1. You are given two random variables X and Y with a joint pmf described by

$$p_{X,Y}(x,y) = \begin{cases} \frac{1}{8}, & \text{if } (x,y) = (0,0) \\ \frac{1}{6}, & \text{if } (x,y) = (1,1), (1,2), (2,2) \\ 0, & \text{otherwise} \end{cases}$$

$E[X] =$

$E[Y] =$

What is the correlation of X and Y?

Are X and Y independent?

$E[Y|X = 1] =$

What is the correlation coefficient between X and Y?

Given that for two Gaussian random variables U and V, $m_{V|u} = m_V + \rho \frac{\sigma_V}{\sigma_U} (u - m_u)$, what is the best affine estimator, $\hat{Y}[X]$, for Y in the minimum mean squared error (MMSE) sense?

Without restriction, what is the best estimator, $\hat{Y}[X]$, for Y in the minimum mean squared error (MMSE) sense?