow \omega \in f^{-1}\left(F\right) \cup f^{-1}\left(G\right) \\ & \text{For } f^{-1}\left(F \cap G\right) = f^{-1}\left(F\right) \cap f^{-1}\left(G\right), \\ & \omega \in f^{-1}\left(F \cap G\right) \Leftrightarrow f\left(\omega\right) \in F \cap G \Leftrightarrow f\left(\omega\right) \in F \text{ and } f\left(\omega\right) \in G \\ & \Leftrightarrow \omega \in f^{-1}\left(F\right) \text{ and } \omega \in f^{-1}\left(G\right) \Leftrightarrow \omega \in f^{-1}\left(F\right) \cap f^{-1}\left(G\right) \end{split}$$

Take $\{F_i, i \in \mathcal{I}\}$. If it is an indexed family of subests of A that partitions A, this means that $F_i \cap F_j = \emptyset$; all $i, j \in \mathcal{I}, i \neq j$

and that

$$\bigcup_{i\in\mathcal{I}} F_i = A$$

We now need to show the same for the inverse image $\{f^{-1}(F_i), i \in \mathcal{I}\}$.

Our proofs above show that set theoretic operations are preserved for inverse images.

$$f^{-1}(F_i) \cap f^{-1}(F_j) = f^{-1}(\emptyset) = \emptyset$$
; all $i, j \in \mathcal{I}, i \neq j$

We now need to show that $\bigcup_{i\in\mathcal{I}} f^{-1}(F_i) = \Omega$.

This is true because $\bigcup_{i\in\mathcal{I}} f^{-1}(F_i) = f^{-1}(\bigcup_{i\in\mathcal{I}} F_i) = f^{-1}(A) = \Omega$.

Images do not preserve set theoretic operations in general. This is particularly well-illustrated for the case of non one-to-one mappings.

Let
$$\Omega = \{a, b, c\}, A = \{d, e\}$$
 with $f(a) = f(b) = d$ and $f(c) = e$.

Let
$$F = \{a\}, F^c = \{b, c\}.$$

$$f(F) = \{d\}$$

$$f(F^c) = f(\{b, c\}) = \{d, e\} \neq [f(F)]^c = \{e\}$$

2.3 Describe the sigma-field of subsets of \Re generated by the points or singleton sets. Does this sigma-field contain interals of the form (a, b) for b > a?

The sigma-field S generated by the points must have all countable unions of distinct points of the form $\bigcup_i \{a_i\}$ together with the complements of such sets of the form $(\bigcup_i \{b_i\})^c = \bigcap_i \{b_i\}^c$, which are intersections of the sample space minus an individual point. Since S is a field, it must contain simple unions of the form

$$F = \bigcup_i \{a_i\} \cup \cap_j \{b_j\}^c.$$

The sigma-field does not contain intervals since intervals do not have the form of F.

- 2.7 Let $\Omega = [0, \infty)$ be a sample space and let \mathcal{F} be the sigma-field of subsets of Ω generated by all sets of the form (n, n+1) for $n = 0, 1, 2, \ldots$
- (a) Are the following subsets of Ω in \mathcal{F} ? (i) $[0, \infty)$, (ii) $\mathcal{Z}_+ = \{0, 1, 2, \ldots\}$, (iii) $[0, k] \cup [k+1, \infty)$ for any positive integer k, (iv) $\{k\}$ for any positive integer k, (v) [0, k] for any positive integer k, (vi) (1/3, 2).
- (b) Define the following set function on subsets of Ω :

$$P(F) = c \sum_{i \in \mathcal{Z}_{+}: i+1/2 \in F} 3^{-i}.$$

- (If there is no i for which $i+1/2 \in F$, then the sum is taken as zero.) Is P a probability measure on (Ω, \mathcal{F}) for an appropriate choice of c? If so, what is c?
- (c) Repeat part (b) with \mathcal{B} , the Borel field, replacing \mathcal{F} as the event space.
- (d) Repeat part (b) with the power set of $[0, \infty)$ replacing $\mathcal F$ as the event space.
- (e) Find P(F) for the sets F considered in part (a).
- (a) i) Yes, because Ω is always in \mathcal{F} .
- ii) Yes, because this is the set that is formed by the complement of all of the subsets (n, n + 1) for all n = 0, 1, 2, ... This can be written

$$\mathcal{Z}_{+} = \left(\bigcup_{n=0}^{\infty} (n, n+1)\right)^{c} \in \mathcal{F}$$

- iii) $[0, k] \cup [k+1, \infty) = (k, k+1)^c \in \mathcal{F}$
- iv) $\{k\} \notin \mathcal{F}$ since the set cannot be constructed as a countable combination of set theoretic operations on generating sets.
- v) $[0, k] \notin \mathcal{F}$ since the set cannot be constructed as a countable combination of set theoretic operations on generating sets.
- vi) (1/3, 2) since the set cannot be constructed as a countable combination of set theoretic operations on generating sets.
- b) This is a suitable probability measure if $P(\Omega) = 1$. It also satisfies the properties of nonnegativity and countable additivity.

$$P(\Omega) = 1 = c \sum_{k=0}^{\infty} 3^{-k} = \frac{c}{1 - 1/3} = \frac{3c}{2}$$

This means that c = 2/3.

- c) This is going to be the same as in part (b), so P is a valid probability measure with c=2/3.
- d) This is going to be the same as in part (b) since P was defined for all sets and is thus a probability measure on the power set.
- e) i) $\Omega = [0, \infty)$ and thus P(F) = 1.

- ii) $P(\mathcal{Z}_+) = 0$ as there are no i for which $i + 1/2 \in \mathcal{Z}_+$.
- iii) $P([0, k] \cup [k+1, \infty)) = P((k, k+1)^c) = 1 P((k, k+1)) = 1 \frac{2}{3}(3^{-k}).$
- iv) $P(\{k\}) = 0$ as there are no k for which $k + 1/2 \in \mathcal{Z}_+$.
- v) $P([0, k]) = \sum_{i=0}^{k} c3^{-i} = 1 3^{-(k+1)}$ vi) $P((1/3, 2)) = c(3^{-0} + 3^{-1}) = \frac{2}{3}(1 + \frac{1}{3}) = \frac{8}{9}$.

2.9 Consider the measurable space $([0,1],\mathcal{B}([0,1]))$. Define a set function P on this space as follows:

$$P(F) = \begin{cases} 1/2 & \text{if } 0 \in F \text{ or } 1 \in F \text{ but not both} \\ 1 & \text{if } 0 \in F \text{ and } 1 \in F \\ 0 & \text{otherwise} \end{cases}$$

Is P a probability measure?

Yes. P is a probability measure if it satisfies the three axioms for probability measures. It satisfies the property of nonnegativity and the property $P(\Omega) = 1$. We need to demonstrate countable additivity:

- (a) $0 \notin F_i$ and $0 \notin F_i$ for all i. Then $P(\cup_i F_i) = 0 = \sum_i P(F_i)$.
- (b) $0 \in F_i$ for some i and $0 \notin F_i$ for all i, or $1 \in F_i$ for some i and $1 \notin F_i$ for all i. Then $P(\cup_{i} F_{i}) = 1/2 = \sum_{i} P(F_{i}).$
- (c) $0 \in F_i$ for some i and $0 \in F_j$ for some $j \neq k$. Then $P\left(\cup_i F_i\right) = 1 = \sum_i P\left(F_i\right)$. (d) $0 \in F_i$ and $0 \in F_k$ for some k. Then $P\left(\cup_i F_i\right) = 1 = \sum_i P\left(F_i\right)$.

Thus P is a probability measure.

2.10 Let S be a sphere in \Re^3 : $S = \{(x, y, z) : x^2 + y^2 + z^2 \le r^2\}$, where r is a fixed radius. In the sphere are fixed N molecules of gas, each molecule being considered as an infinitesimal volume (that is, it occupies only a point in space). Define for any subset F of S the function

$$\#(F) = \{\text{the number of molecules in } F\}$$

Show that P(F) = #(F)/N is a probability measure on the measurable space consisting of S and its power set.

We need to demonstrate that this measure satisfies the three axioms for probability measures.

- $\#(F) > 0 \Rightarrow P(F) = P(F) = \#(F)/N > 0$ Nonnegativity
- $\#(S) = N \Rightarrow P(\Omega) = N/N = 1$ Normalization

Now we need to prove countable additivity.

For disjoint sets described by $\{F_i; i=0, 1, \ldots, k-1\}$, we can say that any particle in F_i is not in F_j for $i \neq j$. Then $\#\left(\bigcup_{i=0}^{k-1} F_i\right) = \sum_{i=0}^{k-1} \#(F_i)$ and this implies $P\left(\bigcup_{i=0}^{k-1} F_i\right) = \sum_{i=0}^{k-1} P(F_i)$ Suppose now that the disjoint sets are a countable collection $\{F_i; i=0, 1, \ldots\}$, let M be the largest

integer i such that #(F) > 0 (there must be such a finite integer since there are only N particles). Then $\#\left(\bigcup_{i=M+1}^{\infty} F_i\right) = 0$ and

$$\# \left(\bigcup_{i=0}^{\infty} F_i \right) = \# \left(\bigcup_{i=0}^{M} F_i \right) + \# \left(\bigcup_{i=M+1}^{\infty} F_i \right)$$
$$= \# \left(\bigcup_{i=0}^{M} F_i \right)$$
$$= \sum_{i=0}^{M} \# \left(F_i \right) = \sum_{i=0}^{\infty} \# \left(F_i \right)$$

This implies that $P(\bigcup_{i=0}^{\infty} F_i) = \sum_{i=0}^{\infty} P(F_i)$ and hence P is a probability measure.

2.16 Prove that $P(F \cup G) \leq P(F) + P(G)$. Prove more generally that for any sequence (i.e., countable collection) of events F_i ,

$$P\left(\bigcup_{i=1}^{\infty} F_i\right) \leq \sum_{i=1}^{\infty} P\left(F_i\right).$$

This inequality is called the union bound or the Bonferroni inequality. (Hint: use Problem A.2 or Problem 2.1).

We know from 2.1 that in general, $P(F \cup G) = P(F) + P(G) - P(F \cap G)$

From non-negativity, we know that $P(F \cap G) \ge 0$ and thus $P(F \cup G) \le P(F) + P(G)$.

Let $G_i = F_i - \bigcup_{j < i} F_j$ which makes these sets of G disjoint.

$$P(\bigcup_{i} F_{i}) = P(\bigcup_{i} G_{i})$$

$$= \sum_{i} P(G_{i})$$

$$= \sum_{i} P\left(F_{i} - \bigcup_{j < i} F_{j}\right)$$
We know that $P\left(F_{i} - \bigcup_{j < i} F_{j}\right) \le P(F_{i})$

$$\leq \sum_{i} P(F_{i})$$

2.23 Answer true or false for each of the following statements. Answers must be justified. (a) The following is a valid probability measure on the sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$ with event space $\mathcal{F} =$ all subsets of Ω .

$$P(F) = \frac{1}{21} \sum_{i \in F} i; \text{ all } F \in \mathcal{F}$$

True.

To prove this, we have to show that the probability measure satisfies the different axioms.

 $P(F) \ge 0$ so nonnegativity is satisfied.

 $P(\Omega) = 1$ so normalization is satisfied.

Now countable additivity needs to be proved.

If F and G are disjoint, then $P(F \cup G) = P(F) + P(G)$

$$P(F) = \frac{1}{21} \sum_{i \in F} i$$

$$i \notin G$$

$$P(G) = \frac{1}{21} \sum_{i \notin F} i$$

$$i \notin G$$

$$i \notin G$$

$$P\left(F \cup G\right) = \frac{1}{21} \sum_{i \in \left(F \cup G\right)} i = \frac{1}{21} \left(\sum_{\substack{i \in F \\ i \notin G}} i + \sum_{\substack{i \notin F \\ i \in G}} i \right) = P\left(F\right) + P\left(G\right)$$

(b) The following is a valid probability measure on the sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$ with event space $\mathcal{F} =$ all subsets of Ω :

$$P(F) = \begin{cases} 1 & \text{if } 2 \in F \text{ or } 6 \in F \\ 0 & \text{otherwise} \end{cases}$$

False.

This is not a valid probability measure because countable additivity is not satisfied.

$$P(\{2\}) = 1.$$

$$P(\{6\}) = 1.$$

$$P({2,6}) = 1.$$

$$P(\{2,6\}) \neq P(\{2\}) + P(\{6\})$$

(c) If $P(G \cup F) = P(F) + P(G)$, then F and G are independent.

False.

If F and G are independent, then $P(F \cap G) = P(F) P(G)$

By definition, $P(G \cup F) = P(F) + P(G) - P(F \cap G)$.

Because P(F) > 0 and P(G) > 0, then if F and G are independent, $P(F \cap G) > 0$ and

$$P(G \cup F) \neq P(F) + P(G)$$

(d) $P(F|G) \ge P(G)$ for all events F and G.

Just pick two disjoint events F and G with nonzero probability for P(G).

Then, P(F|G) = 0 and P(G) > 0.

(e) Muturally exclusive (disjoint) events with nonzero probability cannot be independent.

Suppose that F and G have nonzero probability so that P(F)P(G) > 0. Since the events are disjoint, $P(F \cap G) = 0$ and thus $P(F|G) = P(F \cap G)/P(G) = 0 \neq P(F)$. Thus, the events cannot be independent.

(f) For any finite collection of events $F_{i;i} = 1, 2, ..., N$

$$P\left(\bigcup_{i=1}^{N} F_i\right) \le \sum_{i=1}^{N} P\left(F_i\right)$$

True.

Define $G_n = F_n - \bigcup_{j < i} F_j$. Then $G_n \subset F_n$ and the G_n are disjoint so that

$$P\left(\bigcup_{i=1}^{N} F_{i}\right) = P\left(\bigcup_{i=1}^{N} G_{i}\right) = \sum_{i=1}^{N} P\left(G_{i}\right) \leq \sum_{i=1}^{N} P\left(F_{i}\right)$$

2.26 Given a sample space $\Omega = \{0, 1, 2, ...\}$ define

$$p(k) = \frac{\gamma}{2^k}; \ k = 0, 1, 2, \dots$$

(a) What must γ be in order for p(k) to be a pmf?

To be a valid pmf, it must be positive for all values of k and satisfy $\sum_{k=0}^{\infty} p(k) = 1$. The infinite sum of a geometric progression with ratio a, |a| < 1 is

$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}.$$

Thus, we can write:

$$\begin{array}{l} \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k = \frac{1}{1-1/2} = 2 = \frac{1}{\gamma} \\ \gamma = \frac{1}{2} \text{ and our pmf is } p(k) = \frac{1}{2^{k+1}}. \end{array}$$

(b) Find the probabilities $P(\{0,2,4,6,\ldots\}), P(\{1,3,5,7,\ldots\}), \text{ and } P(\{1,2,3,4,\ldots,20\}).$

$$P\left(\left\{0,2,4,6,\dots\right\}\right) = p\left(0\right) + p\left(2\right) + p\left(4\right) + \dots = \sum_{i=0}^{\infty} p(2i) = \sum_{i=0}^{\infty} \frac{1}{2^{2i+1}}$$

$$= \frac{1}{2} \sum_{i=0}^{\infty} \frac{1}{2^{2i}} = \frac{1}{2} \sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^{i} = \frac{1}{2} \cdot \frac{1}{1-1/4} = \frac{2}{3}.$$

$$P(\{1,3,5,6,\dots\}) = 1 - P(\{0,2,4,5,\dots\}) = 1 - \frac{2}{3} = \frac{1}{3}.$$

Formula for finite sum of N+1 successive terms of geometric progression with ratio a:

$$\sum_{k=n}^{N+n} a^k = a^n \cdot \frac{1 - a^{N+1}}{1 - a}$$

$$P(\{1,2,3,4,\ldots,20\}) = \sum_{k=0}^{20} p(k) = \sum_{k=0}^{20} \frac{1}{2^{k+1}} = \frac{1}{2} \sum_{k=0}^{20} \left(\frac{1}{2}\right)^k = \frac{1}{2} \cdot \frac{1-(1/2)^{21}}{1-1/2} = 1 - \left(\frac{1}{2}\right)^{21} \approx 1 - 4.8 \times 10^{-7}$$

(c) Suppose that K is a fixed integer. Find $P(\{0, K, 2K, 3K, ...\})$.

This is very similar to computing the even outcomes case above:

$$P\left(\left\{0,K,2K,3K,\ldots\right\}\right) = p\left(0\right) + p\left(K\right) + p\left(2K\right) + \dots = \sum_{i=0}^{\infty} p(Ki) = \sum_{i=0}^{\infty} \frac{1}{2^{Ki+1}} = \frac{1}{2} \sum_{i=0}^{\infty} \frac{1}{2^{Ki}} = \frac{1}{2} \sum_{i=0}^{\infty} \left(\frac{1}{2^K}\right)^i = \frac{1}{2} \cdot \frac{1}{1 - (1/2)^K} = \frac{2^{K-1}}{2^{K} - 1}.$$

(d) Find the mean, second moment, and variance of this pmf.

We know from a geometric pmf that $p(k) = (1-p)^{k-1} p$; $k=1, 2, \ldots$, where $p \in (0, 1)$ is a parameter that the mean is 1/p and the variance is $(1-p)/p^2$. Suppose that p=1/2. This means that $p(1/2) = (1/2)(1/2)^{k-1} = (1/2)^k$. This is useful because this define the following sums:

$$m = \sum_{k=0}^{\infty} k \left(\frac{1}{2}\right)^k = 1/p = 2$$

$$m = \sum_{k=0}^{\infty} k \left(\frac{1}{2}\right)^k = 1/p = 2$$

$$\sigma^2 = \sum_{k=0}^{\infty} (k-m)^2 \left(\frac{1}{2}\right)^k = \frac{1-p}{p^2} = \frac{1/2}{1/4} = 2$$

$$m^{(2)} = \sigma^2 + m^2 = 2 + 4 = 6 = \sum_{k=0}^{\infty} k^2 \left(\frac{1}{2}\right)^k$$

 $m^{(2)}=\sigma^2+m^2=2+4=6=\sum_{k=0}^{\infty}k^2\left(\frac{1}{2}\right)^k$ The pmf of this problem can then be considered in relation to the geometric pmf

$$m = \sum_{k=0}^{\infty} kp(k) = \sum_{k=0}^{\infty} \frac{k}{2^{k+1}} = \sum_{k=0}^{\infty} \frac{1}{2} \cdot k \left(\frac{1}{2}\right)^k = \frac{1}{2} \cdot \sum_{k=0}^{\infty} k \left(\frac{1}{2}\right)^k = \frac{1}{2} \cdot 2 = 1$$

The pinh of this problem can then be considered in relation to the geometric pin
$$m = \sum_{k=0}^{\infty} kp(k) = \sum_{k=0}^{\infty} \frac{k}{2^{k+1}} = \sum_{k=0}^{\infty} \frac{1}{2} \cdot k \left(\frac{1}{2}\right)^k = \frac{1}{2} \cdot \sum_{k=0}^{\infty} k \left(\frac{1}{2}\right)^k = \frac{1}{2} \cdot 2 = 1$$

$$m^{(2)} = \sum_{k=0}^{\infty} k^2 p(k) = \sum_{k=0}^{\infty} k^2 \cdot \frac{1}{2^{k+1}} = \sum_{k=0}^{\infty} \frac{1}{2} \cdot \frac{k^2}{2^k} = \frac{1}{2} \cdot \sum_{k=0}^{\infty} \frac{k^2}{2^k} = \frac{1}{2} \cdot 6 = 3$$

$$\sigma^2 = m^{(2)} - m^2 = 3 - 1 = 2$$

$$\sigma^2 = m^{(2)} - m^2 = 3 - 1 = 2$$