1. Suppose you are told that a random process Y_n converges to a random variable Y with probability one.
 a) Does it converge in distribution? Yes.

 b) Does it converge in mean square? No.

 c) Does it converge in probability? Yes.

2. Suppose I have the following random process $\{X_t; t \in Z\}$
 Additionally suppose that the mean can be represented by
 $EX_t = EX_{t+\tau} = 2$
 Additionally suppose that I have the following covariance matrix:
 $K_X(\tau) = \begin{bmatrix}
 2 & 1 & 0.5 & 0 & 0 \\
 1 & 2 & 1 & 0.5 & 0 \\
 0.5 & 1 & 2 & 1 & 0.5 \\
 0 & 0.5 & 1 & 2 & 1 \\
 0 & 0 & 0.5 & 1 & 2
 \end{bmatrix}$
 Given the information above about this process,
 a) Is it first-order stationary? No.

 b) Is it weakly stationary? Yes.

 c) Is it second-order stationary? No.

 d) Is it strictly stationary? No.

3. Suppose I have a weakly stationary asymptotically uncorrelated discrete time process, $\{X_n\}$ such that $EX_n = X$ is finite and $\sigma_{X_n}^2 = \sigma_X^2 < \infty$ for all n. What can I say about the convergence of the sample average of this process?

 The sample average converges to the mean in mean square.

 $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} X_i = \overline{X}$.