1. Let \(\{X_n\} \) be an iid Gaussian random process with zero mean and variance \(R_X(0) = \sigma^2 \). Let \(\{U_n\} \) be an iid binary random process, independent of the \(X \) process, with \(\Pr(U_n = 1) = \Pr(U_n = -1) = 1/2 \). (All processes are assumed to be two-sided in this problem.) Define the random processes \(Z_n = X_n U_n \), \(Y_n = U_n + X_n \) and \(W_n = U_0 + X_n \), all \(n \).

Mean \(\mathbb{E}[Z_n] = \)

Covariance \(K_Z(k, j) = \)

PSD \(S_Z(f) = \)

Mean \(\mathbb{E}[Y_n] = \)

Covariance \(K_Y(k, j) = \)

PSD \(S_Y(f) = \)

Mean \(\mathbb{E}[W_n] = \)

Covariance \(K_W(k, j) = \)

PSD \(S_W(f) = \)