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Prediction of snow permittivity and air
temperature using received snow backscatter

values over Greenland
Kyra Moon, Kevin Moon

Abstract— The dry snow zone is the largest component of
the Greenland ice sheet and is identified as the region that
experiences no annual melt. Therefore, radar backscatter
(σ0) is expected to be relatively constant over time within
the dry snow. However, annual variation was discovered
in QuikSCAT data. This paper tests the hypothesis that
annual variation in backscatter is caused by changes in
permittivity. To do this, a model is provided relating
permittivity to backscatter. Using this model, we test if
received backscatter values can predict the permittivity
and temperature of the corresponding snow. Both ML
and MAP estimators are employed, and MAP is shown
to have superior performance for the selected values of
SNR. However, neither estimator is shown to consistently
predict permittivity.

I. I NTRODUCTION

Satellite-borne scatterometers are radars designed for a
variety of purposes. One of these purposes is monitoring
important indicators of the global climate such as the
Greenland and Antarctic ice sheets. The accuracy of
these applications requires accurate calibration of the
scatterometer. Although scatterometers are calibrated
prior to launch, system degradation requires the scat-
terometer to be calibrated after launch as well. Accu-
rate post-launch calibration can be achieved by using
radar backscatter data from natural land targets with
temporally constant and isotropic backscatter. Currently,
post-launch scatterometer calibration is performed using
data collected from the Greenland and Antarctic ice
sheets [1].

The Greenland ice sheet is divided into zones or facies
which are distinguished by their melting characteristics.
The dry snow region is the largest part of the ice sheet
and is characterized by no melt throughout the year.
Thus, σ0 in the dry snow zone should be relatively
constant. Recently, an anomaly in QuikSCAT data was
discovered in the dry snow region. This anomaly is char-
acterized by a slight decrease inσ0 during the summer
months followed by a return to the winter backscatter.
An example of this cyclical variation is shown in Fig. 1.
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Fig. 1. σ 0 at−59.2229◦ longitude and77.1670◦ latitude in 2006.

This cyclical variation has been shown to not be caused
by instrumentation of QuikSCAT.

In this paper, we examine the feasibility of predicting
changes in permittivity based on received backscatter
values in the dry snow zone. A model is created which
relates temperature to backscatter by using known re-
lations between temperature and snow density, snow
density and permittivity, and permittivity and backscatter.
The sensitivity of the model is tested by estimating the
expected permittivity of a backscatter value corrupted by
additive noise. The permittivity is estimated using both
maximum-likelihood (ML) and maximum a-posteriori
(MAP) estimation, where the temperature is used as prior
data for MAP estimation.

By testing the sensitivity of the model, we determine
if the received backscatter can be used to reliably predict
the permittivity. This aids in our exploration of causes
for annual variation. If typical amounts of atmospheric
and thermal noise distort the backscatter values such
that incorrect permittivity values are estimated, then
backscatter cannot be used to predict permittivity.

This paper is organized as follows. In Section II,



we provide analytical models relating temperature to
permittivity and snow density, which in turn are related
to the received backscatter. In Section III, we test the
sensitivity of the model by introducing additive noise
into the backscatter model and estimating the change in
permittivity using ML and MAP estimation. In Section
IV the results of the estimations are given. In Section
V these results are discussed with possible explanations
for their behavior.

II. A NALYTICAL MODEL

In this section, a model is created which relates
permittivity to backscatterσ0. Because MAP estima-
tion is conditioned on known temperature values, the
relationship between temperature and backscatter is also
modeled. This model is created by deriving the rela-
tionship between temperature and snow density and the
relationship between snow density and permittivity.

A number of assumptions are made in this model.
It is assumed that snow crystals stay the same size at
all subfreezing temperatures (an assumption borrowed
from [2]). It is assumed that there is an infinite layer of
snow below the surface. This assumption is reasonable
because the Greenland ice sheet is several kilometers
thick. Because snow density data was only available
down to−20◦C, this model is only valid between−20◦

and0◦C.

A. Relation of Temperature to Snow Density

Snow density is defined as the mass of the snow to
the volume of the snow, given ing/cm3. Data relating
air temperature to snow density is found in [3] and [4].
Given a temperatureT , the density of snowρs is roughly
given by

ρs =
11

1400
T +

109
700

. (1)

B. Relation of Snow Density to Permittivity

In [2], snow is modeled as spherically shaped ice
crystals in some background medium. In the case of dry
snow, the background is simply air. The real part of the
permittivity of dry snow,ε′ds, is found to be related to
the snow density by

ε′ds = (1 + 0.51ρs)3. (2)

The imaginary partε′′ds depends on the real part of
the permittivity of dry snow and the permittivity of ice
εi [2]. It is given as

ε′′ds = 3viε
′′
i

(ε′ds)
2(2ε′ds + 1)

(ε′i + 2ε′ds)(ε
′
i + 2(ε′ds)2)

(3)
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Fig. 2. σ0 versus permittivity according to Eq. (4).

wherevi is the volume fraction of ice in the snow given
by vi = ρs/0.916 where0.916 is the density of pure ice.
The parameterε′i is assumed to have a constant value of
3.15. The imaginary partε′′i depends on the operating
frequency of the scatterometer and the conductivity of
ice which does vary slightly with temperature [5].

C. Relation of Permittivity and Snow Density to Re-
ceived Backscatter

The backscatter of the scatterometer in an infinite
layer of dry snow is given by [6] as

σ0(θ) = Υ2(θ)
σvcos(θ′)

2κe
(4)

whereΥ(θ) is the transmissivity of the air-snow surface,
θ is the angle of incidence,σv is the volume scattering
coefficient, θ′ is the transmitted angle, andκe is the
extinction coefficient. We use a fixedθ of 54◦. The
parametersΥ(θ), σv, θ′, and κe all depend on the
permittivity of the snow. The equations used to calculate
these parameters are derived from [2], [6], [7]. Figure 2
shows the relationship betweenσ0 and the real part of
permittivity which is the dominating part.

III. S IMULATION

A simulation can be performed to test the sensitivity
of the model. The purpose of this simulation is to
test whether the permittivity could be estimated from
received backscatter values.

To generate the received backscatter values, a series
of steps are taken. First, a temperature is randomly
generated. It is not assumed that all temperatures be-
tween−20◦ C and0◦ C were equally likely. Rather, the
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Fig. 3. Normalized histogram of temperature data collected on the
Greenland ice sheet in 2006.

likelihood of a given temperature is weighted according
to a histogram formed from 70 days of empirical data
collected from June 11-August 20, 2006 and divided into
L = 200 bins (see Fig. 3). Using a given temperature,
the snow density was calculated using Eq. (2), the
permittivity is calculated using Eq. (3), and the true
backscatter value is calculated using Eq. (4).

The true backscatter valueσ0
true is then corrupted

by additive white Gaussian noise. Typical noise values
corresponding to noise in the electronics, satellite, at-
mosphere, and other random sources correspond to SNR
values ranging from 11 dB to 20 dB. The corrupted
backscatter is denotedσ0

rec where

σ0
rec = σ0

true + η (5)

whereη ∼ N (0, σ2) with σ2 = N0
2 . N0

2 is the power
spectral density, andN0 is the transmitted power divided
by the linear SNR.

Using the simulated received backscatterσ0
rec, the

permittivity of the snow can be estimated using both
ML and MAP estimation.

A. ML Estimation

To estimate the actual permittivity valueεtrue using
the received backscatterσ0

r , the maximum-likelihood test
can be employed. We defineP (εds) as the probability
that εds occurs.

The decision rule that maximizes the probability of
choosingεds = εtrue is [8]

ε̂ds = argmax
εds

P (εds|σ0
rec). (6)

Using Bayes’ rule, Eq. (6) can be written as

ε̂ds = argmax
εds

P (εds|σ0
rec)

= argmax
εds

p(σ0
rec|εds)P (εds)

p(σ0
rec)

(7)

wherep(σ0
rec) is the probability ofσ0

rec being received.
Since the denominator of Eq. (7) does not depend on
εds,

ε̂ds = argmax
εds

p(σ0
rec|εds)P (εds). (8)

Since ML estimation assumes that all prior probabilities
are equal, it means all values ofP (εds) are equal, so
P (εds) can be factored out of the equation to obtain

ˆεds = argmax
εds

p(σ0
rec|εds). (9)

To calculatep(σ0
r |εds), we assume that it is equivalent

to calculatingp(σ0
r |σ0

ds), whereσ0
ds is the backscatter

value corresponding toεds. Since there is a function
relating εds to σ0

ds, p(σ0
ds|εds) = 1.

Note thatσ0
rec = σ0

true + η. Thus, p(σ0
rec|σ0

ds) can
be shown to have a Gaussian distribution with mean 0
and varianceσ2. In the simulation, there wereL = 200
discrete choices forσ0 based on theL possible tempera-
ture values. Thus, the likelihood function corresponding
to σ0

ds = σ0
i , i = 1...L is

p(σ0
rec|σ0

ds) = σ0
i ) =

1√
2π

exp(− 1
2σ2

(σ0
rec−σ0

i )2. (10)

This probability is maximized whenσ0
ds is chosen to be

theσ0
i which minimizes the Euclidean distance between

σ0
rec andσ0

i , that is,

σ̂0
ds = argmin

σ0
i

|σ0 − σ0
i |. (11)

The εi corresponding toσ0
i is then estimated to be the

correct value. Ifσ0
i = σ0

true, then the estimator is correct
and there is no error.

B. MAP Estimation

To perform MAP estimation on the data, many of the
equations derived in Section III-A hold. However, MAP
estimation no longer assumes equal prior probabilities of
P (εds) in Eq. (8). Thus, the decision rule for MAP is

ε̂ds = argmax
εds

p(σ0
rec|εds)P (εds). (12)

To calculateP (εds), the weighted temperature data
is used. Since there is a function relating temperature
to permittivity, the same weighting can be applied to
the permittivity as is applied to the temperature. Hence,
ε̂ds simultaneously maximizes the Gaussian distribution
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Fig. 4. True permittivity and the estimated values of permittivity
using ML and MAP estimation with an SNR of 13 dB.
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Fig. 5. Absolute error in permittivity for both ML and MAP estimation
with an SNR of 13 dB.

given in Eq. 10 and the distribution of prior probabilities
given by the histogram shown in Fig. 3.

IV. RESULTS

Figures 4 and 5 give some of the results of the simula-
tion. Figure 4 gives the estimated values of permittivity
for both the ML and MAP estimation methods with an
SNR of 13 dB. Figure 5 shows the error in permittivity
for both methods with the same SNR.

V. D ISCUSSION

In general, the error of both the ML and MAP estima-
tors is high compared to the range of possible permittiv-
ity values, which range from 1 to 1.25. However, as SNR

increases (not shown here), the error of the ML estimator
does decrease. Changing the SNR does not affect the
MAP estimator. Due to the nature of the prior used in the
MAP decision rule, the estimator consistently chooses
the permittivity corresponding to the temperature with
highest probability independent of the actual permittivity.
Since this value is the most likely to start with, the MAP
error is smaller than the ML error for the tested values
of SNR. Increasing the SNR beyond practical values will
give the ML estimator the smaller error.

VI. CONCLUSION

We found that there is a relationship between per-
mittivity and backscatter in the dry snow zone at tem-
peratures below freezing. However, with our model, the
received backscatter values are too noisy to accurately
estimate the permittivity of dry snow. This is shown for
both the ML and MAP estimators, where temperature
data is used as a prior. Future work could include altering
the MAP estimator by using different data sets as priors.
Additionally, the theoretical model relating permittivity
and backscatter could be refined to account for varying
snow grain sizes.

REFERENCES

[1] R. Kumar, S. Bhowmick, K. Babu, R. Nigam, and A. Sarkar,
“Relative calibration using natural terrestrial targets: A preparation
towards Oceansat-2 scatterometer,”IEEE Transactions on Geo-
science and Remote Sensing, vol. 49, pp. 2268–2273, 2011.

[2] F. Ulaby, R. Moore, and A. Fung,Microwave Remote Sensing:
Active and Passive. Norwood, Massachusetts: Artech House,
1986, vol. 3.

[3] A. S. Thut, “Snow density and its underlying variables.”
[4] A. Judson, N. Doesken, and C. Center, “Density of freshly fallen

snow in the central rocky mountains,”Bulletin of the American
Meteorological Society, vol. 81, no. 7, pp. 1577–1588, 2000.

[5] D. Stillman and R. Grimm, “Electrical properties of ice and
implications for solar system exploration,” inLunar and Planetary
Institute Science Conference Abstracts, vol. 39, 2008, p. 2277.

[6] F. Ulaby, R. Moore, and A. Fung,Microwave Remote Sensing:
Active and Passive. Norwood, Massachusetts: Artech House,
1986, vol. 2.

[7] ——, Microwave Remote Sensing: Active and Passive. Norwood,
Massachusetts: Artech House, 1986, vol. 1.

[8] T. K. Moon, Error Correction Coding: Mathematical methods and
algorithms. Hoboken, NJ: John Wiley and Sons, 2005.

4


