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This paper treats a method of calculating natural frequency of vibratory feeders. In 
a bowl-type feeder, the deformation of the spring is complicated and the exact 
calculation of its constant is difficult. Therefore an approximate calculation is 
presented under some assumptions. The relations between spring constant and 
spring setting condition are clarified and shown in various diagrams. The equations 
of natural frequency for the fixed type and the semi-floating type feeder are 
represented briefly. The vibration direction of bowl-type feeder is also discussed. 
The theoretical results are confirmed by experimental studies. 

1. Introduction 
Vibratory feeders are a very useful method for conveying or 

feeding various parts and materials in automatic asssembly 
system [I]. Much theoretical and experimental researchers 
related to the conveying mechanism of feeders has been 
reported [2-7]. 

As seen in previous studies, the feeding or conveying 
velocity of parts is influenced by the vibration amplitude of 
the trough or bowl. Generally, most vibratory feeders are 
used at the resonant or near-resonant frequency of the 
mechanical system to improve feeding efficiency. Therefore, 
it is very desirable to predict the natural frequency of the 
feeder, although until now feeders have been designed ex­
perimentally. 

This paper treats the method of calculating natural 
frequency of vibratory feeders. In a linear type vibratory 
feeder, the spring constant and inertia term can be calculated 
easily. But in bowl-type feeder, the deformation of the spring 
is complicated and the exact calculation of spring constant is 
difficult. In this paper, an approximate calculation is made 
and some relations between natural frequency and the setting 
condition of the spring are shown. These results will be useful 
for design, development and practical use of bowl-type 
feeders. 

2. Equivalent Model of Bowl-Type Vibratory Feeder 
The bowl-type vibratory feeder is made up of four main 

parts, that is, bowl, springs, base and exciter. The bowl is 
usually supported on three or four sets of incIinded leaf 
springs fixed to the base, and is vibrated by an elec­
tromagnetic exciter mounted on the base. 
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(a) SEMI-FL~TING TYPE 
VIBRATORY FEEDER 

(c) EQUIVALENT MOOEL 
OF FL~TING TYPE 
FEEDER 

(b) EQUIVALENT MODEL 
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TYPE FEEDER 

(d) EQUIVALENT tv()DEL 
OF FIXED TYPE 

FEEDER 

Fig. 1 Equivalent model of bowl·type vibratory feeder 
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Fig. 2 Deflection of leaf spring in bowl-type vibratory feeder 

The vibratory feeder is often mounted on vibration 
isolators, for example rubber feet, as shown schematically in 
Fig. 1(a), (b), to minimize the force transmission to the 
foundation. The relations between mounting conditions and 
dynamic characteristics of the feeder have already been 
clarified [8]. According to this previous study, if the stiffness 
of the vibration isolator is less than about one-fifth of that of 
the lead spring, the vibratory characteristics can be ap­
proximated by those of a floating type feeder which is sup­
ported at the nodal point of spring, as shown in Fig. 1(c). 

If the feeder is mounted on a foundation without a 
vibration isolator, the equivalent model of the feeder is 
presented in Fig. 1(d). 

3. Deformation of Leaf Spring and Some Assump­
tions for Analyses 

In a bowl-type feeder, three or four sets of inclined leaf 
springs are arranged along a circumference. Then the 
movement of the bowl has an angular vibration about its 
vertical axis together with a vertical vibration. 

In this case, the deformation of each spring is very com­
plicated. Therefore, in order to simplify the discussion, the 
following assumptions are presented: 

The deformation of the leaf spring is influenced by the 
deformations in (i) thickness direction, (ii) width direction 
and (Hi) torsion. These deformations are independent of one 
another without any geometrical constraint, so that the total 
deformation can be calculated by means of vector addition of 
each deformation. 

4. Calculation of Spring Constant 
Consider a leaf spring inclinded at an angle y to the 

horizontal and fixed to a base at point D and to a bowl at 
point A, as shown in Fig. 2. 

Let O be the center of the circle (named base circle) which is 
inscribed tangent to the center lines of leaf springs, as shown 
in Fig. 2(a). LeU^be the radius of this base circle and <j> be the 
angle between OA and OH. OH is perpendicular to the center 
line of the spring. 

If the bowl is rotated by an angle 6, the upper end of the leaf 

Nomenclature 

b = width of leaf spring 
E = Young's modulus 

/n l = natural frequency of fixed type vibratory feeder 
/„2 = natural frequency of floating and semi-floating 

type vibratory feeder 
G = shear modulus 
h = thickness of leaf spring 

/;. = geometrical moment of inertia 
J = inertia moment about vertical axis of bowl 

ke = equivalent spring constant 
ki = numerical factor 

K.E. = kinetic energy of bowl 
/ = length of leaf spring 

M = mass of bowl 
Me = equivalent inertia mass 
Ms = bending moment at end of spring (in width 

direction) 
M, = torsional moment 

n = number of leaf springs 
Rs = shearing force at end of spring (in width direction) 

r 

r0 

u2 

x 

A» = 

8 = 

K 

4> 

radius of base circle 
radius of setting circle on bowl 
strain energy in width direction 
strain energy in thickness direction 
strain energy in torsion 
distance from cramping part on leaf spring 
slope of deflection at upper end of spring (in width 
direction) 
angular displacement at upper end of spring 
ratio of equivalent inertia mass of bowl to that of 
base 
inclination of leaf spring 
vibration direction angle 
deflection at upper end of leaf spring 
width direction component of deflection at upper 
end of leaf spring 
rotation of bowl 
torsional displacement of leaf spring 
offset factor 
offset angle 
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spring is moved from A to C Denoting the displacement 
AC' by 5, and the angle < C ' A B ' in Fig. 2(b) by (3, there 
exists the following relation: 

8 = — cos (3 sin 7 (1) 

As mentioned above, assume that the deflections of the 
spring in each direction are independent of one another and 
calculate the strain energy of each deformation. 

Let 5, be the deflection in the width direction (cor­
responds to the displacement B ' C in Fig. 2(b)) and a be the 
slope of the deflection at the upper end of the spring. Then 
these quantities can be calculated geometrically by the 
following equations: 

(2) 

(3) 

(4) 

(5) 

5, = /• 
cos 4> 

The following 

cos(</> + 0) 

e2 

= r— +rdtan<t> 

a = 6 cos 7 relations also exist: 

PSP MSP 

3EIZ 

psp 

+ 2EIZ 

MA 

= «. 

Where 

2EIZ EIZ 

Ps : shearing force at the end of spring, 
Ms : bending moment at the end of spring, 

E : Young's modulus, , h2h\ 
Iz : geometrical moment of inertia ( = —— J, 

/ : length of leaf spring, 1 2 

b : width of leaf spring, 
h : thickness of leaf spring. 

Hence 

P.= 
Eb3b i) 

M = (f-l) EVh /cd_ 

P \ 3 2 

(6) 

(7) 

Substituting equations (1-3) in equations (6) and (7), and 
neglecting small terms because of small 8, we obtain 

EWh ( l \ 
-ocos (3sin27IK— - I P* = -

2rP 

Ms = —— b cos 
2rl 

P ^ 2 y ( \ - ± ) 

(8) 

(9) 

(10) 

where K is the offset factor, defined by 

rtan<j> 

/cos 7 

Then the strain energy in the width direction £/, is represented 
by 

2EIZ 

Eb2h 

24lr 

j i (Psx+Ms)
2dx 

b2 cos213 sin2(27) (3/c2 - 3 K + 1) ( ID 

Next, consider the strain energy for the thickness direction. 
The deformation in the thickness direction can be ap­
proximated as that of parallel leaf springs and the strain 
energy U2 can be represented by the following equation: 

Ehhi 
U2=1j-S

2cos2p (13) 

The strain energy for torsion U3 is calculated by 

1 
£/, 

2k, btf G ! > dx (13) 

where k, is a numerical factor depending on the ratio b/h, G 
is the shear modulus and M, is the torsional moment of the 
spring. The angle of torsion at the upper end of the spring is 
geometrically given by 6' = 8 sin 7, hence 

6 cos /3 sin2 7 
d'= (H) 

and the torsional moment M, is expressed as: 

£ , M 3 G „ , 
M,=-

l (15) 

Substituting equations (14) and (15) in equation (13) gives 

kxbh^Gh2 cos2(3sin47 
£/ ,=-

2lr2 (16) 

The equivalent spring constant of bowl-type feeder ke can 
be calculated from 

y<52 =«(£ / ,+£ / 2 + £/3) 

where n is a number of leaf springs. Then ke is written as: 

nEbh3 

(17) 

K = P t1 + A ( l ) 2 ( T ) 2 sin2(2^)(3K2-3K+1) 
+ k(—\(— Y sin47Jcos2/3 (18) 

Generally, the third term is much smaller than the first and 
second terms and Eq. (18) becomes approximately 

, nEbh1 r 1 / b \ 2 ( I \ 2 . , ,„ , 

^ = ^ ^ 1 1 + T2(T) ( T )
 sin(27) 

C ( 3 K 2 - 3 K + 1 ) J cos2 (3 

If it is assumed that the angle 8 is small, then 

tan S3 =? tan <j> sin 7 

and cos2/3 in equation (19) becomes 

1 
cos2 (3 = 

1 + [ ^ s i n ( 2 7 ) ) 2 

(19) 

(20) 

(21) 

Substituting equation (21) in equation (19), the approximate 
spring constant can be calculated numerically for any given 
condition of the leaf spring. 

5. Calculation of Equivalent Inertia Term 
Since the bowl has an angular vibration about its vertical 

axis together with a vertical vibration, the inertia term is 
related to both the mass of bowl M and the inertia moment J. 
The kinematic energy of the bowl is represented by 

K.E. = -Mb2 cos2/3cos27+ X-J82 

• i t 
., J sin2 7 

2 V V — 
Mcos27 + cos2|3'52 

Hence the equivalent inertia Me is given by 

J sin2 7 ' 
M„ 

/ , 7 s i n 2 7 \ , „ 
IMcos27^ j — 1 cos2/3 

(22) 

(23) 
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Fig. 3 Effect of offset factor on equivalent spring constant 

6. Natural Frequency of a Bowl-Type Vibratory 
Feeder 

6.1 Fixed type vibratory feeder. In this type, the base of the 
feeder is attached to a foundation without a vibration isolator 
as shown in Fig. 1(d), so the vibratory system can have one-
degree of freedom. The natural frequency of this type is 
expressed by 

0 30 60 90 

INCLINATION OF SPRING deg 

Fig. 4 Effect of inclination angle of leaf spring on equivalent spring 
constant 

the base and fnl is the resonant frequency of a fixed type 
feeder which is expressed as equation (24). 

7. Relations between Equivalent Spring Constant and 
Setting Conditions of Leaf Spring 

Fig. 3 shows an example of the magnification factor versus 
the offset factor for various l/r. The magnification factor is 
the spring constant ratio of a bowl-type feeder spring to that 
of a linear-type feeder when the same leaf springs are used. It 

fni -
2ir' 

/ # i £ M r , [ l + - ^ ( - £ ) 2 (y)2sin2(27)(3/c2-3« + l ) ] 

/sin2 7 ' 
P (Afcos27+—j—1-J 

(24) 

In an ordinary feeder, b/h = 10 ~ 20, l/r= I, K =0 and 
7 = 40-70, then equation (24) becomes approximately 

fm =0.046 
nEtfh sin2 (2y) 

/(Mr2 cos27 +/sin27) 
(25) 

6.2 Floating type and semi-floating type feeders. When the 
feeder is mounted on a vibration isolator, the vibratory 
system has two degrees of freedom, as seen in Figs. 1(a) and 
1(b). However, as discussed in the previous report [8], if the 
stiffness of a vibration isolator is less than about one-fifth of 
that of the leaf spring, the resonant frequency of a semi-
floating type feeder can be identical to that of the floating 
type. Generally, in an ordinary vibratory feeder, the vibration 
isolator would satisfy the condition mentioned above. 
Therefore, the resonant frequency of the floating type or 
semi-floating type feeder is expressed as: 

/„2=Vl+A„./„, (26) 

Where am is the ratio of the equivalent mass of bowl to that of 

is seen from this diagram that the magnification factor in­
creases as l/r increases, and at K = 0 and 1.0, it has a very 
large value for large 1/4. When l/r = 0, it is equivalent to 
r~oo, then the feeding direction becomes linear and the 
magnification factor is unity. 

Fig. 4 shows an example of the magnification factor versus 
the inclination angle 7 for various b/h. It is seen from this 
diagram that the magnification factor is equal to unity at 7 = 
0° and 90°, and it becomes very large value at 7 = 45 °. 

8. Relations between Vibration Direction and In­
clination Angle of Leaf Spring 

Gnerally speaking, in a vibratory feeder, the vibration 
direction is one of the most important and effective 
parameters for conveying velocity. The conveying velocity is 
sensitive to the vibration direction 7 ' . Therefore, it is 
desirable that the optimum vibration direction should be 
chosen practically for given conditions. 

In a linear-type vibratory feeder, the vibration direction 
angle 7 ' , measured from a normal direction to the conveying 
surface, is coincident with the inclination angle of the leaf 
springs, 7. Thus 7 should be chosen equal to the optimum 
vibration direction. 

However, in a bowl-type feeder, 7' is not always equal to 7, 
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Fig. 5 Various setting positions of leaf spring 
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Fig. 6 Effect of setting positions of leaf springs on vibration direction 
(when radius of base circle is constant) 
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Fig. 7 Effect of setting positions of leaf springs on vibration direction 
(when radius of setting circle on bowl is constant) 

but it is a function of 7, K and IIr. This angle 7' at the upper 
end of the leaf spring is geometrically given by the following 
equation: 

sin 7 
cos (3 sin 7 

cos 4> 

or 

tan 7' =tan7. Ji + («7 C O S 7 ) 2 

(27) 

(28) 

Consider the case when the setting positions of the springs 
are varied as seen in Fig. 5(a) while the radius of the base 
circle r is held constant. The relation between 7' and 7 is 
shown in Fig. 6 for l/r = 1. Note that the vibration direction 
angle 7' coincides with 7 at K = 0. It is also seen from this 
diagram that 7' is slightly different from 7 when K is nearly 
unity. Similarly, Fig. 7 shows the case when the setting 
positions of the springs are varied while the radius of the 
setting circle on bowl r0 (corresponds to the distance OA) is 
held constant, as seen in Fig. 5(b). As is shown in this 
diagram, 7' is considerably different from 7 when r is small 
and K is nearly unity. 

Referring to these results, it is convenient to set the offset 
factor at K = 0 for selecting any vibration direction. 

9. Experiment 
In Fig. 8, a photographic view of the experimental ap­

paratus and its main is shown. A vibrating table (T), on which 

a bowl should be fixed, is supported on three sets of inclined 
leaf springs (2). The displacement of the table is detected 
through a differential transformer (3). By controlling the 
screw (4). a desirable static load is applied to the table. The 
applied load is detected through strain gauges which are 
mounted on the load detecter ring © • The displacement of 
the table and the applied load are recorded simultaneously 
with an X-Y recorder @ . 

Fig. 9 shows an example of a load-displacement diagram 
for various cramping torques of leaf springs. As seen in this 
diagram, the equivalent spring characteristic of this system 
exhibits a hysteresis loop. At the same time, the softening 
tendency of the spring stiffness is large when the cramping 
torque is small. From these results, it may be concluded that 
the mirlo-slip occurs at the cramping parts when the 
displacement becomes large and, therefore, a large resultant 
moment is applied. 

If the displacement range is small and the cramping torque 
is large, the spring characteristic can be considered linear. The 
experimental spring constant in this report is obtained in this 
linear range. 

Figs. 10 and 11 show the experimental results of the spring 
constant compared with the theoretical values. It is seen from 
these results that the theoretical values are in good agreement 
with experimental results when the width of the spring is 
relatively small. If width becomes large, however, the ex­
perimental values are smaller than the theoretical values 
because of micro-slip and insufficient rigidity of the cramping 
parts. 
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( a) VI E\4 OF APPARATUS

( b ) ~A 1N PART

Fig.8 Experimental apparatus and Its main part

10. Conclusions
1. Equations for the equivalent spring constant and natural

frequency of bowl-type feeders can be derived analytically.
2. In an ordinary bowl-type feeder, the deformation of the

spring is complicated and the equivalent spring constant is
about 2 - 40 times as large as that in the case where parallel
leaf springs are used.

3. The equivalent spring constant is influenced by the
offset factor which is related to the setting position of the leaf
spring. When the offset factor K is varied from zero to unity
while the rest of the parameters are held constant, the
equivalent spring constant takes a minimum value at K = 0.5.

4. The equivalent spring constant is influenced by the
inclination of the leaf spring. When the inclination of the leaf
spring is varied, the spring constant takes a maximum at 'Y =
45°.

254/ Vol. 103, JANUARY 1981

5. The vibration direction angle is not equal to the in­
clination of leaf spring, except in the case when K = O.

6. The natural frequency of the bowl-type feeder is ap­
proximately proportional to the square root of the thickness
of the leaf spring and to the two thirds power of its width,
while in the linear-type feeder it is proportional to the two
thirds power of thickness and the square root of width.

7. The inertia term is related to the mass of the bowl and
the inertia moment about its vertical axis.

8. If the cramping torque of spring is small, the equivalent
spring characteristic exhibits a hysteresis loop for large
amplitude of vibration.

9. It has been confirmed that the theoretical results agree
well with the experimental results in the range of practical use.
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