2 SCREW ROTATIONS

Purpose:

The purpose of this chapter is to introduce you to screw rotations. The screw rotation allows you to rotate a rigid body (or a frame representing the body pose) about an arbitrary axis in space and then determine the final pose of the body. This chapter also demonstrates that it is possible to move a body from any initial pose to any final pose with a single screw rotation and a proportional lead distance taken along a unique screw axis in space.

2.1 Rotation About an Arbitrary Axis

Previously we have rotated about either the x, y, or z axis of the base frame. Rotation about an arbitrary axis through the base origin with direction described by the \(\mathbf{k} \) unit vector (having components which are the direction cosines) can be determined by the transformation \(\mathbf{R}(\mathbf{k}, \theta) \) where

\[
\mathbf{R}(\mathbf{k}, \theta) = \begin{bmatrix}
k_x^2 v\theta + c\theta & k_y v\theta - k_z s\theta & k_z k_x v\theta + k_y s\theta \\
k_x k_y v\theta + k_z s\theta & k_y^2 v\theta + c\theta & k_z k_y v\theta - k_x s\theta \\
k_x k_z v\theta - k_y s\theta & k_y k_z v\theta + k_x s\theta & k_z^2 v\theta + c\theta
\end{bmatrix}
\]

and where

- \(k_x, k_y, \) and \(k_z \) = direction cosines of \(\mathbf{k} \)
- \(v\theta = 1 - c\theta \) \hspace{1cm} (versine of \(\theta \))
- \(s\theta = \sin \theta \)
- \(c\theta = \cos \theta \)

We will not drive (2.1), but show you the typical steps applied to derive (2.1). We arbitrarily select a frame \(x'y'z' \) such that its \(z' \) axis initially aligns with the \(\mathbf{k} \) unit vector direction. Thus, rotating about the \(\mathbf{k} \) axis is equivalent to rotating the \(x'y'z' \) axes described by \(\mathbf{C} \) relative to \(xyz \) (base frame) around the \(z' \) axis where \(\mathbf{C} \) is
\[
C = \begin{bmatrix}
 a_x & b_x & c_x & 0 \\
 a_y & b_y & c_y & 0 \\
 a_z & b_z & c_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

or

\[
C = \begin{bmatrix}
 a & b & c & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

and where

\[
a = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}, \quad b = \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}, \quad c = \begin{bmatrix} c_x \\ c_y \end{bmatrix} = k
\]

are the direction cosines of the \(x', y',\) and \(z'\) axes, respectively, with respect to the base coordinates.

Next, we rotate about the \(z'\) axis to the \(x''y''z''\) axes - see the following figure:

![Figure 2-2](image)

This operation can be described by the transformation \(H (R (z', \theta))\) where

\[
H = \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

\(H\) describes the \(x''y''z''\) frame relative to the \(x'y'z'\) frame.

Now let \(u\) be a vector in \(xyz\) which has components \(v\) in \(x'y'z'\) before rotation about \(z'\) axis. Then

\[
u = Cv
\]
Now, rotating about the z’ axis, vector \(v \) rotates to vector \(w \). The components of \(v \) in x’y’z’ are the same as the components of \(w \) in x”y”z”. The components of \(w \) in the x’y’z’ frame are

\[
w = H v
\]
(2.4)

To determine the coordinates of \(w \) in the xyz coordinates (call this vector \(r \)),

\[
r = C w = CH v
\]
(2.5)

but

\[
v = C^{-1} u
\]
(2.6)

so therefore

\[
r = CHC^{-1} u
\]
(2.7)

Thus rotation about the z’ axis located by \(k = e \) rotates vector \(u \) to vector \(r \) by the transformation \(CHC^{-1} \). That (2.7) is equivalent to (2.1) can be shown by performing \(CHC^{-1} \) where

\[
C^{-1} = C^T = \begin{bmatrix}
a_x & a_y & a_z & 0 \\
b_x & b_y & b_z & 0 \\
c_x & c_y & c_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
(2.8)

and simplifying using the right hand relationship \(c = a \times b \) and \(k = e \) (see Paul1, pp 25-29).

2.2 Equivalent Angle and Axis of Rotation

Given (2.1) one might logically desire the \(k \) and \(\theta \) for the rotation. This inverse problem is not easy to solve and involves subtle trigonometric manipulations. After a rotation \(R(k,\theta) \), the xyz axes are transformed to a new set of axes described by

\[
R = [a \ b \ c]
\]
(2.9)

where \(a, b, c \) are the direction cosines of the rotated axes with respect to the unrotated or base axes. Equating (2.9) to (2.1),

\[
[a \ b \ c] = R(k,\theta)
\]
(2.10)

we determine 9 simultaneous equations for the solution of k_x, k_y, k_z and θ. This only involves 3 unknowns since $k_x^2 + k_y^2 + k_z^2 = 1$

Following the solution in Paul, pp 30-32, sum the diagonal terms

$$a_x + b_y + c_z = (k_x^2 + k_y^2 + k_z^2) v\theta + 3 c\theta = v\theta + 3 c\theta = 1 + 2 c\theta$$ \hspace{1cm} (2.11)

giving

$$\cos\theta = (a_x + b_y + c_z -1)/2$$ \hspace{1cm} (2.12)

Thus

$$\theta = \cos^{-1}((a_x + b_y + c_z -1)/2)$$ \hspace{1cm} (2.13)

Note that, at this point, equation (2.13) does not provide a unique θ.

Next, we obtain expressions for k_x, k_y, k_z by differencing pairs of off-diagonal terms in (2.10)

$$a_y - b_x = 2 k_z \sin \theta$$ \hspace{1cm} (2.14a)

$$c_x - a_z = 2 k_y \sin \theta$$ \hspace{1cm} (2.14b)

$$b_z - c_y = 2 k_x \sin \theta$$ \hspace{1cm} (2.14c)

Squaring and adding,

$$(a_y - b_x)^2 + (c_x - a_z)^2 + (b_z - c_y)^2 = 4\sin^2 \theta$$

giving,

$$\sin \theta = \pm \frac{1}{2} \sqrt{(a_y - b_x)^2 + (c_x - a_z)^2 + (b_z - c_y)^2}$$ \hspace{1cm} (2.15)

(2.15) again specifies a non-unique soln for θ, but if we require that k and θ be chosen such that the first solution is such that $0 \leq \theta \leq 180^o$, then $\sin \theta$ assumes the positive (+) value in (2.15). k and θ can always be chosen such that $0 \leq \theta \leq 180^o$; see the geometric example below (simplified to rotation about the z axis).

$$\theta > 180^o$$ \hspace{1cm} Equivalent
With $0 \leq \theta \leq 180^\circ$, (2.12) and (2.15) provide a unique solution for θ since $\sin \theta$ and $\cos \theta$ identify the correct quadrant

$$\theta = \tan^{-1} \left(\frac{\sin \theta}{\cos \theta} \right)$$

(use atan2) (2.16)

Given the correct value, the components of k may be determined using (2.14a) - (2.15c).

Numerical problems may exist as $\theta \to 0^\circ$ or $\theta \to 180^\circ$. For small $\theta \approx 0^\circ$, the numerator and denominators in

$$k_x = \frac{b_z - c_y}{2 \sin \theta}$$

(2.17a)

$$k_y = \frac{c_x - a_z}{2 \sin \theta}$$

(2.17b)

$$k_z = \frac{a_y - b_x}{2 \sin \theta}$$

(2.17c)

are both ≈ 0 and thus ill defined. Paul suggests that k be renormalized to ensure $|k| = 1$.

If $\theta \to 180^\circ$, then $\sin \theta \to 0$. Thus, we will apply a different soln for $\theta > 90^\circ$. First, we equate the diagonal elements in (2.10) to obtain,

$$k_x^2 \nu \theta + c \theta = a_x$$

(2.18a)
\[k_y^2 \, v \theta + c \theta = b_y \] \hspace{1cm} (2.18b)

\[k_z^2 \, v \theta + c \theta = c_z \] \hspace{1cm} (2.18c)

Expanding \(v \theta = 1 - \cos \theta \) and solving for \(k_x \), \(k_y \), \(k_z \),

\[
 k_x = \pm \sqrt{\frac{a_x - c \theta}{1 - c \theta}}
\] \hspace{1cm} (2.19a)

\[
 k_y = \pm \sqrt{\frac{b_y - c \theta}{1 - c \theta}}
\] \hspace{1cm} (2.19b)

\[
 k_z = \pm \sqrt{\frac{c_z - c \theta}{1 - c \theta}}
\] \hspace{1cm} (2.19c)

Since \(\sin \theta \geq 0 \), the proper radical signs for \(k_x \), \(k_y \), \(k_z \) can be determined from the sign of
\(b_x - c_z \), \(c_x - a_z \), and \(a_y - b_x \), respectively, in equations (2.14a) - (2.14c).

For accuracy, only the largest \(k \) is determined from (2.19) -- Why?. The remaining \(k \) are determined by pairs of off-diagonal elements in (2.10) to get

\[
 a_y + b_x = 2 \, k_x k_y \, v \theta
\] \hspace{1cm} (2.20a)

\[
 b_z + c_y = 2 \, k_y k_z \, v \theta
\] \hspace{1cm} (2.20b)

\[
 a_z + c_x = 2 \, k_z k_x \, v \theta
\] \hspace{1cm} (2.20c)

These equations can be solved for the other \(k \), avoiding the square root calculations of (2.19) and avoiding numerical difficulties at \(\theta = 180^\circ \) \((v \theta = 2)\).

2.3 Other Transformations

Euler Angles \((\phi, \theta, \psi)\):

\[
 \begin{align*}
 \phi & \quad \theta & \quad \psi \\
 xyz & \rightarrow x'y'z' & \rightarrow x''y''z'' \\
 \end{align*}
\]

Euler angles describe any possible orientation by a sequence of 3 rotations, \(\phi \) about \(z \), \(\theta \) about \(y' \), and \(\psi \) about \(z'' \) as shown in Figure 2-4.
Now any vector in \(w \) in \(x''y''z'' \) axes can be described in base \(xyz \) axes after rotations \(\phi, \theta, \) and \(\psi \) by the following sequence of operations.

\[
\begin{align*}
\mathbf{v} &= \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{w} \\
\mathbf{u} &= \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \mathbf{v} \\
\mathbf{q} &= \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{u}
\end{align*}
\]

Thus, the coordinates \(\mathbf{q} \) of point \(w \) in base \(xyz \) axes after rotations \(\phi, \theta, \) and \(\psi \) are

\[
\mathbf{q} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{w}
\]

and performing the matrix multiplications,

\[
\mathbf{q} = \begin{bmatrix} c\phi c\theta c\psi -s\phi s\psi \\ s\phi c\theta c\psi + c\phi s\psi \\ -s\phi c\theta c\psi -s\phi s\psi \end{bmatrix} \begin{bmatrix} c\theta & c\phi & -s\phi s\psi \\ s\phi c\theta & c\phi & -s\phi s\psi \\ -s\phi c\theta & s\phi & c\theta \end{bmatrix} \mathbf{w}
\]

\tag{2.21}
The transformation sequence can be viewed relative to the base coordinates in the sequence ψ, θ, and ϕ and written as

$$ q = R(\phi,z) \ R(\theta,y) \ R(\psi,x) $$

Roll, Pitch, Yaw (ϕ, θ, ψ):

The usual order is roll ϕ about z, pitch θ about y, and yaw ψ about x

![Diagram of Roll, Pitch, Yaw rotations](image)

The transformation sequence to locate w in base axes as vector q is

$$ q = R(\phi,z) \ R(\theta,y) \ R(\psi,x) \ w $$

and can be multiplied to get

$$ q = \begin{bmatrix} c\phi \ c\theta & c\phi \ s\theta \ s\psi - s\phi \ c\psi & c\phi \ s\theta \ c\psi + s\phi \ s\psi \\ s\phi \ c\theta & s\phi \ s\theta \ s\psi + c\phi \ c\psi & s\phi \ s\theta \ c\psi - c\phi \ s\psi \\ -s\theta & c\theta \ s\psi & c\theta \ c\psi \end{bmatrix} \ w $$

(2.22)

2.4 Screw Displacement

k as directed along S defines the screw translation direction while θ defines the screw rotation. The screw translation along the k direction, given the coordinates of P and P' (a point in the body being displaced to a different position), can be calculated by determining the plane \perp to k and containing point P. Define this plane by the equation

$$ n^T x = h $$

(2.23)

where $n = k$ if $h = k^T p > 0$ and x is any point in the plane. If $h < 0$, then let $n = -k$ such that $h > 0$. Given this normal, "outward" form, the screw translation distance d can be calculated from the projection distance of P' onto the defined plane by

$$ d = |n^T p' - h| $$

(2.24)
(Note: $\mathbf{n}^T \mathbf{p}' - h$ may be negative due to the normal form of the plane.)

Figure 2-6 Screw displacement of object

Special cases:

If k such that $d = 0$ then both P and P' lie in the plane and no translation is required, i.e., the screw displacement reduces to pure rotation only. If θ zero but $d \neq 0$, then the screw displacement reduces to pure translation only.

Locating the screw axis requires the frame locations of xyz relative to XYZ -- call this \mathbf{C} -- and $x'y'z'$ relative to XYZ -- call this \mathbf{C}'.

Given \mathbf{C} and \mathbf{C}' the frame locating $x'y'z'$ relative to xyz is $\mathbf{C}^{-1} \mathbf{C}'$. The intersection point of the screw axis S with the orthogonal plane can be determined by the procedures depicted in the following figure.
Let
\[q = \text{intersection point of S with plane} \]
and
\[v = \text{projection point of P'} \text{ onto plane described by } n^T x = h \text{ where } v = p' - d n \]
so that
\[v = p' - (n^T p' - h) n \] (2.25)

Now given \(p \) and \(p' \), \(q \) can be located in global XYZ axes by referring to the following figure, a normal view of the plane of interest.

\[\text{Figure 2-7 Determining a point on the screw axis} \]

\[\text{Figure 2-8 Determining } q \text{ by the rotation triangle} \]
Define $L = |v - p| = \text{norm} = \sqrt{\sum \text{(coord differences)}^2}$

If $0^\circ < \theta < 180^\circ$ then θ can be located by determining the unit vector normal to the vector $v - p$ and lying in the plane. Call this unit vector e_a where a is the minimum distance between q and the line between p and v.

$$a = \frac{L}{2 \tan \frac{\theta}{2}} \quad (\theta \neq 0)$$

e_a defined by

$$e_a = k \times e_L = k \times (v - p)/L \quad (2.26)$$

Given e_a, q is determined by

$$q = ae_a + (p + v)/2 \quad (2.27)$$

For the special case $\theta = 180^\circ$, $q = (p + v)/2$.

For the special case $\theta = 0^\circ$, $q = p$.

2.5 Screw Transformation Summary

The screw transformation, a special form of the rotational sub-matrix R, represents the rotation about an arbitrary axis that passes through the origin of the reference frame.

A plane in space can be described by the simple equation $n^T x = d$ where n is the plane normal, x is any point in the plane, and d is the minimum distance of the plane from the reference frame origin.

It is possible to move a body from any initial pose to any final pose with a single screw rotation and a proportional lead distance taken along a unique screw axis in space. This is referred to as the screw displacement.

Other transformations that are useful are Euler’s angles and roll-pitch-yaw. Euler’s angles are often used in the aerospace industries, whereas roll-pitch-yaw is used in the aircraft and shipping industries to describe motion of rigid bodies.