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Abstract: The scheduling problem for ¯exible manufacturing systems (FMSs) has been attempted in this
paper using the ant colony optimization (ACO) technique. Since the operation of a job in FMSs can be
performed on more than one machine, the scheduling of the FMS is considered as a computationally
hard problem. Ant algorithms are based on the foraging behaviour of real ants. The article deals with
the ant algorithm with certain modi®cations that make it suitable for application to the required
problem. The proposed solution procedure applies a graph-based representation technique with nodes
and arcs representing operation and transfer from one stage of processing to the other. Individual
ants move from the initial node to the ®nal node through all nodes desired to be visited. The solution
of the algorithm is a collective outcome of the solution found by all the ants. The pheromone trail is
updated after all the ants have found out their respective solutions. Various features like stagnation
avoidance and prevention from quick convergence have been incorporated in the proposed algorithm
so that the near-optimal solution is obtained for the FMS scheduling problem, which is considered as
a non-polynomial (NP)-hard problem. The algorithm stabilizes to the solution in considerably lesser
computational e� ort. Extensive computational experiments have been carried out to study the
in¯uence of various parameters on the system performance.
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NOTATION

c small positive constant
G set of arcs connecting all possible

combinations of nodes
Gk set of all nodes still to be visited by ant k
j a job
j0 maximum number of jobs available from time

0 onwards
J set of jobs
k an ant
m a machine
m0 maximum number of machines
M set of machines
n a node
N total number of operations
NC counter for number of iterations
N_max maximum number of iterations
o an operation

oj an operation of job j
o0

j maximum number of operations for job j
Oj operation set of job j
O0 set of all operations
p randomly generated quantity
p‡

best best makespan
p‡

iter optimal makespan for an iteration iter
pj,o,m processing time of operation o of job j on

machine m
p0 parameter used to attain quick convergence of

the algorithm
Pk makespan by the kth ant
P k

il …t† transition probability of moving from node i
to node l for ant k

q random number
Q positive constant
Sk set of nodes allowed at the next step by ant k
t time
tabuk list of nodes travelled by ant k
Tk tabu list of ant k

¬ factor that controls the importance of the trail

 factor that controls the importance of visibility

²kl visibility from node k to node l
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» coe� cient such that …1 ¢ »† represents the
evaporation of the trail between time t and
t ‡ number of iterations till this instant

tkl trail level from node k to node l
til…0† initial pheromone trail on edge il
¢tk

il quantity per unit time of pheromone trail laid
on the edge …i, l† by the kth ant between time t
and t ‡ number of iterations till this instant

‰’Š null set

1 INTRODUCTION

A ¯exible manufacturing system (FMS) consists of a
collection of numerically controlled machines with
multifunction ability, an automatic material handling
system and an online computer network. This network
is capable of controlling and directing the whole system.
An FMS combines the advantages of a traditional ¯ow
line and job-shop systems to meet the changing demands
[1±3]. Thus, it involves many problems, which can be
divided into four stages: (a) design, (b) system set-up, (c)
scheduling and (d) control [4].

The scheduling problem of an FMS can be overviewed
as follows. Due to ¯exibility of the FMS, a given operation
can usually be performed on a number of machines. The
¯exibility of the FMS allows many alternative routeings.
Among these multiple routeings it is important to select
the best available machine, which can perform the opera-
tion. This makes even a two-machine scheduling problem
non-polynomial (NP)-hard [5, 6]. Since the operations are
computer controlled, set-ups between the consecutive
operations are automated, and as most of the operations
are processed by NC machines, it can be assumed that
processing times are nearly deterministic [7].

To solve this combinatorial optimization problem,
several approaches have been proposed by researchers.
Yih and Thesen [8] provided a semi-Markov decision
model for a real-time scheduling problem to determine
the sequence of parts within an FMS. Thesen and Lie
[9], Shaw [10], Liang et al. [11] and Chryssolouris et al.
[12] used simulation to acquire knowledge related to
relationships between system attributes and performance
of dispatching rules, while Talavage and Shodham [13]
proposed a COMMAND framework, which combines
capabilities of simulation and knowledge engineering to
search for an e� cient design and control strategy.
Bengu [14], Kim and Kim [15] and Du� e and Prabhu
[16] presented a simulation-based approach. An appro-
priate combination of dispatching rules for selecting
production orders is suggested by Muraki and Ishii [17].
Several researchers have applied heuristic search to ®nd
the near-optimal schedule. The Petri-net (PN) model can
also prove to be a promising tool, as shown by Marie
[18], Naiqi [19] and Kim et al. [20] for FMS scheduling.

To solve the scheduling problem, the ant colony
optimization technique is utilized. Ant algorithms were

proposed by Dorigo et al. [21] as a multi-agent approach
to di� erent combinatorial optimization problems. Since
then ant algorithms have been modi®ed time and again
and have been applied to problems like the travelling
salesperson problem (TSP) [22±29], the quadratic assign-
ment problem (QAP) [30±33], job-shop scheduling [34],
the vehicle routeing problem [35], etc.

In this paper, a graph-based approach has been
applied in conjunction with a modi®ed version of the
algorithms to solve the FMS scheduling problem. This
shows promising results by converging to the near-
optimal solution in lesser computation times and hence
saves central processing unit (CPU) time. The proposed
methodology takes care of all the parameters of the
ant colony optimization (ACO) algorithms and also
incorporates preventive measures, such as stagnation
avoidance and prevention of early convergence of the
solution, to overcome the di� culties in using the ACO
algorithms. For a comprehensive survey of ACO the
reader is referred to Dorigo et al. [21].

2 PROBLEM FORMULATION

In this section, the problem is described. In the problem,
a job j 2 J (where J is a set of jobs, such that
J ˆ f1, 2, . . . , j, . . . , j0g, j0 being the maximum number
of jobs available from time zero onwards) is to be assigned
to a machine m 2 M (where M is the set of machines such
that M ˆ f1, 2, . . . , m, . . . , m0g, m0 being the number of
machines), such that the makespan is minimum. The job
constitutes a sequence of operations and an operation
oj 2 Oj (where Oj ˆ fo1, o2, . . . , oj, . . . , o0

jg, o0
j being the

maximum number of operations for job j) can have
some ¯exibility depending on the feasibility of an
operation to be performed on a machine. For a feasible
operation o of job j on machine m, the processing time
can be denoted by pj,o,m. Here, it should be noted that
Oj 2 O0 where Oj gives the set of operations for job j
and O0 is the set of all operations on all jobs. Thus, the
objective of the problem is to schedule operations of all
the jobs on machines such that the overall makespan is
minimized. Keeping this objective in mind, the next
section proposes an ACO-based scheduling approach.

3 SOLUTION APPROACH

The solution approach applied in the paper is a weighted
graph-based approach with its optimization being done
by the ACO techniques. The graph-based representation
of the FMS scheduling problem is explained below.

3.1 Graph-based representation

For a given set of jobs J and set of machines M with
corresponding operations of job j as oj, a directed
graph is constructed. Let G ˆ …O0, A† be the set of arcs
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connecting all possible combination of nodes. The initial
node i in Fig. 1 is necessary in order to specify the ®rst
scheduled job when several jobs have their ®rst opera-
tions on the same machine.

Considering N as the total number of operations,
N ‡ 1 nodes and N…N ¢ 1†=2 ‡ J arcs can be obtained,
where all nodes are pairwise connected except node I ,
which is connected only to the ®rst operation of each
job. Thus, each node corresponds to an operation of a
particular job on a particular machine. Each arc is
weighted by a pair of numbers ftkl, ²klg, where tkl is
the trail level and ²kl is the visibility, computed initially
according to a desirability measure derived from a
greedy problem-speci®c heuristic like LPT (longest
processing time) or LRPT (largest remaining processing
time). These factors will be dealt with later in detail. An
overview of the ant systems is presented next.

3.2 Ant systems

The ant systems were initially proposed by Dorigo et al.
[21] as a general-purpose metaheuristic approach for

combinatorial optimization problems. The underlying
idea was to parallelize search over several constructive
computational threads, based on a dynamic memory
structure incorporating information on the e� ectiveness
of previously obtained results. More precisely, an arti®-
cial ant is a simple computational agent, which iteratively
constructs a solution for the problem. This is done by
emulating the behaviour of real ants. Ants deposit a
substance called pheromone on the path that they have
traversed from the source to the destination nest and
the ants coming at a later stage apply a probabilistic
approach in selecting the node with the highest phero-
mone trail on the paths. Thus the ants move in an auto-
catalytic process (positive feedback), favouring the path
along which more ants have travelled and by and by
traverse all the nodes.

The approach of the arti®cial ants applied to the FMS
scheduling is slightly di� erent. Each node here signi®es
an operation of a job on a machine. Due to ¯exibility
of the system there can be more than one possible node
for the same operation of the same job. This is possible
owing to the capability of more than one machine to
do the same job. Thus, whenever an ant chooses a

Fig. 1 Graph-based representation of the FMS scheduling problem
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node for a particular operation, all other nodes belong-
ing to the same operation but on a di� erent machine
are to be removed from the set of nodes still to be visited
by the ant. This can be understood in the following
manner. For each ant, say k, let Gk be the set of all
nodes still to be visited and Sk be the set of nodes allowed
at the next step. For example, suppose that Sk consists of
a node signifying operation o of job j. This operation can
be done on machine m ˆ …1, 2, 3, . . . , m0†. Thus, on the
selection of node nj,o,m all nodes with parameters no,j

are to be eliminated from Gk as well as Sk. The selected
node nj,o,m is added to the tabu list Tk for ant k and if
the chosen node is not the last in its job then nodes
related to its immediate successor are added to Sk. The
process is iterated till Gk ˆ f’g. At the end, the sequence
of the nodes visited by the ant given by the tabu list
speci®es the solution proposed by ant k. The node
selection procedure is purely probabilistic. Let til be
the intensity of the pheromone trail on the edge …i, l† at
the time t. Each ant at time t chooses the next node,
where it will be at time t ‡ 1. Therefore, if each ant simi-
larly chooses its next node, then k0 ants (total number of
ants) will choose the next node to move in this interval,
called an iteration of the ACO algorithm, in time
…t, t ‡ 1†. Then, after every T iterations …T ˆ

Pj0

j ˆ 1 o0
j†

each ant has completed a tour. At this point the trail
intensity is updated according to the following rule:

til…t ‡ n† ˆ »til…t† ‡ ¢til …1†

where » is a coe� cient such that …1 ¢ »† represents the
evaporation of the trail between time t and t ‡ n. Also,
in order to avoid unlimited accumulation of the trail,
the value of » should be 0 < » < 1. Here,

¢til ˆ
XK 0

k ˆ1

¢tk
il …2†

where K 0 is the total number of ants and ¢tk
il is the

quantity per unit time of the pheromone trail laid on
the edge …i, l† by the kth ant between times t and t ‡ n.
Also,

¢tk
il ˆ

Q

Pk

if the kth ant uses the edge …i, l † in
its tour …between time t and t ‡ n†

0 otherwise

8
<

:

…3†

where Q is a positive constant and Pk is the makespan by
the kth ant. The transition probability of moving from
node i to node l for the given ant can be given as

pk
il…t† ˆ

‰til…t†Š¬‰²il ŠP
k2Sk

‰til…t†Š¬‰²il Š
if l 2 Sk

0 otherwise

8
><

>:
…4†

where Sk represents the set of nodes to which ant k can
move from the present state and ²il , the visibility from

node i to node l, is a heuristic value obtained from a
greedy heuristic. This remains constant throughout.
Parameters ¬ and  control the relative importance of
the trail versus visibility.

The above relationship among the parameters for an
ACO heuristic are adopted from Dorigo et al. [22].
After the ant has completed its tour, the tabu list is
emptied and the ant is free again to choose its path.
Thus, this basic procedure is implemented in the
improved algorithm to ful®l the objective of solving the
FMS scheduling problem.

3.3 Ant algorithm

Several improvements and modi®cations have been
suggested to improve the performance of the original
ANT algorithm. A few important ones are mentioned
here.

3.3.1 Prevention of a very quick convergence of the
algorithm

This can be achieved by incorporating the parameter p0

in the algorithm:

p0 ˆ
loge…NC†

loge…N¢ max† …5†

where NC is the counter for the number of iterations and
N_max is the maximum number of iterations. It can be
easily seen that 0 4 p0 4 1. For the lower values of
NC, the quantity p0 remains close to 0 and progressively
increases as the value of NC increases and approaches
unity at the end. Using this quantity p0 to represent the
probability of avoiding newer solutions, p0 is compared
to a randomly generated quantity p. As the value of
NC increases, the probability of the event p > p0

decreases. It is ostensibly clear from the above fact that
at the lower values of NC, the probability of searching
newer paths by the ants is on the higher side, whereas,
as NC is gradually increased, the probability to generate
new paths considerably decreases. In this way, a very
quick convergence of the algorithm to a locally opti-
mized solution is prevented.

3.3.2 Stagnation avoidance

Stagnation denotes the undesirable situation in which all
ants construct the same solution over and over again,
making further exploration of newer paths almost
impossible. This derives from excessive trail levels on
the edges of one solution, and can be observed in
advanced phases of the search process. It happens
when the ACO parameters …¬,  , »† are not well tuned
for undertaking the problem. In particular, stagnation
derives from a wrong value of parameter » in the original
algorithm. If it is too high, stagnation might take place,
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while if it is too low, little information is conveyed from
previous solutions and the algorithm becomes a ran-
domized greedy search procedure. Thus, » should be
chosen very carefully. To prevent stagnation, a random
number q is generated and compared to the trail on the
edge. For a very high pheromone trail …til†, q will be
less and for a low value of the same, q is high. Thus, if
the trail is not too high, the algorithm may overlook
the best path at the selection point and take up an
alternative edge. However, if the trail is very high, the
algorithm has a tendency to stick to this edge. Therefore,
it can be concluded from the above discussion that the
parameter q prevents the system stagnating at points
and thus avoids locally optimized solutions.

With these preventive measures, the proposed algo-
rithm is presented as follows.

Step 1: initialization
1. Represent the problem using a weighted directed

graph.
2. Randomly distribute ants on the nodes.
3. Set t ˆ 0; /*{time counter}*/
4. Set NC ˆ 1; /*(number of iterations/number of

cycles counter)*/
5. Set til…0† ˆ c; on each node /*til…0† is the

initial pheromone trail on the edge il and c is a
small positive constant*/

6. Set ¢til ˆ 0; on each node /*¢til is the
increase in the trail level on edge i ¢ l*/

7. Set tabuk ˆ 0; /*tabuk gives the list of nodes
traversed by ant k*/

8. Set p0 ˆ 0;

Step 2. If NC > N_max go to Step 8 else go to
Step 3 /*N_max is the maximum number of itera-
tions*/

Step 3. If m > m_max go to Step 7 else go to
Step 4 /*m gives the ant number and m_max stands
for the maximum number of ants*/

Step 4. If tabuk >ˆ tabuk
max go to Step 6 else go to

Step 5 /*tabuk
max gives the maximum number of

nodes to be visited by ant k*/

Step 5: node selection
1. Generate random number p …0 4 p 4 1†.
2. If p 5 p0 then go to Step 5(3) else go to Step 5(4).
3. Generate random number q …q 2 Sk†, select ˆ q, go

to Step 5(10).
4. Compare probabilities of possible outgoing nodes.
5. Choose the node having the highest probability

… pk
il†.

6. Generate a random number q …0 4 q 4 1†.
7. If q 5 pk

il then go to Step 5(8) else go to Step 5(9).
8. Generate a random number q …q 2 Sk†, select ˆ q,

go to Step 5(10).

9. Choose the node with the highest pk
il value,

select ˆ 1.
10. Choose the node select as the next node to move to.
11. Add select to tabuk, delete it from Gk and Sk and go

to Step 4.

Step 6. m ˆ m ‡ 1, go to Step 3.

Step 7: updating
1. Find p‡

iter ; /*p‡
iter is the optimal makespan for

iteration*/
2. If p‡

iter < p‡
best then p‡

best ˆ p‡
iter ; /*p‡

best is the best
makespan*/

3. Update til…t†.
4. Empty all tabu lists (i.e. tabuk).
5. NC ˆ NC ‡ 1.
6. p0 ˆ loge…NC†= loge…N_max†, go to Step 2.

Step 8: output

p‡
best

In the next section, numerical illustrations have been
presented to show the e� ectiveness of the proposed
method.

4 NUMERICAL ILLUSTRATION

For the sake of simplicity, ®rst a simple example is
considered where the set-up time, etc., has been ignored.

4.1 Example 1

The example of ®ve jobs and three machines of Lee and
Dicesare [36] is taken. Each job has four operations to be
performed. Each operation can be done on one or more
machines. The detailed description of the operation of a
job and its corresponding machines (if the machine is
capable of performing the operation) with its respective
processing time is given in Table 1.

The system adopted to represent the time is pj,o,m, i.e.
the ®rst index refers to the job number j, the second
refers to the operation number o on job j and the third
refers to machine number m on which the operation o
could be performed. The lot size for the jobs is 10.
Here set-up and other factors leading to the wastage of
time are neglected. The program for the proposed
algorithm is coded in C‡‡ programming language.
The value of the makespan for the problem with 400
iterations comes out to be 439 by the method proposed
by Lee and Dicesari [36] and Yim and Lee [37], whereas
for the same problem the present method gives 420,
which is lower than the value obtained by Lee and
Dicesari [36]. Thus the superiority of the present
method is proved over the PN-based method proposed
by Lee and Dicesari [36].
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4.2 Example 2

Now the example of scheduling an FMS is taken where
set-up times are involved. The system consists of two
jobs and two machines with two operations on each

job. Here an adequate tool is required for the operation
to be performed on a machine. As per the convenience of
a tool to be ®tted to a machine, the processing time
needed for a machine for an operation of a job varies
with the tool attached to the machine. For the concerned
problem four tools are employed. Moreover, attachment
and detachment times of the tool on a machine are given
in Table 2 and the respective processing times are
provided in Table 3. The representation method for the
processing time adopted here is pj,o,m,t, where p refers
to the processing time of operation o of job j on machine
m with tool t.

After carrying out extensive computational experi-
ments the value of the system parameters, such as ¬, 
and », have been tuned. The procedure to determine
these parameters is given in detail in the next subsection.
The ®nal outcome in the form of makespan at di� erent
values of iterations is plotted and is given later in Fig.
6. The ®nding obtained here utilizes the same settings
as that used by Yim and Lee [37], where they have
used a timed transition PN model for the FMS schedul-
ing problem. The next subsection deals with the system
performance using the system parameters.

4.3 Study of system performance

1. The ®rst parameter to be studied is Q. Various values
of Q were tested in the range 25±2000. It can be seen
from repeated results that the value of Q does not
a� ect the ability to ®nd the near-optimal solution
for FMS scheduling. However, for all Q values, as
the number of iterations increases, the number of
ants selecting the best possible result also increases.

2. The next parameter to be studied is ¬. It should be
noted that ¬ is the parameter related to the til

(pheromone trail) value, which shows the dependency
on the previous pheromone trail. The e� ect of ¬
values, ranging from 0.25 to 10, was tested on the
CPU time. It can be seen from Table 4 that as the
number of iterations increases, the CPU time
considerably increases. However, for increasing

Table 1 Processing time for Example 1

Job number
Operation
number

Machine
number

Processing time
(s)

1 1 1 7
1 1 3 4
1 2 2 3
1 3 1 3
1 3 3 6
1 4 1 2
1 4 2 4
2 1 1 8
2 1 2 12
2 2 3 4
2 3 1 7
2 3 2 14
2 4 1 8
2 4 3 4
3 1 1 10
3 1 2 15
3 1 3 8
3 2 2 2
3 2 3 6
3 3 1 2
3 3 3 4
3 4 1 6
3 4 2 3
4 1 2 9
4 1 3 5
4 2 1 6
4 2 3 2
4 3 2 7
4 3 3 12
4 4 1 9
4 4 2 6
4 4 3 3
5 1 1 10
5 1 3 15
5 2 2 7
5 2 3 14
5 3 1 5
5 3 2 8
5 4 1 4
5 4 2 6
5 4 3 8

Table 2 Attachment and detachment times (in s) for operations of jobs on machines

with particular tools of Example 2

Job

J1 J2

M1 M3 M1 M2

T2 T4 T1 T3 T1 T2 T4 T4

First operation 8 4 10 15 15 6 9 3

M1 M3 M2 M3

T1 T4 T2 T3 T2 T4 T1 T3

Second operation 7 5 10 12 4 12 8 5
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values of ¬, the CPU time increases for ¬ values in
the range 0.25±1, after which it shows a stagnated
reading. Thus, for higher ¬ values it can be said
that the previous trail becomes constant.

3. Now the combined e� ect of ¬ and  on the system
performance is considered. It can be seen from
equation (4) that  is the exponent of ²il and thus
the combined in¯uence of ²

il is very important in
analysing the role played by it. Let » ˆ 0:5, Q ˆ 100
and the number of iterations be 1000. From Table 5
it can be inferred that, for constant  values, the
CPU time increases from 0 to 0.5 and then decreases
continuously with almost a constant value. Therefore,
it can be concluded that as the dependence on the
heuristic value ²il increases, the CPU time decreases
from  ˆ 0:5 to  ˆ 1 and thereafter has an almost
constant value. Hence it can be said that system
performance is optimal for ¬ in the range 1±2 and
for  in the range of 3±5. Thus, dependency on the
node selection is more on the heuristic value, as seen
in the application of this case.

4. One of the most important system parameters is ». It
shows the evaporation rate of the pheromone trail.
From Fig. 2 it can be seen that as the value of »
increases from 0 to 0.5 the CPU time increases and
then decreases for » values in the range 0.5±1. Thus,
it can be inferred that as the value of » increases,
the CPU time also varies, as shown in Fig. 2.

5. The next observation is for the number of iterations
with the mean makespan and CPU time. Initially
the value of the mean makespan is very high but
progressively stabilizes to a constant value (Fig. 3).
It is observed that the mean makespan is quite high
for a lower number of iterations, but stabilizes to a
constant value as the number of iterations increases.

It can also be observed that as the number of
iterations increases, the CPU time for obtaining the
near-optimal schedule also increases (Fig. 4). This
di� erence is high when the number of iterations is
large. Thus an optimal value of the number of
iterations should be chosen such that neither the
makespan found is stabilized nor the CPU time is
substantially high. It was observed from repeated
runs that the number of ants choosing the best path
considerably increases when the number of iterations
is less, but for an increased number of iterations the
fraction of ants choosing the best path stabilizes to
about 0.60 (Fig. 5).

The way the algorithm converges to its near-
optimal solution is an interesting observation. Refer-
ring to Fig. 6, the ants ®nding solutions towards the

Table 3 Processing time (in s) for Example 2

Tool

Machine T1 T2 T3 T4

M1 7±3 10±6 ± 5±9
M2 ± 12±6 ± 8±10
M3 3±7 6±9 10±5 ±

Table 4 Variation of CPU time (in ms) with varying values of
¬ for various values of the number of iterations

Number of
¬

iterations 0.25 0.5 0.75 1.0 2 5 10

50 3 4 4 3 2 2 2
100 5 6 7 5 4 4 4
200 11 12 13 8 8 8 8
500 14 29 30 18 18 20 22

1000 20 42 44 40 39 39 40

Table 5 Variation of CPU time (in ms) for corresponding
variations in values of ¬ and 



¬ 0.5 1 2 3 5

0 10 8 8 7 7
0.5 16 13 12 12 12
1 12 9 9 8 9
2 11 9 9 8 9
3 11 9 9 9 9
5 11 9 9 9 10

Fig. 2 Variation of CPU time (in ms) with varying iterations and for corresponding values of »
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beginning of the procedure are the ones with more
makespan, but gradually the ants try to follow the
shortest path. Thus, the solution progressively
moves towards the near-optimal solution. After
about 500 iterations the ants ®nd almost similar
paths, but still the chances of ®nding newer paths is
not nulli®ed.

6. Next the system behaviour with node branching is
considered. It can be seen that as the number of
iterations increases the solution comes closer to
better results. The node branching decreases with
the number of iterations (Fig. 7). Also, the makespan
values obtained for particular iterations and the

corresponding CPU times are shown in Fig. 8.
From the ®gure it can be seen that as the CPU time
increases, it is possible to obtain better results with
still lower makespan values.

5 CONCLUSION

The paper presents an e� ective method of scheduling
jobs in a ¯exible manufacturing system through the use
of an ant colony optimization technique. It is based on
an imitation of the foraging behaviour of real ants. A
substance, pheromone, is deposited by natural ants

Fig. 3 Mean makespan values for the corresponding number of iterations

Fig. 4 Variation of CPU time (in ms) with the number of iterations

Fig. 5 Percentage of best results obtained with the number of iterations
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after moving through a path. A similar pheromone trail
is developed for the scheduling procedure, wherein a
directed graph-based approach is used to represent the
whole process. Ants move from one node to another
node and progressively move towards the ®nal node.
Two illustrative problems with varying computational
complexities have been considered for analysis and it is
observed that the proposed algorithm is e� ective and

robust in dealing with the FMS scheduling problem.
For further exploration, a non-graph-based approach
can be attempted through the proposed algorithm.
Using di� erent rules pertaining to the colonial relation-
ship, pheromone updating can be explored to enhance
the capability of the proposed algorithm.

There are several instances in the literature where PN-
based models are accepted for solving the scheduling

Fig. 6 Typical values of makespan for the FMS scheduling problem with the proposed ant algorithm

Fig. 7 Percentage of node branching with the number of iterations

Fig. 8 Obtained CPU time (in ms) for corresponding values of makespan
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problem of FMS. Similarly, there is an abundance of
literature where several techniques like the branch and
bound, tabu search, genetic algorithm, etc., are
employed to resolve practical scheduling problems of
the FMS. It is suggested that with a few modi®cations
to suit the problem environment, the proposed algorithm
can be used to solve a wide range of problems.
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