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ABSTRACT 
The School of Graduate Studies 

The University of Alabama in Huntsville 
 

 

Degree Doctor of Philosophy Program Optical Science & Engineering 

 

Name of Candidate Lixia Li 

 

Title Compact Waveguide Bends and Application in a Waveguide Depolarizer  

 

The goal of integrated optics is to integrate more optical functions, such as modulation, 

switching, generation, and detection, in one optical chip in a compact form.  However, the bend 

radius required for low-index and low-∆ (index contrast) waveguides, such as silica and polymer 

waveguides, is typically on the order of multiple millimeters, which limits the compactness of 

planar lightwave circuits (PLCs).  To fully utilize the advantages of these low-index and low-∆ 

waveguides, such as low propagation loss and low coupling loss to optical fibers, decreasing the 

bend area is highly desired.    

This dissertation focuses on designing very compact waveguide bends for low-index and 

low-∆ waveguides.  The 2-D finite-difference time-domain (FDTD) method is used as a design 

tool to rigorously evaluate the optical bend performance.  Some of the designs have applied a 

combination of micro-genetic algorithm (µGA) optimization and FDTD methods.  Single air-

interface bends are shown to have high optical bend efficiency when appropriately designed.  The 

waveguide plane wave expansion theory has been used to explain observed behaviors and suggest 

alternate geometries for high-efficiency waveguide bends.  Among them, the approach using 

multi-layer structures is particularly promising and versatile to create not only compact bend 

structures but also splitters.  
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Both amplitude and polarization beamsplitters have been designed and simulated.  

Combining waveguide bends and polarization beamsplitters, a system-level device, a waveguide-

based depolarizer, has been proposed and experimentally evaluated using bulk optical elements.   

Since waveguide bends and beamsplitters are such basic and crucial elements for PLCs, 

higher-level devices, such as directional couplers, resonators, and arrayed waveguide gratings 

(AWGs), may be redesigned in a more compact fashion using the components proposed in this 

dissertation.   
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CHAPTER 1 

 

INTRODUCTION 

In the integrated optics field, the large bend radius required for low-index and low-∆ 

(index contrast) waveguides, such as silica and polymer waveguides, is typically on the order of 

multiple millimeters, which limits the compactness of planar lightwave circuits (PLCs).  To fully 

utilize the advantages of these low-index and low-∆ waveguides, such as low propagation loss 

and low coupling loss to optical fibers, decreasing the bend area is highly desired.    

This dissertation focuses on designing waveguide bends for low-index and low-∆ 

waveguides.  High-efficiency waveguide bends have been designed in very compact and simple 

form.  A system-level device, a waveguide depolarizer, based on compact waveguide bends and 

polarization beamsplitters, has been proposed and experimentally evaluated using bulk optical 

elements.  

1.1 Motivation  

With the widespread commercial deployment of optical components and devices, optical 

networks that exhibit high speed, high capacity, and configurability are becoming a reality [1].   

Nearly 100% of the long haul network, or internet backbone, employs fiber optics and other 

advanced photonics [2].  Just like optical fibers are the basic “wires” for long haul networks, 

optical waveguides are the basic light guiding mediums for functional photonics devices, such as 
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switches, couplers, and routers.  These devices help distribute optical signals to the proper 

addresses in a local network.  However, some of these devices are still in electronic versions and 

the data has to be converted back and forth from photons to electrons, and from electrons to 

photons; thus it slows down the data’s communication speed and makes the system complex.  

Photonics device technology, often called integrated optics, is meant to integrate more and more 

optical functions such as modulation, switching, generation, and detection in one optical chip to 

become optical integrated circuits (OICs), or called planar lightwave circuits (PLCs).  

 Although it is still in its development period, there have been many commercially 

available optical chips.  In the future, these fully-optical devices together with optical fibers-to-

the-home (FTTH) would make full-optical communications not a dream.  People will enjoy the 

full advantages from full-optical communications, such as huge bandwidth and extremely large 

information capacity, immunity to crosstalk and electromagnetic interference, smaller size and 

weight, lower power consumption, improved reliability, and best of all, the speed of light 

communications.     

In the integrated optics regime, small and compact optical devices are highly desirable 

since they are crucial to lower power and space consuming, lower costs and higher yields [3].  

However, these PLCs have compactness limits most of the time due to the large bend radii 

required for low-loss transmission, especially for low-index and low-∆ waveguides [4].  Reducing 

the large bend area without lowering transmission is a problem asking for high bend-efficiency 

waveguide bends.  For traditional circular waveguide bends, bend radii on the order of 

millimeters is required for all silica waveguides [5], while silica waveguides have waveguide 

width in only several microns.  Obviously these are not compact bends; researchers have 

proposed some approaches for higher-efficiency bends along the years; however, they all have 

their pros and cons.  This dissertation proposes some novel bend designs with single or multiple 

air-interface mirror features, and some of the components have been fabricated.  Besides compact 

bend structures, high-performance beamsplitters and one system-level device have been designed 
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in this dissertation.  Applications of bends and beamsplitters are ubiquitous, thus more high-level 

devices, such as directional couplers, resonators, interferometers, and arrayed waveguide gratings 

(AWGs), may all be redesigned in a more compact fashion using the components proposed in this 

dissertation.   

1.2 Overview of the dissertation 

This dissertation mainly focuses on designing high-efficiency compact waveguide bends 

for low-index and low-  waveguides.  In this dissertation, the low-index and low-  waveguides 

refer to waveguides (both core and cladding) made from low-index materials, such as silica, or 

polymer, compared with silicon or GaAs.  Their refractive index contrast, given as 

∆ ∆

( ) %100
0

01 ×−=∆ n
nn , is low compared with waveguides composed from, such as silicon-air, 

silicon-silica, or GaAs-air.  The arrangement of each chapter is organized as follows.    

Following the introduction in Chapter1, Chapter 2 gives some literature background 

about waveguides, waveguide bends, and some tools and methods used in this dissertation.   

Chapter 3 focuses on the detailed designs of single air-interface waveguide bends.  

Different approaches on improving bend efficiency have been explored based on understanding 

the waveguide plane wave expansion theory in a panoramic view.  Some of the bends have been 

fabricated successfully.  Chapter 4 presents multiple-layer bend structures, and the concept is 

originative and the designs are all very compact, on the order of tens of microns.   

 Inspired by the waveguide bend structures shown in Chapters 3 and 4, Chapter 5 presents 

another kind of basic and useful waveguide component, beamsplitters, with one or multiple-layer 

structures.   Two kinds of beamsplitters based on different principles, amplitude and polarization 

beamsplitters, are presented.  

A system-level device, a waveguide depolarizer, has been proposed in Chapter 6 based 

on compact waveguide bends and polarization beamsplitters.  The device scheme, component 
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designs, and lab testing in its bulk version are presented.  Finally, summary and conclusions 

given in Chapter 7 end up this dissertation.  

1.3 New contributions 

Major new contributions in this dissertation are: 

1. All bends are simple, compact, highly efficient, and for low-index and low-∆ 

waveguides.  

2. Multi-layer structures work as waveguide bends with optimized Quasi-Bragg 

structures and analytically designed Bragg-mirror structures.  

3. The waveguide mode plane-wave expansion theory is applied in bend designs based 

on the mode’s angular spectrum with its critical line. 

4. A waveguide depolarizer is proposed and components, waveguide bends and 

polarization beamsplitters, are designed.  

 

 

 



 

CHAPTER 2 

 

BACKGROUND 

Optical integrated circuits (OICs) are a developing technology for high-demanding 

optical communications [4].  Compact, reliable, lower-power-consumption optical waveguide 

components, both active and passive, are in the commercial need.   However, it is now still in its 

major development stage and various problems remain to be solved both in theory and 

fabrication.  Many famous laboratories around the world are pursuing this technology, including 

the NTT Optoelectronics Laboratory, Hitachi Cable, BT Laboratories and Lucent Technologies 

Bell Laboratories.  In this chapter, an overview about this technology is given, starting from 

waveguide materials, mainly silica and polymers.  Detailed review is given to waveguide bend 

approaches available in the literature and their pros and cons.  At last, a brief introduction is given 

to some numerical simulation tools, especially the finite-difference-in-time-domain (FDTD) 

method.  Other important methods used in this dissertation, such as the bend efficiency (BE) 

calculation using mode overlap integral (MOI) method, and the 3D-to-2D waveguide 

transformation by effective index method (EIM) are presented at the end of this chapter.  

2.1 Waveguide materials 

The basic optical guiding mediums for integrated optics circuits are waveguides.  To 

realize these waveguides and all other waveguide-based components and devices, including an 

5 
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optical source, usually the mature waveguide material choice is some optically active materials, 

such as GaAs, AlGaAs, [6], which can generate light.  However, these materials involve some 

complicated fabrication techniques and are hard to connect with fibers for packaging.  Passive 

materials like silicon, silica (glass), and polymer generally need an external light source to 

accomplish some source-related functions.  However, recently significant progress has been 

made in producing light emitters and amplifiers by incorporating erbium and other atoms into 

passive materials such as glasses and polymers.  This suggests that it maybe practical in the 

future to make fully functional monolithic optical integrated circuits (OICs) in inexpensive 

glasses or polymers. 

Silica glasses and polymers are also the two kinds of low-index and low-∆ waveguides 

with matched optical refractive indexes with fibers, thus inducing low-insertion loss for 

packaging.  Therefore these two materials are showing excellent future promise for practical 

integrated devices and systems, and more detailed information about their progress in PLCs will 

be given in the following.   

2.1.1  Silica and silicon oxynitride 

Among all the materials, silica is the most extensively used material built on the  silicon 

optical bench (SiOB).  It involves growing silica layers on silicon substrates by chemical vapor 

deposition (CVD) or flame hydrolysis (FHD) and patterning or etching by reactive ion etching 

(RIE).  Silica is also the building material for low-loss optical fibers, and the most commonly 

used singlemode fibers for 1.3 µm and 1.55 µm communication wavelengths have a ∆ of ~0.4% 

and a core diameter of ~8 µm.  Waveguides made from silica can be easily made to have very 

low loss and a well matched geometric shape to optical fibers.  The improved fabrication 

techniques have led to a low loss of 0.017 dB/cm with ∆= 0.45% [7].  The silica waveguides and 

optical fibers are also matched in thermal expansion coefficient, thus they can be fused together if 
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necessary.  However, the highest contrast available for silica waveguides to date under 

commercial use is only 1.5%, which limits its applications.  

Silicon oxynitride is a silica-based material, and waveguides made from this material use 

SiO2 as a cladding, and its core can be tunable between SiO2 and Si3N4 (silicon nitride), of index 

range from 1.45-1.96 [1,8].  The adjustable index contrast (which can be as high as 30%) by 

changing the nitrogen content is the main attraction of this material.  It uses low-pressure CVD 

(LPCVD) or plasma-enhanced CVD (PECVD) requiring growth time on the order of days.   

A variety of planar lightwave circuits have already been developed on silica-based 

waveguides on silicon substrates, such as splitters, Mach-Zehnder (MZ) interferometer used as 

switches, and  even complicated arrayed waveguide grating (AWG) multiplexers used in dense 

wavelength division multiplexing (DWDM) telecommunication [9].   

2.1.2  Polymer  

Although silica waveguide technology is relatively mature, there are some problems, 

such as fabrication related high cost, high switching power needed in silica-based switching 

devices, and temperature dependence of the central wavelength of silica-based AWGs [10].  One 

alternative to silica glass is polymer material.   The driving force behind this development is cost 

reduction.  As the size and complexity of fiber optic systems growing, the demand for large 

quantities of inexpensive integrated optic devices has increased.  Polymer material fits right in the 

tight budget mainly from its low-cost low-temperature high-output fabrication.  In addition, the 

advanced technology for polymer material is in rapid development especially that the 

transmission losses in multi-mode and single-mode polymer waveguides have decreased rapidly 

(now at order of tenths of dB/cm at telecommunication wavelength); this hard-won achievement 

has led to growing interest in the application of polymer waveguide circuits [11].    

Optical polymers have been engineered in many laboratories worldwide and some are 

already available commercially [12].   Classes of polymers for use in integrated optics include 
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acrylates, polyimides, and olefins.  By blending and copolymerizing selected miscible monomers, 

the synthetic scheme allows for precise tailoring of the refractive index over a very broad range of 

1.4 ~ 1.7.  A larger thermo-optic coefficient (10-4/oC, one order of magnitude larger than that of 

silica) makes polymers an excellent candidate for power-efficient thermal-optical (T-O) switches.  

The synthetic scheme allows other physical properties of the materials such as flexibility and 

toughness as well as such important properties as surface energy and adhesion to be tailored to 

meet the needs of specific applications.  Shortcomings of polymers are thermal mismatch with the 

widely-used silicon substrate, which can induce stress-induced scattering and undesired guide 

birefringence.  

Waveguides made from polymer materials and waveguide devices built on polymer 

waveguides are in the phase of development.  Polyimide channel waveguides using direct laser 

writing as interconnections have been fabricated [13].  A similar application is a high-density 

interconnecting cable for two-dimensional vertical cavity surface emitting laser (VCSEL) arrays 

[14].  Some passive and even active polymer waveguide device examples are nonlinear optical 

devices [15], 3 dB (50/50) splitters [16], branching waveguide structures [17,18].   A tapered 

mode expander for connecting a rectangular waveguide to a cylindrical optical fiber is another 

fabricated device example [19].  Complicated AWG multiplexers have also been fabricated using 

polymer materials in different groups [20,21,22].  Some active components, such as phase 

modulators and switches have been fabricated [23] using some polymer materials with electro-

optic effect.  Even light emission has been observed [24], and a planar small-size ring laser made 

from polymers and suitable for applications in integrated optics has been reported [25].  

2.2 Waveguide bends 

Waveguides are the basic connection “wires” in planar optical circuits, to implement 

functions by waveguide components, such as couplers, splitters, switches, and so on, most of the 
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time, the light needs to change directions.  Waveguide bends are the basic structures for changing 

directions; in fact, bends are such very basic components that they are looked as part of the 

waveguides themselves for the waveguide devices.  However, to have compact and efficient 

waveguide bends is not trivial because of the inherent loss existing in the conventional curved 

waveguide bends.    

Three factors contribute to the propagation characteristics of a bent waveguide [26]: pure 

radiation loss, transition loss between the straight and the bent waveguide, and the phase constant 

of the propagating field.  The radiation loss is the most important factor, and in practice they are 

ultimately determined by the bending radius curvature and several practical aspects such as the 

roughness of the waveguide, and the technological process itself.  The radiation loss is introduced 

inherently when the field comes to the bend area since the phase front of the optical field needs to 

make some turns, and this will bring up distortion to the guided modes.  In fact, the minimum 

allowable radius of curvature of a waveguide is generally limited by the radiation loss rather than 

by fabrication tolerances [6].  

For commercially used silica waveguides with different index contrast ∆ as listed in 

Table 2.1, different bending radii are required to achieve low loss.  Note that the meaning of 

relatively high or low ∆ for silica waveguides in Table 2.1 is not the same as what is referred to as 

low-index and low-∆ waveguides for the whole dissertation.  Table 2.1 shows that high-∆ silica 

waveguides require a smaller bend radius while low-∆ waveguides need a bigger radius, although 

low-∆ silica waveguides have advantages on the propagation loss and fiber coupling loss.   

However, the dimension of the bend radius for all the silica waveguides is in the measure of 

multiple mms, which is really not compatible with the waveguide dimension that is on the order 

of multiple microns.  To achieve compactness for the waveguide bends, some extra methods have 

to be applied.  
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 Table 2.1 Silica waveguide classification [7] 

 

Characteristics 

 

Low-∆ 

 

Middle-∆ 

 

High-∆ 

 

Super High-∆ 

 
Refractive Index 
Difference ∆ (%) 

 
0.25 

 
0.45 

 
0.75 

 
1.5 

 
Core size 

(µm) 

 
8 × 8 

 
7 × 7 

 
6 × 6 

 
4.5 × 4.5 

 
Propagation Loss 

(dB/cm) 

 
< 0. 01 

 
0. 02 

 
0. 04 

 
0. 07 

 
Fiber Coupling 
Loss (dB/point) 

 
< 0. 1 

 
0. 1 

 
0. 5 

 
2.0 (SMF) ** 

  0.4 (DSF) 
 

Minimum 
Bending Radius 

(mm) 

 
25 

 
10 

 
5 

 
2 

 
Application Field 

 
Small-Scale 

PLC 

 
Medium-
scale PLC 

 
Large-Scale 

PLC 

Very Large-
Scale & High-
Density PLC 

 

**  SMF----single-mode fiber,  DSF--- Dispersion shifted fiber 

 

Research on the waveguide bends both in theory and applicable methods has been 

investigated and reported although most of them are focusing on the high-index waveguides, such 

as silicon or GaAs waveguides.  Several approaches proposed are conventional circular bends, 

waveguide mirrors, resonator cavities, photonics crystals, and phase compensation methods, 

which will be reviewed in the following.  

2.2.1  Circular bends   

A conventional waveguide bend approach is a circular bend as in Figure 2.1(a).   As 

explained above, a circular bend requires the radius of curvature be big enough to make the bend 

smooth and efficient, which, however, makes the bend less compact, especially for low-∆ 

waveguides.   
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It is noticed that the field in the bend section tends to move outwards [27], so lateral 

offsets have been introduced at the two junctions to maximum the bend performance as shown in 

Figure 2.1(b).  The offset approach has been experimentally verified by some fabricated S-shaped 

waveguides and 2×2 directional couplers on silica-based waveguides [27].    

 

(a) conventional 

 

(b) with offset [27] 

  
Figure 2.1 Circular bends  

2.2.2  Circular waveguide 90o bends with air-trenches 

To improve the power transmission, at the same time, and to shrink the bend radius for 

circular bends, an isolation air-trench is introduced at the outside of the bend guide [28] as shown 

in Figure 2.2(a).  The isolation trench is shown to reduce the radiation loss considerably by some 

numerical simulation.  The introduction of the air trench forms a high-∆ zone at the high-loss 

bend area for a low-∆ GaAs waveguide, and the trench works as an obstruction wall to prevent 

the radiation field going outwards.  This air-trench approach has been further improved with the 

combination of the lateral offset method [29] and other optimized parameters, such as the rib 

heights and sidewall slopes.  
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A more rigorous circular waveguide 90° bend with air-trenches on both inside and 

outside of the bend area is proposed [30] as shown in Figure 2.2(b), and FDTD simulation result 

shows it can achieve very high bend efficiency.   Notice that two set of tapers are added to help 

the mode transform smoothly, and those tapers are rigorously designed to have special angles.  

 

(a) with isolation air-trench outside [28]  

 

(b) with air-trenches on both sides [30] 

Figure 2.2 Circular bends with air-trenches  

Another curved GaAs waveguide bend with a deeply etched air-trench square window 

feature covering the whole bend area has been reported [31] and experimental results show a 

radiation loss of 0.2 dB/90° for a bending radius of 30 µm.  

2.2.3  Mirror bend 

Compared with a circular bend which changes directions smoothly, a corner mirror bend 

can realize abrupt 90° bends in very compact form.  The corner mirror can be formed in two ways 

as shown in Figure 2.3(a) and (b). 
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(a) natural 45o-cut mirror [32] 

 

(b) air-trench mirror [36] 

Figure 2.3 Mirror bends  

 For waveguides with high-index core material such as silicon, a natural total internal 

reflection (TIR) mirror can be formed with a 45°-cut etching surface at the bend area [32].  To 

form the TIR mirror as in Figure 2.3(a), the cladding material should be chosen to give high ∆ 

between the core and cladding, such as Si-SiO2 or Si-air.  These high-index and high-∆ 

waveguides usually have a waveguide core width of less than 1 µm to maintain singlemode 

waveguides.  Several groups have successfully fabricated ultracompact corner mirrors with a 

bend size in the measure of µms in silicon-on-insulator (SOI) material [33,34,35].                   

The mirror approach shown as in Figure 2.3(b) has an etched single-interface air trench at 

the outside of the bend to create a high-∆ facet as the mirror either having TIR or large partial 

reflection.  This approach works for both high-index and low-index waveguides, but mostly the 

core and cladding has low ∆, and the air zone is necessary to help increase the index ∆, thus 

increase the reflection.  
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An air-trench mirror for GaAs low-∆ single-mode rib waveguides has been fabricated 

with different waveguide width 4, 6.4, or 8 µm [36].  An experimental bend efficiency 60 to 90% 

has been measured for the latter two 90° waveguide bends.  The loss is attributed to fabrication 

tolerance, the surface sidewall roughness, verticality, displacement, rotation of the etched mirror 

surface.  Applying the self-aligned fabrication techniques can improve bend efficiency up to 90% 

[37].  Two loss mechanisms, tilting and surface roughness, have been numerically analyzed for 

GaAs waveguide bends [38].  A 45° mirror bend is fabricated for the GaAs waveguide with a 

higher experimental bend efficiency of 93.3% [39].   

Single-interface air-trench 90° bends have also been successfully fabricated for silica-

based low-∆ waveguides [40,41].  Experimental results agree well with analytical or simulated 

results for both TE and TM polarization.  Mirror insertion loss has been mostly attributed to the 

mismatch between the reflected wave and the output waveguide due to the Goos-Hanchen shift 

effect.  Another loss mechanism is described as diffraction to the air medium due to the lateral 

numerical aperture of the mode.  Surface roughness and perpendicularity are accounted as other 

loss factors from fabrication.  Both authors in [40,41] use the waveguide mode plane wave 

expansion theory to calculate the transmission at the mirror interface. 

Another theory of explaining the propagating mechanism at the waveguide bend is called 

mode expansion.  The wave propagation in a perturbed (bent) waveguide can be approximated by 

a linear combination of the unperturbed (straight) eigenmodes, including the modes under cutoff 

[42,43].  For a single-mode waveguide bend, only two modes, the fundamental mode and the first 

leaky mode are enough to give an accurate explanation.  

2.2.4 Resonator cavities  

A resonator cavity is another waveguide bend approach working for high-∆ waveguides 

such as Si-air waveguides [44].  Shown in Figure 2.4(a), a high-index material is added at the 
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inside corner of the 90o bend.  The cavity can be the same material as the core material of the 

waveguide.  This design is inspired by the principle of weakly coupled resonators, which predicts 

that a symmetric resonator with four ports can couple an incoming channel to an outgoing 

channel without reflection.  Here the input and output waveguides correspond to the four ports 

(forward and backward traveling modes in each of the two arms) with the enlarged cavity being 

the resonator having a square side.  The resonator method has also been applied to the mm-wave 

regime [45]. 

 

               (a) cavity at the inside corner                     (b) improved resonator (with a mirror)   

Figure 2.4 Resonator cavities [44] 

The bend performance in Figure 2.4(a) can be further improved by adding a 45o-cut at the 

outside to remove some more radiation loss as shown in Figure 2.4(b) [44].  This configuration 

can be looked as a combination of resonator cavity and mirror structures.  The strongly guided 

waveguide mode undergoes total internal reflection at the 45o-cut outside wall and is also guided 

by the resonator cavity inside the corner.   
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Although the authors of [44] explain Figure 2.4 based on cavity resonance principle, the 

authors of [32] explain it as index-guiding, that is, judiciously placing dielectric features can 

greatly enhance guiding of a waveguide mode when it encounters a bend.  This explanation is 

similar to the prism coupling.  A German group [46] has done a 90° bend 2D-FDTD numerical 

simulation for this approach showing a bend transmission of 95% for a waveguide with core and 

cladding indices of 2.0 and 1.0.   

2.2.5  Photonic Crystal bends  

Photonic Crystals (PhCs) are periodic dielectric arrays scattering in homogeneous 

dielectric matrices [47].   By this periodic property, photonic crystals provide a means to control 

and manipulate the propagation of the light.    

Traditional PhC 90° bends as shown in Figure 2.5(a) are formed by inserting a line of 

defects that can support a localized mode having a frequency located within the photonic band-

gap (PBG) [48].   A 60° PhC waveguide bend has been successfully fabricated with measured 

bend efficiency near 100% at certain frequency near the valence band edge [49].  

Using the self-collimation effect of PhC [50] and combining single-interface 45° air-

trench mirror, a non-channel PhC 90° waveguide bend is proposed and fabricated as shown in 

Figure 2.5(b).  The measured bend efficiency is about 80%, which matches the 3D-FDTD 

simulation result very well. 
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(a) traditional [48] 

 
 

(b) hybrid with non-channel planar PhC 
waveguide and air-trench [50] 

Figure 2.5 PhC waveguide bends   

Another approach under investigation by Seung Kim in our group is using periodic PhC 

itself as a reflector by hybrid with the conventional waveguide to accomplish a 90° bend [51].  

However, the insertion loss as well as the scattering into the third dimension are still 

concerns for the photonic crystal approach.   

2.2.6  Phase compensation methods  

The approaches stated so far are mostly focusing on dramatic direction change, such as a 

sharp 90°.  For a mild and shallow direction change in several degrees, phase compensation 

methods have been proposed in several ways by adjusting the refractive index at the corner to 

bring a smooth transition of the modal field shape, or the phase front.  

One way is to induce a lower-than-cladding refractive index material at the outside of the 

corner to accelerate the phase front at the outside, which is called phase-front accelerator [52].   

Another way is to insert a higher-index triangular-shape microprism in the bend junction as the 
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phase compensator for a silica waveguide [53], which has simulation transmission 95% for a 

bend angle of 10°.   

One novel phase compensator has a shape of apexes-linked circle grating [54], which 

works on the principle of not only compensating the phase-difference in the bend corner, but also 

avoiding distorting the eigenmode for the straight waveguide.  Power bend efficiency 89% is 

predicted from numerical simulation.   

Based on the same phase compensation principle, another structure called bulged and 

chamfered (BC) bend [55] is essentially flattening the one-corner bend to two corners with the 

core material.  Simulation predicts transmission 99% or 92% for a bend angle of 5° or 7° while 

the former 99% (5°) has been verified experimentally.  

2.3 Tools and methods used in this dissertation 

As the demand for photonic devices getting higher, the need for efficient design tools is 

becoming urgent.  Like any other computer-aided design (CAD) tools used in other fields, such as 

AutoCAD for mechanical designs, and Max Plus II for large-scaled electronic circuit designs, 

CAD tools are needed in the photonics field.  Using a CAD tool can design, predict and optimize 

the device’s performance before fabricating the photonics devices, and so lower the whole cost.  

The difference here for photonics designs is that the photonics device dimension is extremely 

small, in the measure of multiple microns, and the electromagnetic field involved is in the optical 

frequency domain.  There are some commercial softwares available, such as BeamPROP from 

Rsoft [56], and Fimmwave from Photo Design [57].  The numerical methods widely used by these 

softwares are the Beam Propagation Method (BPM), and Finite-Difference Time-Domain 

(FDTD).  There are others, such as Coupled Mode Theory (CMT), Transfer Matrix Method 

(TMM), Finite Element Method (FEM), Eigenmode Expansion Method (EEM).   
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Our group has developed our own FDTD tool, and its unique feature is that it combines 

optimization and simulation at the same time by combining micro-generic algorithm (µGA) and 

FDTD together.  With this unique feature, the device is really being designed and not only just 

being simulated.  The main design and simulation work of this dissertation is accomplished by 

using the FDTD tools developed by our own group.   In the following, more information about 

these numerical methods and their applications are given.    

2.3.1  Introduction to FDTD, µGA-FDTD, and others 

The finite-difference time-domain method (FDTD) is one of the mostly used numerical 

methods to solve electromagnetic problems.  The FDTD method uses the Yee algorithm 

developed by Yee in 1966 [58].  The Yee algorithm solves for both the electric and magnetic field 

in time and space domains rigorously using the coupled Maxwell’s curl equations, rather than 

solving for one field using the wave equation.  Incorporating a time-dependent incident filed, 

time-marching is accomplished by repeatedly implementing the finite difference equations at 

each cell of the simulated area [59].  After a steady state is reached, the near field information can 

be extracted.  Through an appropriate near-to-far transformation algorithm, the far field response 

can also be generated.  Because of the time-dependent nature of FDTD, both the transient and 

steady-state of the device can be obtained.  By employing pulse incident sources, the spectrum 

response of the device can be obtained within a single run.  The perfectly matched layer (PML) 

absorbing boundary condition (ABC) [60] can match the impedance of free space and absorbs 

electromagnetic energy at any frequency and incidence angles.   

The rigorousness of FDTD method allows that it can model light propagation, scattering, 

and diffraction, reflection, and polarization effects.  It can also model material anisotropy, 

dispersion and nonlinearities without any pre-assumptions.  The only drawback of this method is 

that it requires typically at least λ/20 grid size to minimize the numerical dispersion, which 

requires higher memory for the computer [61].   
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Analogous to natural genetics, a genetic algorithm (GA) is developed mainly for 

optimization in all kinds of fields.  The GA has been intensively used in electromagnetics and 

antennas in the last ten years.  Recently it has been borrowed for the waveguide-based photonics 

device designs by combining with some of the numerical methods mentioned above [62].  The 

micro-GA (µGA) has applied some more efficient optimization algorithms, thus it can find 

solutions faster in a more efficient way.  The combination of µGA and FDTD is the unique and 

powerful feature of our FDTD tool, and it has been used successfully to design some diffractive 

optical elements (DOE’s) [63].   

Besides the FDTD method, the beam propagation method (BPM) is another mostly used 

numerical technique for modeling integrated and fiber photonic devices [64].  The most 

significant feature of BPM is that it is straightforward and allows rapid implementation of the 

device simulation.  The BPM is essentially a numerical solution with paraxial approximations, 

which, however, places restrictions on the index contrast for the waveguide material and 

eliminates the backward propagation, like from the reflection surface.  The finite-difference BPM 

(FD-BPM) method is propagating the field in a stepwise manner through slices of a known 

waveguide structure.  The polarization effect can be considered in BPM through full-vectorial 

BPM, or semi-vectorial BPM.  Incorporating a wide-angle and bi-directional techniques, wide-

angle BPM and bi-directional BPM methods can relax the paraxial and single-direction 

approximations and so extend its applications [65].  

The eigenmode expansion method (EEM) can give exact analytical solutions in principle 

by using an infinite number of modes in doing expansion [66].   Because the guided and radiation 

modes from a waveguide together form a complete basis set, so any solution of Maxwell’s 

Equations in the region of the waveguide can be expressed as a superposition of this basis set.  

This basis set is called eigenmodes, and each eigenmode is characterized by its specific field 

distribution and propagation constant.  The expression for any other solution using this basis set 

is doing an eigenmode expansion.  It uses an efficient scattering matrix (S-matrix) technique, so it 
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takes almost the same time for a beam to propagate 1 µm or 1mm.   However, structures with 

large cross-section take longer computational time, and it is difficult to find and include all the 

modes in some cases.    

The above methods can be used alone, or can be combined together to extend the 

application regime.  

2.3.2  Bend efficiency calculation using mode overlap integral method  

Since the main work for this dissertation is to design waveguide bends, an effective 

method to measure bend performance is needed.  Several papers have mentioned using the mode 

overlap integral (MOI) method to calculate the bend efficiency (BE) [40,41,67,68].  Using the 

MOI method, the modal coefficient included in an arbitrary field in terms of waveguide modes 

can be first derived [69], and then the power ratio included in the reflected field as the output 

waveguide mode can be derived.  This power ratio will stand for a ratio of output power to the 

incident power, and that output power is the power settled down in the output waveguide as the 

waveguide mode part after some leaking process for those non-mode parts.  This power ratio 

calculated by the MOI method does not change along the propagation of the output waveguide.  

Therefore, the simulation size can be just big enough to cover the bend feature and the input and 

output arms do not need to be very long, which can dramatically decrease the computer 

requirement.   In the following, this method is reviewed and developed in detail.  

 

(1) Mode overlap integral (MOI) method  

As shown in Figure 2.6, a field having an arbitrary shape is launched into a 2D single-

mode slab waveguide, and the power percentage included in this field as the mode for the output 

waveguide is wanted, which is also the power that will eventually settle down in the output 

waveguide.  This part of power should not change along the propagation of the waveguide if no 

other loss mechanism is introduced.  
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Figure 2.6 Illustration of mode overlap integral (MOI) 

First, let’s start field propagation from 0=x .  Because of the orthogonal property for the 

waveguide modes, mathematically, an arbitrary electro-magnetic field can be expressed both its 

 and  components individually as follows:  )(zE )(zH
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where ,  stand for waveguide modes, and  represents the modal coefficient.  

Then, taking vector products on both sides of Equation 2.1 with the complex conjugate of the 

transverse magnetic and Equation 2.2 with the complex conjugate of the transverse electric field 

of one particular mode (say, the nth mode),  and  respectively, integrating over a cross 

section for its power, the following two equations are received: 
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Adding Equations 2.3 and 2.4 together gives 
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From the orthogonal condition for the waveguide modes, the right-hand side of Equation 2.5 will 

be zero for all terms except , thus nm =

 

∫ ∫ •×+×=•×+× ∗∗∗∗ dzkHEHEadzkHEHE xnnnnnxnn
ˆ][ˆ][  . (2.6) 

 

Then, the modal coefficient for the nth mode can be written as na
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Note that the integral in the denominator of Equation 2.8 really represents a 

normalization factor, and the integral in the numerator is more important.  It is often called mode 

overlap integral (MOI) because it represents the overlap of the input field  with one 

particular mode .  This is really a measure of how similar the input field is to the  mode.  

Clearly, if the two fields are actually identical, the modal coefficient .  It should be noticed 

that this coefficient  is measured at position 
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na 0=x  with field .  Equation 2.8 can be 

further expressed in inner product form as 
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Most of the time people are interested in knowing how much percentage ( ) of power 

settled down to the  mode from the incident power, instead of modal coefficient  for the 

field.  To get the power percentage, both the in and out power can be written as 
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Substituting Equation 2.9 in 2.10, the power ratio pr   expressed using MOI is 
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Second, let’s derive the power ratio  expressed with field  at position pr )(0 zE x 0xx =  

(an arbitrary position).  Shown in Figure 2.6, along the propagation x direction, if no any other 

loss mechanism is introduced, the input field  will settle down to the mode ,)(zE )(zEn  the 

waveguide supported mode, with amplitude .  This process is a leaking process and the field 

will gradually shed all the other modes included in it except the waveguide supported mode.  The 

power ratio  included in the field for the waveguide supported mode shouldn’t change whether 

it is measured at  or some other position. 
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In analogy with Equation 2.1 and 2.9, the field  and its modal coefficient  for 

the  mode can be written as 
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In analogy with Equation 2.10, the output power should be 
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Substituting Equation 2.14 in 2.15, Equation 2.15 will become 
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Now the power ratio  between output and input (at pr 0=x ) is calculated by dividing 

Equation 2.16 by Equation 2.11 as 
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Equation 2.17 expresses the power ratio using field at )(0 zE x 0xx = , while Equation 2.12 

uses field  at .  Equation 2.17 and 2.12 has the same denominator, and the only 

difference is in the numerator MOI term.  Theoretically, the power ratio calculated using 

Equation 2.17 should be the same as using Equation 2.12 for situations without loss mechanism 

introduced from  to .  The modal coefficient  should be equal to ; however,  

would be less than  if there is loss introduced between them.  Then this power ratio calculated 

using Equation 2.17 will express a measurement of the power loss.  This is the basis for using 

MOI to calculate bend efficiency for waveguide bends. 
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(2) Bend efficiency calculation using MOI method  

In this dissertation, all waveguides are single-mode and the source for the input 

waveguide in the FDTD simulation is the fundamental mode of the waveguide.  For bend 

structures, output waveguides are assumed to be the same as input ones.  Therefore, for a perfect 

bend, this mode should get reflected at 100%, both in amplitude and phase, and the BE would be 

1.  However, a perfect bend is never a reality; after the bend, the waveguide mode will get 

distorted and become an arbitrary field.  This field would shed off some power and gradually 
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settle down to the output waveguide mode but with a modal coefficient less than 1.   This is a 

case with loss introduced between the input and output. 

 

Figure 2.7 Illustration of BE calculation using MOI 

When calculating bend efficiency (BE) using the MOI method, as shown in Figure 2.7, a 

position should be chosen at the output waveguide side to do the MOI.  Theoretically as 

explained before, along the output waveguide, choosing where to do the MOI should not make 

the result different.  This situation is similar to calculating the power ratio at some propagation 

distance  with Equation 2.17.  0xx =

A special extension here to Equation 2.17 is that the incident field E  is the supported 

fundamental mode, which is the same as the output waveguide mode, , here, using  

representing the fundamental mode.  Thus, Equation 2.17 can be written as 

nE 0E
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The BE calculated by Equation 2.18 uses field information, and a special note is that both 

field  and  are complex, which means both amplitude and phase should be included.   The 

actual form of  and  should be  and , while 
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fundamental mode incidence, and both  and )(0 zE x )(zϕ  can be variables of z  coordinate as in 

Figure 2.7.   Considering the complex characteristics for both fields as in Equation 2.18, a more 

explicit expansion for Equation 2.18 can be done as follows.  First,  

  

∫ ∫−− =• dzeEEedzeEeE j
x

ijj
x

ϕϕϕϕ
0000

00  , (2.19) 

 

knowing , Equation 2.19 can be separated to two terms as ϕϕϕ sincos je j +=
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Taking the absolute value and then squaring for both sides of Equation 2.20 gives 
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Thus the BE as in Equation 2.18 can be expanded as 
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In this dissertation, Equation 2.22 will be applied to FDTD numerical calculation, thus all the 

integrals would change to summations, that is, 
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When calculating BE for FDTD simulations using Equation 2.23, the amplitude and 

phase of the fields can be directly derived from the FDTD outputs.  The summation in 

Equation 2.23 is taken along a monitor line which needs to be long enough to cover 100% of the 

power and is in a normal direction of and centering at the input or output waveguide.  

Equation 2.23 is the expression used in this dissertation to calculate the bend efficiency for most 

cases if no special declaration.   

At some cases, a simple power ratio expressed as in Equation 2.24 is used,  
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where  stands for the power distribution along x or z direction, which are direct outputs 

from our 2D-FDTD tool.  The summation is taken along a power monitor line as shown in 

Figure .2.8. 
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Figure 2.8 Illustration of BE calculation by power ratio 

In Equation 2.24, the incident power  is taken at the very beginning of the input 

waveguide while the output power 

inP

outP  is taken at some position  along the output 

waveguide.  Without MOI, bend efficiency calculated by Equation 2.24 varies along the output 

waveguide, especially at close to bend area.  Generally it decreases for increasing x positions 

along the output waveguide.  The reason is the leaking process for the nonmode part.   However, 

at positions far away from the bend, this number will stand for the power left for the mode and it 

will match the result using MOI.  At close to bend area, the number calculated using 

Equation 2.24 is generally bigger than using Equation 2.23.  Using Equation 2.24 requires 

simulating a long output waveguide to get the power ratio for the mode, which puts high demand 

for the computer and takes longer time.  However, initially some of our results use this method 

and also there is limitation by our FDTD code, some of the results in this dissertation still use this 

method.  However, this will be declared clearly as “by power ratio” when applied to distinguish 

from “MOI” method as Equation 2.23.  

0xx =
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2.3.3  3D-to-2D waveguide transformation using effective index method  

Actual waveguides have 3D configurations; however, most waveguide component 

designs start from simple 2D models.  This will involve one important process, transferring a 3D 

waveguide to an equivalent 2D slab waveguide.  The effective index method (EIM) is one of the 

effective approximation methods, especially for 3D ridge waveguides.  

 

 

 

Figure 2.9 3D-to-2D transformation using Effective Index Method 
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The procedure of transforming a ridge 3D waveguide to an equivalent 2D slab waveguide 

by the effective index method is shown in Figure 2.9.  The basic concept is collapsing the y 

geometry by two steps.  First the 3D cross-section has been transformed to three 2D slab 

waveguides in which x is looked as homogeneous.  Then the three effective indexes analytically 

calculated from these three 2D waveguides are taken and used as core and cladding indices for 

the final 2D waveguide in which y can be taken as homogeneous.  

Special attention should be paid to the polarization.  For example, for a TE-like 3D mode 

with Hy and Ex dominated, the electric field is polarized in the x direction.  This polarization is TE 

for the three intermediate 2D waveguides, while it is TM for the final 2D waveguide.  Contrarily, 

the other polarization, TM-like 3D mode with Ey and Hx dominated, will become TE for the final 

2D waveguide.  

However, for convenience, this dissertation calls TM-like polarization in a 3D case as 

TM for a 2D cases, which refers to the electric field polarized in the y direction; TE for both 3D 

and 2D cases will refer to the electric field polarized in the x direction.  

The following is an example to show how to do the transformation using EIM.  The 

waveguide used here is called Gyro waveguide for convenience because it is specially used for a 

Gyro project, and details about the Gyro project and designing a Gyro waveguide depolarizer are 

given in Chapter 6.  

Table 2.2 Gyro material system  

 
Material 

 
TE-like  (Ex ) 

(in plane) 

 
TM-like ( Ey ) 
(out of plane) 

 
PI2525 (core for 3D) 

 
1.656 

 
1.640 

 
NOA 71 (cladding for 3D) 

 
1.548 

 
1.547 

 
Index contrast ∆ 

 
7.0% 

 
6.0% 
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Table 2.2 shows the measured refractive indices for the Gyro waveguide material and it 

shows big birefringence.  

It is required that this waveguide works at single-mode condition at λ0 = 1.33 µm and has 

a 3D ridge cross-section shape.  The waveguide design is accomplished by Jaime Cardenas using 

Fimmwave [57], and the 3D cross-section geometry has come up as Figure 2.10 with W=3.5µm, 

H=0.7 µm, H1=2.3 µm.  

 

Figure 2.10 A 3D cross-section of the Gyro waveguide 

The final transformed 2D slab waveguide using EIM has width 3.5 µm and refractive 

indexes shown in Table 2.3.  It is seen that the index contrast has dramatically dropped to about 

0.3% for both TM and TE light.  The validity of this transformation by EIM can be evaluated by 

comparing the final effective index calculated for this final 2D slab waveguide and a direct 3D 

simulation for the 3D waveguide using Fimmwave software.  From the numbers in the last two 

rows of Table 2.3, the effective index calculated from these two approaches matches extremely 

well.  
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Table 2.3 Properties of the transformed 2D Gyro waveguide 

 
Final 2D slab waveguide 

 

 
TE-like  (Ex ) 

(in plane) 

 
TM-like ( Ey

 ) 
(out of plane) 

 
Core 

 
1.6464 

 
1.6302 

 
Cladding 

 
1.6414 

 
1.6251 

 
Index contrast ∆ 

 
0.3% 

 
0.31% 

 
Effective index 

method 

 
1.6438 

 
1.6276 

 
 

Final 
effective 

index 
 

Direct 3D 
simulation 

 
1.6435 

 
1.6273 

 

 

 

 

 

 



 

CHAPTER 3 

 

SINGLE AIR-INTERFACE WAVEGUIDE BENDS  

Section 2.2 of Chapter 2 has given an overall view of the waveguide bend structures 

available from the literature, and the approaches mostly focus on high-index waveguides.  Most 

people accept that it is hard to bend low-index and low-∆ waveguides in a compact form.  

Traditional circular bends require big radius to achieve low loss for low-index and low-∆ 

waveguides.  The photonic crystal approach is investigated by another graduate student in our 

group.  The phase compensation method can only give a mild bend in several degrees and is not 

applicable for an efficient sharp bend.   

The single-interface trench mirror approach has been suggested for low-index and low-∆ 

waveguides, such as silica-based waveguides [40,41].  People have actually fabricated these 

bends with different bend angles.  The reflectivity has been calculated based on waveguide-mode 

plane-wave expansion (PWE) theory and compared with the experimental results.  The loss 

mechanism has been attributed to the Goos-Hanchen (G-H) shift and the diffraction effect besides 

some fabrication factors, such as surface roughness and verticality.  However, that explanation is 

not complete and not necessarily true at some cases.   

In this chapter, one single air-interface 90° waveguide bend for a specific low-index and 

low-∆ waveguide has been first simulated using rigorous FDTD method.  It turns out that the 

bend efficiency is not high even with compensation of the G-H shift.  Quantitative explanation 

35 
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and calculation about the loss has been given based on waveguide-mode plane-wave expansion 

(PWE) theory.  The loss comes from some transmission from the waveguide mode nature, and it 

is not the diffraction effect as explained by other papers.   

Following the FDTD simulation of single air-interface 90° waveguide bend and 

waveguide PWE theory, several ways of achieving high-efficiency bends have been proposed and 

designed based on taking a panoramic view of the angular spectrum of the waveguide mode.  The 

high-efficiency waveguide bends all have a single air-interface mirror configuration and are 

designed for low-index and low-∆ waveguides.   

Finally to verify the way we understand the PWE theory and to get fabricated waveguide 

bends on polymer waveguides, a set of single air-interface waveguide bends has been designed 

and fabricated.  To the best of our knowledge, it is at first time that single-interface air-trench 

bends are fabricated on polymer waveguides.   

3.1 Single air-interface 90º bends  

A single air-interface trench has been successfully etched for different materials from 

several groups as stated in Section 2.2.  In this section, this single air-interface trench mirror will 

be applied to a low-index and low-∆ waveguide with its core and cladding refractive indices of 

1.5 and 1.465 and width 2 µm to support its only fundamental mode at λ0=1.55 µm.  

Figure 3.1(a) is a schematic illustration for this single air-interface 90° bend and 

Figure 3.1(b) is a plane-wave approximation of Figure 3.1(a).  The approximation replaces the 

waveguide with an infinite medium with refractive index n=1.485, which is the effective index of 

the waveguide.  Then for a plane wave incidence from a medium n=1.485 to the air medium, it 

has an incident angle 45° that is greater than the critical angle cθ =42.3°, thus total internal 

reflection (TIR) should be expected based on the approximation model.    
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Figure 3.1 Air-trench mirror approach for a 90o waveguide bend 
(a) actual model  (b) approximate model  

 

Figure 3.2 FDTD simulation of a 90o waveguide bend (TM)  
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Figure 3.2 shows an image plot of the squared magnitude of time averaged electric field 

(this applies to all the FDTD figures in this dissertation).  The simulation size is 20 µm ×15 µm, 

FDTD grid size is λ0/80 at wavelength λ0=1.55µm, and the incident source is the waveguide 

fundamental TM mode.  The 45° slanted line is the air and waveguide interface, and at its top and 

left side is the air zone which is input in FDTD input file as an slanted air rectangular shape.  For 

an efficient simulation area, a small part of the rectangular has been truncated.  However, this will 

not affect the simulation result because of the PML boundary.  Figure 3.2 has been designed to 

compensate the Goos-Hanchen shift with an optimal position of output waveguide for TM light.  

The bend efficiency is 72.3% (by MOI) or 78.4% (by power ratio).  Notice that most of the light 

is reflected by the air interface into the output waveguide but obviously some of the light is 

transmitted through the air interface and lost.  

 

Figure 3.3 FDTD simulation of a 90o waveguide bend (TE) 
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Figure 3.3 is the same configuration as in Figure 3.2 with TE mode as an incident source.  

It is seen that more light transmits through the waveguide-air interface, and bend efficiency is 

even lower, 57.5% (by MOI) or 67.8% (by power ratio).  Compared with Figure 3.2 using TM 

source, the reflected light in Figure 3.3 has shifted up slightly in the output waveguide, which is 

the signature of different Goos-Hanchen shifts for TM and TE light. 

The FDTD simulation of both Figure 3.2 and 3.3 shows that total internal reflection did 

not occur at the air interface as the plane-wave approximation (Figure 3.1(b)) expects.  What does 

happen at the air-waveguide interface which makes bend efficiency only 72.3% and 57.5% for 

TM and TE light?  The following section will address this in detail based on waveguide-mode 

plane-wave expansion theory.  

3.2 Waveguide mode plane wave expansion theory 

 

Figure 3.4 A symmetrical 2D slab waveguide 

Figure 3.4 shows a symmetrical 2D slab waveguide with width  and core and cladding 

indexes of and .  Solving Maxwell’s equations and satisfying the waveguide boundary 

a2

1n 0n

 



40 
conditions, the analytical waveguide mode has the well-known cosine-exponential electric field 

distribution solution [70] expressed for TM light as  
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where κ  and σ  are wavenumbers along x-axis.  They have a relationship with β , the 

propagation constant relative to the guided mode, and , the wavevector in vacuum, as 0k
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The two quantities β  and  are related as 0k effnk /0=β ,  where  represents the 

effective index of a waveguide.  

effn

Based on the waveguide mode plane-wave expansion (PWE) theory [67], the waveguide 

mode field can be considered as a superposition of plane waves propagating in their equivalent 

infinite mediums with different refractive index  for each plane wave.  The mode field and 

its spatial spectral amplitude  are a Fourier transform pair given as 
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where  is the wavevector component along x axis and related to propagation constant xk β  and 

wavevector 0k   as 

 

2
0

222 knk x =+ β  . (3.5) 

 

For the waveguide used in Section 3.1, the propagation constant β  is 

1
0 02.6485.1

55.1
2 −=•=•= mnk eff µπβ .  

With , 0=xk 00 knnk eff==β  from Equation 3.5, this represents the main plane wave 

propagating in a medium  at an incident angle effn 0θ  relative to the normal of the air-interface, 

which is identical to the incident angle of the waveguide mode.  For the single air-interface 90° 

bend, .  o450 =θ

 

Figure 3.5 Illustration of plane wave expansion theory in Fourier space 
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For any plane-wave component with 0≠xik , it will propagate in a medium with 

refractive index 
0

22 )(
k

kn x
i

β+=  at an incident angle iθ  as shown in Figure 3.5.  The angle 

difference 0θθθ −=∆ ii  can be defined by Equation 3.6 as 

 

β
θ xi

i
k

=∆ )tan(  . (3.6) 

 

Equation 3.6 is very important for understanding the approaches proposed in the 

following sections.  The angle difference iθ∆  can have a sign of plus or minus depending on the 

sign of .   xk

 

 
(a) 

 

 

Figure 3.6 Waveguide (a) mode profile (b) angular spectrum (TM) 
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(b) 

 

Figure 3.6 Waveguide (a) mode profile (b) angular spectrum (TM)  (cont) 

The normalized electric field and its Fourier transform  for the waveguide in 

Section 3.1 are shown in Figure 3.6(a) and (b).  Also appended in Figure 3.6(b) is the square of 

, which reflects the power distribution along , thus called power angular spectrum in this 

dissertation. 

)(xE )( xkE

)( xkE xk

From Figure 3.6(b), it can be seen that most of the power are concentrated within 

, which corresponds to an approximate maximum angle difference .  

Notice that in Figure 3.6(b) there is a line (called critical line) at approximate , 

which corresponds to the specific plane wave with a critical incidence 42.3

-1m 2 µ±=xk o4.18max ±=∆θ

-1m 28.0 µ−=xck

o.  The calculated 

critical angle difference is  from  with o7.2−=∆ cθ
o450 =θ 0=xk .  Based on the PWE theory as 

just explained, all the plane-wave components at the right side of the critical line will have 

incident angles greater than the critical angle, and they will have TIR at the air interface.  Those 

components at the left side will have incident angles less than the critical angle, thus this portion 
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of plane wave components will go through only partial reflection.  The light transmitted through 

the air interface as observed in Figure 3.2 and 3.3 is the transmission part for this portion of light.   

The above PWE theory explains very well the propagation of the mode to the mirror, and 

the mode can be considered as a combination of a continuous spectrum of plane waves 

propagating at slightly different directions and mediums.  Furthermore, this PWE theory can be 

applied to the analysis and design of mirror-type waveguide bends.   When doing so, the reflected 

field right after reflection at the mirror surface needs first to be derived.  The reflected field is a 

synthetical result from all the reflected plane-wave components, which include both amplitude 

and phase change from the Fresnel’s reflection theory.  In general, this reflected field has been 

distorted as a whole by the mirror interface because some plane waves may have TIR and some 

may have only partial reflection.  This complicated reflection going on at the interface will also 

bring up phase distortion to the waveguide mode, which is another factor affecting the overall 

coupling to the output waveguide.   

 

Figure 3.7 Goos-Hanchen shift at total internal reflection 
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One important phenomenon related is Goos-Hanchen (G-H) shift which occurs when TIR 

happens at the interface.  Physically G-H shift comes from the phase change of electromagnetic 

field for cases with incident angles greater than critical incidence.  This has been observed by 

other researchers [40,41,67,71] and it has also been observed when designing waveguide bends in 

this dissertation.  Different incident angles and different polarizations will make different Goos-

Hanchen shifts, which can be expressed clearly with Figure 3.7 and the following formulas. 

Figure 3.7 assumes a finite-sized wave coming to an interface from medium  to , 

and Goos-Hanchen shift refers to either vertical shift D or lateral shift d, which has expressions 

for TM (s) and TE light (p) as 

1n 2n
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The following group of figures (Figure 3.8) shows how to get the reflected field at the 

90° bend (TM) for the same waveguide as in Section 3.1 based on the waveguide mode plane 

wave expansion theory as just explained.  It should be pointed out again that each plane wave 

propagates in a slightly different medium with an effective refractive index  at a slightly 

different incident angle 

in

iθ .  Thus the reflected field in Fourier domain,  in space, can 

be first generated by multiplying  with the Fresnel’s reflection coefficient , that is, 

)( xR kE xk
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The incident mode  has constant phase, assuming zero for Figure 3.8; however,  is 

complex for TIR conditions.  As a result,  can be complex, and its normalized magnitude 

of angular spectrum and phase are shown in Figure 3.8(a) and (b) relative to the incident mode. 

)(0 xkE sr

)( xR kE

 

 
(a) angular spectrum of incident mode and 

 reflected field 
 

 
(b) phase change when reflecting for 

different plane wave components 

(c) magnitude of reflected field

 

(d) phase distortion of reflected field

 

Figure 3.8 Generation of the reflected field based on PWE theory   
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Figure 3.8(a) shows clearly that it is partial reflection for the components at the left side 

of the critical incidence while TIR for the right-side components.  Figure 3.8(b) is actually the 

phase change of the reflection coefficient , which is also the phase distribution of  in 

 space.   

sr )( xR kE

xk

The reflected field in real space, , is then attained by taking an inverse Fourier 

transform of .  The complex field  has its normalized magnitude of amplitude and 

phasefront shown in Figure 3.8(c) and (d) relative to the incident mode.  Two obvious features 

shown from Figure 3.8(c) are the decreased amplitude and the G-H shift (approximately 0.7 µm).  

Figure 3.8(d) shows an overall phasefront distortion compared with constant phase for incident 

mode (not shown). 
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For TE light incidence, the same procedure as above can be followed but using the 
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After getting the reflected field , the bend efficiency can be analytically calculated 

using Equation 2.23 with MOI method.  However, it is very critical at this point to consider the 

G-H shift.  For optimal waveguide bend designs, the output waveguides have to be placed at a 

position to compensate the G-H shift to attain maximum reflection, which has been done for the 

FDTD design and simulation in this dissertation with an optimal preference given to TM light.  

The calculations of bend efficiency for the 90° bend in Section 3.1 with the same amount of G-H 

shift as compensated in FDTD designs are 74.8% and 56.7% for TM and TE light, which matches 

FDTD results, 72.5% and 57.6%, extremely well. 

)(xER
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Figure 3.6 (in page 43) is a graphic expression of the waveguide-mode plane-wave 

expansion theory, which is the core for this chapter and this dissertation.  The power angular 

spectrum in Figure 3.6(b) is crucial, and four points based on Figure 3.6(b) will be used as the 

basis for designing high-efficiency bends in this and the next chapter.  They are (1) the central 

position of  in Figure 3.6 (b) is related to the incident angle 0=xk 0θ  of the waveguide mode; (2) 

the spectrum width maxθ∆  is related to the waveguide contrast ∆; (3) the critical line position  

reflects the relative index difference of waveguide material and air, and the angle difference 

xck

cθ∆  

depends on both the incident angle 0θ  and the waveguide material; (4) TIR occurs for 

components at the right side while partial reflection for the left-side of the critical line.  

To improve bend efficiency, one way is to move more plane-wave components to the 

right side of the critical line, so it will be TIR for the entire waveguide mode, a continuous 

spectrum of plane-wave components, not just one single plane wave.  This concept is equivalent 

to have maxθθ ∆>∆− c , which is the design rule for high-efficiency bends in this chapter. 

3.3 Improving BE by using smaller bend angles 

From the FDTD simulation in Section 3.1, for the 2 µm-width waveguide with core and 

cladding indexes 1.5 and 1.465, a 90° bend has bend efficiency (BE) 72.3% and 57.5% for TM 

and TE incidence at λ0=1.55 µm.  The BE is not high because of the partial reflection for the 

plane-wave components at the left side of the critical line based on PWE theory.   

From the power angular spectrum in Figure 3.6(b) and Equation 3.6, for the same 

waveguide, one way to have more plane-wave components at the right side of the critical line is 

to increase the mode’s incident angle 0θ .  By doing so, the cθ∆  gets increased, thus the critical 

line will move to the left.  More plane-wave components at the right side of the critical line 

means that more components will have TIR, and further means that the overall BE will improve.   
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Figure 3.9 Definition of bend angle  

 

Figure 3.10 Power reflectivity calculated by plane wave expansion theory  
 

Increasing incident angle is the same as decreasing bend angle as the definition shown in 

Figure 3.9.  The power reflectivity (or Bend Efficiency) can be calculated analytically using MOI 

method as explained in Section 3.2.  Shown in Figure 3.10 is BE as a function of incident angle 
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for the same waveguide as in Section 3.1.  It is seen that in Figure 3.10 the analytical expectance 

from PWE would be close to 100% for both TM and TE when the incident angle is increased to 

60° (corresponding to a bend angle 60°). 

To evaluate the analytical calculations by rigorous FDTD simulations, a set of waveguide 

bends with bend angles of 80°, 60°, and 45° (corresponding incident angles 50°, 60°, 67.5°) is 

designed and simulated for the same waveguide at same wavelength 1.55 µm and for both TM 

and TE polarizations.  

 

 

 

  

 
Figure 3.11 FDTD simulation for waveguide 90°, 80°, 60°, 45° bends 
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Figure 3.11 FDTD simulation for waveguide 90°, 80°, 60°, 45° bends  (cont) 
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Figure 3.11 are the FDTD simulations with FDTD grid size λ0/60.  Notice that the 

simulation size is different for different bend cases, and smaller-bend angles require bigger 

simulation size to give space to put a power monitor in the normal direction of the output 

waveguide.  The width of the power monitor for all the figures is 10 µm to account for 100% of 

the incident power.  Big simulation size will require big computer memory.  Limited by our 

computer capacity for the big-size 45° bend, the highest the resolution can be is λ0/60.  To keep 

the uniformity for all these waveguide bend structures, this set of waveguide bends all uses λ0/60 

resolution.  The 90° bend has been simulated again with λ0/60 instead of λ0/80 as in Section 3.1, 

and it can be seen that the simulation results from different FDTD resolution for the 90° bend are 

essentially the same.    

As mentioned before, the waveguide bend designs for an optimal output waveguide 

position have given preference to TM illumination.  Therefore it can be seen that the field in the 

right column (TE) is a little more offset from the center of the output waveguide compared with 

its left partner due to different G-H shift for TM and TE polarizations.  Attention should be paid 

to the dimensions for different figures, and they are in scale for the x and z dimensions for each 

figure itself, but not in the whole group. 

In Figure 3.11, for the bends of 80°, 60°, and 45°, the air zone has been input as a 

triangular shape with the slanted surface tiling at different angles as the working reflecting 

surface.  The 90° bend, however, uses a slanted air rectangular shape.  This is because that the top 

straight surface for a triangular shape will reflect some transmitted light from the slanted surface 

back to the waveguide side, and this reflected light will interfere with the light going to the output 

waveguide.  This is more severe for the 90° bend than other bend angles because of its low 

reflectance at the first air interface.  A triangular shape has been used before for the 90° bend and 

severe interference has been observed, thus a rectangular shape for the air zone has been used 

 



53 
instead to remove the reflection from the top surface to the output waveguide side.  This does not 

affect the overall performance of the 90° bend.  

Table 3.1 BE from FDTD simulation and PWE theory for different bends 

 
Bend angles 

 
90° 

 
80° 

 
60° 

 
45° 

 
Incident angle θ0 

corresponding to kx=0 

 
45o

 
50o

 
60o

 
67.5o

 
kx value corresponding to 

 critical angle 42.3o

 
   -0.28 

 
-0.81 

 
-1.92 

 
-2.83 

 
Theory 
(TM) 

 
74.8% 

 
94.6% 

 
99.9% 

 
99.8% 

 
FDTD 
(TM) 

 
72.5% 

 
89.8% 

 
98.1% 

 
98.6% 

 
Theory 

(TE) 

 
56.7% 

 
88.1% 

 
99.2% 

 
99.3% 

 
 
 
 
 
 

Bend efficiency 

 
FDTD 
(TE) 

 
57.6% 

 
88.4% 

 
96.0% 

 
98.3% 

 

 

Table 3.1 shows the BE calculations from the rigorous FDTD simulations and PWE 

theory.  It is seen that they match extremely well.  Note that the BE calculations from both FDTD 

and PWE theory have considered and compensated the G-H shift, and both use the MOI method.  

The relationship of power reflectivity as a function of incident angles (or bend angles) 

has been roughly observed and reported [40,41].  However, the authors explain the loss 

mechanism mainly from the Goos-Hanchen (G-H) shift effect, which is true for the cases having 

most of the plane-wave components at the right side of the critical line, such as 60° and 45° 

bends.  For the 90° and 80° bends, even if considering the G-H shift and having optimal output 

waveguide positions, the loss is still there.  The explanation for the loss in this dissertation is 

 



54 
based on the plane wave expansion theory, and the loss is due to the transmission for those plane-

wave components at the left side of the critical line. 

 

  

 

(a) TM light 

 

(b) TE light 

 

Figure 3.12 FDTD simulation of a composed 90° bend with two 45° bends 
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Comparing 90° and 45° bends from Table 3.1, the bend efficiency has been improved 

from 72.5% and 57.6% to more than 98% for TM and TE light.  This suggests a new 90° bend 

configuration with the addition of two 45° bends.  Figure 3.12 is the initial FDTD simulation of 

this composed 90° bend for both TM and TE light.  Although this composed 90° bend 

configuration has a relatively bigger size, its bend performance gets improved considerably. 

Further improvement may be achieved with an optimal length of the intermediate waveguide 

because severe interference has been observed at the second bend for smaller intermediate length. 

3.4 Improving BE for 90° bends by using lower-∆ waveguides 

Using smaller bend angles can improve the bend efficiency significantly, but the bend 

angle is decreased and so the bend area gets expanded.   If it is still wanted for a sharp 90° bend 

to keep the bend as compact as possible, an alternate approach is proposed here by varying the 

waveguide material based on Figure 3.6 (b).  For low-∆ waveguides, their fields will not be very 

well confined, but their angular spectrum will be quite concentrated from the properties of 

Fourier pair.  Therefore decreasing the waveguide contrast ∆ can shrink the angular spectrum, if 

the relative position of the critical line can be kept approximately unmoved, then more 

components will move to the right side of the critical line and the overall BE gets improved.  The 

critical line reflects the index difference between the waveguide material and air, to keep it 

approximately unmoved means that the waveguide material should be kept basically the same.  

To get a quantitative relationship of BE as a function of waveguide index contrast ∆, the 

following set of 90° waveguide bends has been simulated with the FDTD method.  The 

waveguides have the same cladding n=1.465 but slightly different index contrasts of ∆n= 2.4%, 

1.5%, 0.75%, 0.45%, 0.25%.    
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Figure 3.13 Single-mode profiles for waveguides with cladding index n=1.465 

 

Figure 3.14 Power angular spectrums for waveguides with cladding index n=1.465 

Because this set of simulations uses different waveguides and they have different mode 

profiles and angular spectrum.  To see how exactly the angular spectrum gets narrower, the fields 
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and angular spectrums for all these waveguides have been plotted and shown in Figures 3.13 and 

3.14.  The waveguide width for different ∆ waveguides has been chosen properly to support only 

one single-mode at wavelength λ0=1.55 µm, and they are 2 µm, 3 µm, 4 µm, 6 µm, and 8 µm 

respectively for ∆n= 2.4%, 1.5%, 0.75%, 0.45%, 0.25%.   

It is noticed in Figure 3.13 that the field profile changes from slim to fat in the ∆n order 

from 2.4% to 0.25%, which means the mode gets less confined for lower-∆ waveguide.  Their 

corresponding power angular spectrum in Figure 3.14 shows an opposite shrinking pattern in the 

order from 2.4% to 0.25%.  This conforms to our analysis of the waveguide plane wave 

expansion theory.   

Also drawn in Figure 3.14 is the approximate critical line  

corresponding to roughly  considering all different waveguides.  It can be seen that  

more components move to the right side of  when the power angular spectrum gets narrower.  

This is just what we expect and the bend efficiency should improve.   

121.0 −−= mkxc µ

465.1=effn

xck

Figure 3.15 is a group of FDTD simulations for this set of waveguide 90° bends and in 

the order from 2.4% to 0.25% with both TM and TE illuminations.  The incidence for each case is 

the analytical mode for the specified waveguide either TM or TE corresponding to the left or right 

column of this group of figures.  The vacuum wavelength for all these figures is the same 

λ0=1.55 µm and the FDTD grid sized is the same λ0/60 as before.  The BE calculations for 

different waveguides use different power computation window widths covering 100%of the mode 

power, and they are 10 µm, 15 µm, 20 µm, 25 µm, and 30 µm respectively.  
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Figure 3.15 FDTD simulations for waveguide 90° bends with cladding index n=1.465  
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Figure 3.15 FDTD simulations for waveguide 90° bends with cladding index n=1.465  (cont) 

It is noticed in Figure 3.15 that the BE improves from 72.5% to 93.9% (TM) and 57.6% 

to 86.7% (TE) with the MOI method for this set of waveguides with index contrast from 

∆n = 2.4% to 0.25%.  This improvement conforms to what we expected.  As mentioned before, 

the preference of the waveguide bend designs has given to TM illumination for an optimal output 

waveguide position due to different G-H shift for TM and TE polarizations.  Therefore it can be 

seen that the fields in the right column (TE ) have a little more offset from the center of the output 
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waveguide compared with their left partners.  Also attention should be paid to the dimensions for 

different figures, and they are in scale for x and z dimensions for each figure itself, but not in the 

whole group. 

Shown in Figure 3.16 is the overall BE calculations from both FDTD simulations and 

PWE theory with MOI, and again they match extremely well.  Both PWE theory and FDTD 

simulations expect that BE values are greater for TM light than for TE for each waveguide bend 

case; this is however from the Fresnel’s electromagnetic theory of reflection and transmission.  

 

Figure 3.16 BE for 90° waveguide bends with cladding index n=1.465 

3.5 Improving BE for 90° bends by using higher-index and lower-∆ waveguides 

Section 3.4 shows an effective method to improve bend efficiency; however, the bend 

efficiency is still not very high (93.9%/86.7%) even for waveguides with minimum index contrast 

0.25%.  This can be explained by the angular spectrum of this set of waveguides as shown in 

Figure 3.14, and there still having components at the left side of the critical line even for 
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∆=0.25% because the separation between 0=xk  and  is not big enough.  To increase this 

separation and keep the bend angle 90°, the critical line has to move to the left further, and this 

can be achieved by increasing the cladding index.  To verify this is the case, another set of 

simulations for waveguides with cladding index n=1.6 and the same set of index contrast 

∆n = 2.4%, 1.5%, 0.75%, 0.45%, 0.25% has been done in this section.  

xck

 

Figure 3.17 Single-mode profiles for waveguides with cladding index n=1.6 

Shown in Figure 3.17 are the single-mode profiles (electric fields) for this set of 

waveguides.  Again the waveguide widths for different ∆ waveguides have been chosen properly 

to support only one single mode at wavelength λ0=1.55 µm, and they are 2 µm, 3 µm, 4 µm, 

6 µm, and 8 µm respectively for ∆n= 2.4%, 1.5%, 0.75%, 0.45%, 0.25%.  The power 

computation window widths for these waveguides are 10 µm, 15 µm, 20 µm, 25 µm, and 30 µm 

respectively as in Section 3.4.  Besides the similar features for both field profiles and angular 

spectrums between this section and Section 3.4, it is important to notice the comparison between 
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Figure 3.18 and Figure 3.14.  The critical line in Figure 3.18 is at approximately -0.72 µm-1 for 

this set of waveguides with cladding index 1.6 while it is at -0.21 µm-1 for Figure 3.14.  Because 

of this, it is seen that waveguides with ∆=0.45% and 0.25% have almost of all their components 

at the right side of the critical line, and those waveguide bends are expected to have BE very high.  

 

Figure 3.18 Power angular spectrums for waveguides with cladding index n=1.6 

Shown in Figure 3.19 are a group of FDTD simulations for this set of waveguide 90° 

bends and in the order from 2.4% to 0.25% with both TM and TE illuminations.  The incidence 

for each figure is the analytical mode for the specified waveguide either TM or TE for the left or 

right column of the group of figures.  The vacuum wavelength for all these figures is the same 

λ0=1.55 µm and the FDTD grid size is the same λ0/60 as before.   
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Figure 3.19 FDTD simulations for waveguide 90° bends with cladding n=1.6  
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Figure 3.19 FDTD simulations for waveguide 90° bends with cladding n=1.6  (cont) 

Just as we expected, the BE for this waveguide set is relatively much higher than the 

n=1.465 waveguide set, and it improves from 92.2% to 99.7% (TM) and 85.0% to 99.9% (TE) for 

index contrast ∆ from ∆n= 2.4% to 0.25%.   

Shown in Figure 3.20 is the overall BE calculation results from both FDTD simulations 

and waveguide plane wave expansion theory.  Comparing with Figure 3.16, BEs in Figure 3.20 

are much higher, especially for waveguides with n=1.6 and ∆n=0.45%, 0.25%, the BE is higher 
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than 99% for both TE and TM illuminations.  This conforms to the analysis as stated at the 

beginning of this section that the BE will improve with higher- index and lower-∆ waveguides.  

 

Figure 3.20 BE for 90° waveguide bends with cladding index n=1.6 

3.6 Example of single air-interface polymer waveguide bends for fabrication 

The purpose of the project presented in this section is to experimentally validate the 

approach proposed in Section 3.3: the smaller the bend angle is, the higher the bend efficiency 

should be.  For this purpose and also considering the actual mask size, seven bend angles have 

been designed based on a polymer waveguide with 2D core and cladding index 1.486 and 1.477.  

The seven bend angles are 100º, 90º, 80º, 75.45º, 70º, 60º, and 45º corresponding to incident 

angles of 40°, 45°, 50°, 52.275°, 55°, 60°, and 67.5°.  Special bend angle 75.45º is a calculated 

angle with equal Goos-Hanchen shift for both TM and TE polarizations based on a plane-wave 

approximation.   
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In this experiment, perfluorocyclobutyl (PFCB) polymer material from Tetramer 

Technologies is used to make a 3D channel waveguide with its core and cladding index 1.4901 

and 1.4766 respectively at wavelength 1.55 µm.  Fimmwave [57] is used to design this channel 

waveguide and it turns out to have a cross-section 4 µm × 4 µm to support its only single mode.  

The 3D waveguide can be further transformed to a 2D slab waveguide by effective index method 

(EIM) as explained in Section 2.3.3.  The transformed equivalent 2D slab waveguide has width 

4 µm and core and cladding refractive index 1.486 and 1.477 respectively at wavelength 

λ0=1.55 µm.  The effective index is 1.482 and index contrast is about 0.6%.  Waveguide bends in 

this section are designed based on this 2D PFCB waveguide.  

 

Figure 3.21 An overlap of power angular spectrums  

For a single air-interface bend with this PFCB polymer waveguide, the critical angle cθ  

is about 42.4°.  This critical angle will give different angle difference 0θθθ −=∆ cc  between cθ  

and 0θ  for different waveguide mode incident angle 0θ .  A bigger incident angle makes cθ∆  
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bigger, for example, o1.25=∆ cθ  for , which corresponds to a 45° bend.  Expressing 

this relative critical position in the power angular spectrum as before for all seven bend angles 

with a overlap of  k

o5.670 =θ

x=0 representing the mode incident angle for all the seven bends from 100° to 

45°, Figure 3.21 is attained. 

Numbers 1 to 7 on the top of the figure correspond to relative critical positions for bend 

angles from 100° to 45°.  It is noticed that from 4 (75.45° bend) to 7 (45° bend), almost all the 

plane wave components have fallen at the right side of the critical line, thus the bend efficiency 

should be very high and close to 100%.   

Figure 3.22 is the theoretical expectance of the power reflectivity as a function of 

incident angle based on PWE theory and Fresnel’s equations.  It is seen that for incident angles 

greater than 50°, the power reflectivity gets close to 1.  Figure 3.22 expects the same as 

Figure 3.21 but from different views. 

 

Figure 3.22 Power reflectance calculated by plane wave expansion theory  
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Figure 3.23 Electric field and power profiles for PFCB waveguide 

 

Figure 3.24 Field and power angular spectrums for PFCB waveguide 
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Figure 3.23 is the fundamental mode profile (electric field) and its power distribution 

(normalized magnitude of time-averaged Poynting vector) for this 2D slab polymer waveguide.  It 

is seen the field extends approximately 30 µm while the power takes about 20 µm.  This power 

width provides us one basic parameter for the computation monitor width to calculate the bend 

efficiency (BE).  Figure 3.24 is its field and power angular spectrum.  It can be seen that this 

PFCB waveguide has a narrower angular spectrum compared with Figure 3.6 (b) (page 43) for the 

waveguide in Section 3.1 with core and cladding index of n=1.5 and 1.465. 

 

 

 
 
 

 

 
 
 

 

Figure 3.25 FDTD simulations of different bends for PFCB waveguide 
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Figure 3.25 FDTD simulations of different bends for PFCB waveguide  (cont) 
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Figure 3.25 FDTD simulations of different bends for PFCB waveguide  (cont) 

FDTD simulations for this set of waveguide bends are given in Figure 3.25 with FDTD 

grid size λ0/60 at λ0=1.55 µm.  The left column of this group of figures is for TM illumination 

while the right column is for TE.  Because of the Goos-Hanchen difference for different bend 

angles and different polarizations, again the output waveguide position for each bend case has 
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been optimized differently and given preference to TM illumination.  Therefore it is seen that the 

light is well centered at the output waveguide for the left column while having some different 

offset for the right column.  It is shown in Figure 3.25 that the bend performance is very poor for 

bend angles of 100° and 90° and also they have big G-H shift difference for TM and TE 

illuminations.  All the other bend angles beyond 100° and 90° do not show obvious G-H shift 

difference for TM and TE polarizations.  

Figure 3.26 shows the BE calculations from FDTD simulation and PWE theory with MOI 

for both.  Again they match extremely well. Figure 3.26 agrees well with Figure 3.22. 

 

Figure 3.26 BE calculation for PFCB waveguide bends 

The following figures are the tolerance analysis from a series of FDTD runs with bend 

efficiency as a function of the z coordinate of the lowest air triangular vertex.  This tolerance 

analysis is also one of the design processes of finding the best geometry to have the highest BE.  

By changing the z coordinate of the lowest air triangular vertex, the relative position between air 

and output waveguide has been changed, and then the optimum position having the highest BE 
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has been picked for each bend angle.  The FDTD simulations in Figure 3.25 all have optimized z 

coordinates as 0.5, 0.7, 0.5, 0.8, 1.0, and 0.8, respectively, in unit of µm, for bends from 90° to 

45°.  However, as stated before about G-H shift for different polarizations, preference is given to 

TM for each bend case.  Note that bend 100° has very low BE, and its purpose to be designed is 

for comparison and showing the concept with the allowance of the mask size, thus no tolerance 

analysis is done for this case.   

 

 

 
 
 

 
 
 

Figure 3.27 Tolerance analysis for different bends 
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Figure 3.27 Tolerance analysis for different bends  (cont) 
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Figure 3.27 Tolerance analysis for different bends  (cont) 

Shown in Figure 3.27, it is very obvious that the bend 90° has a bigger G-H shift 

difference for TM and TE light and lower BE.  All other figures have a BE range from 0.94 to 1 

with slightly different z allowable coordinate range, approximately about ±0.7 µm from the center 

position.   

It is interesting to compare tolerance curves for the bend 75.45° and 70°.  First of all, 

these two figures have the smallest G-H shift difference between TM and TE (1% or 0.7%) 

compared with other figures.  Individually, the G-H shift shows opposite change patterns for 

these two bend cases.  The bend 75.45° starts with a slightly bigger BE value for TE than for TM, 

with increasing z coordinate, and then TM starts to pick up and gradually is bigger than TE after 

going through an equal point.  The bend 70° has change pattern for TM and TE curves opposite to 

the bend 75.45°.  For bend angles bigger than 75.45°, it is seen from Figure 3.27 that they follow 

the pattern of bend 75.45° although with bigger difference between TM and TE for bigger bend 

angles.  For bend angles smaller than 70°, they follow the bend 70° pattern although with bigger 

difference between TM and TE for smaller bend angles.  This indicates that at some middle 
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position between 75.45° and 70° it will be the bend angle with actual equal G-H shift, which will 

have overlapping TM and TE curves.    

Table 3.2 shows an overall performance for each bend case with tabulated numbers listed 

compared with curves in Figure 3.26 with MOI method.  Also listed in the table is the tolerance 

range having BE greater than 95% based on Figure 3.27, and it is seen a range of about ± 0.7 µm 

for the z coordinate change and for bend angles smaller than 80°.  This is a relatively relaxed 

fabrication tolerance.  

 

Table 3.2 Overall performance of different bends  

 
Bend Efficiency 

 
Bd_angle 

 ( º ) 

 
Inc_angle 

 ( º ) 

Theory 
(TM) 

FDTD 
(TM) 

Theory
(TE) 

 
FDTD 
(TE) 

 
Tolerance 

(µm) 
 

 
100 

 
40 

 
0.428 

 
0.386 

 
0.176 

 
0.14 

 
NA 

 
90 

 
45 

 
0.882 

 
0.893 

 
0.764 

 
0.781 

 
(-0.3,0.5) 

 
80 

 

 
50 

 
0.994 

 
0.993 

 
0.988 

 
0.99 

 
(-0.5,0.7) 

 
75.45 

 

 
52.275 

 
0.998 

 
0.997 

 
0.996 

 
0.996 

 
(-0.7,0.7) 

 
70 

 

 
55 

 
0.999 

 
0.997 

 
0.997 

 
0.996 

 
(-0.8,0.8) 

 
60 

 
60 

 
0.999 

 
0.995 

 
0.996 

 
0.995 

 
(-0.7,0.7) 

 
45 

 
67.5 

 
0.999 

 
0.992 

 
0.999 

 
0.991 

 
(-0.7,0.7) 
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(a)  a single 75.45° bend 

 

 

(b) three 75.45° bends  

 

Figure 3.28 SEM image of fabricated PFCB waveguide bends   

Shown in Figure 3.28 are two SEM images of PFCB waveguide bends fabricated by 

graduate students, Jaime Cardenas and Nazli Rahmanian, with a single and three bends of 75.45°.  

Testing and measurements are under way, and an initial experimental result for a bend 45° has 

bend efficiency of about 85%. 

 

 



 

CHAPTER 4 

  

MULTIPLE-LAYER AIR-TRENCH WAVEGUIDE BENDS 

Chapter 3 concentrates on single-air-interface waveguide bend designs and simulations, 

and three approaches of improving bend efficiency have been proposed.  However those 

approaches require either changing bend angles or material system; for some situations with strict 

fixed requirements for these two parameters, this chapter proposes one more alternate method, 

using multi-layer structures to improve the bend efficiency.  This can be understood from the 

angular spectrum shown in Figure 3.6 (b) (page 43), the plane-wave components at the left side of 

the critical line have only partial reflection, and adding more layers can directly increase the 

power reflectance for those components. 

The high reflectivity for the multi-layer bend structures is close to the performance of 

traditional periodic Bragg mirror.  It is well-known that traditional Bragg mirrors can give high 

reflectivity with properly-designed quarterwave-thickness alternate layers.  These mirrors usually 

work at normal incidence as filters or reflectors for the laser cavity [72].  However, to the best of 

our knowledge, Bragg mirrors have not been introduced into the waveguide regime as waveguide 

bend structures yet.  In this chapter, this originative application will be explored, including quasi-

Bragg (optimized by a combination of micro-GA and FDTD) and Bragg (periodic) mirrors as the 

waveguide bends.  

78 



79 

4.1 Quasi-Bragg/Bragg air-trench 90o bend 

The single air-interface 90° waveguide bend in Section 3.1 has bend efficiency only 

72.3% and 57.5% for TM and TE light.  The low BE is due to the waveguide mode incidence, 

and those decomposed plane-wave components having partial reflection referring to the angular 

spectrum shown in Figure 4.1 (same as Figure 3.6(b) on page 43).  Therefore transmission occurs 

for those components at the left side of the critical line.  

 

Figure 4.1 Angular spectrum of the waveguide as in Section 3.1 

A novel approach with multi-layer structures has been gradually formed by adding more 

interfaces one by one after seeing the gradual improvement of bend effect.  The approach starts 

from first decreasing the big thickness of the rectangular air-trench as shown in Figure 3.2 

(page 37) and bringing the second interface closer to add more reflection for those transmitted 

components.  Immediate improvement has been observed by having an air trench layer with some 

reasonable thickness.  However there is still some light transmitted and lost.  This can be 

understood as follows.  The addition of the second air interface increases the reflection of angular 
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spectrum plane wave components that do not undergo TIR, but at the cost of permitting frustrated 

TIR to occur for the TIR components. 

To reflect back those transmitted part, the same logic of adding more interfaces is 

followed to increase the reflectance.  It turns out that two or three air-trench layers can improve 

the bend effect with some reasonable thickness and separations, and further addition of layers 

does not significantly improve the bend efficiency any more.  

To achieve an optimal performance, with the help of a combination of micro-genetic 

algorithm (µGA) and FDTD [63], the air-trench layer thickness, length and the z coordinate of the 

lowest vertex point of the air-trench have been set to be variables for the µGA-FDTD application. 

Shown in Figure 4.2 is the FDTD simulations with FDTD grid size λ0/80 at λ0=1.55 µm 

for these multi-layer structures with optimal dimensions for TM illumination.  It is seen that the 

bend efficiency has been improved to 81.7% and further to more than 93% with one or more-

layer air-trenches from 72.3% with single air-interface bend for TM light.  Both two and three air-

layer structures improve bend efficiency 20% (with MOI) from the single air-interface mirror.   

The working principle for the multi-layer air-trench mirrors can be understood as that the 

first air interface reflects much of the incident energy through TIR and the rest of the interfaces in 

the stack act similarly as a Bragg mirror to reflect that portion of the angular spectrum that does 

not undergo TIR.  However, the finite trench thickness of the first layer will result frustrated TIR 

[73], and the multi-layer structures have to operate over the entire range of angular spectrum to 

improve reflectance for the left-side components while compensating for the TIR part.  The work 

in this section has been published in Optics Express [74].  

 

 

 

 

 



81 

 
 
 

 

 
 
 

Figure 4.2 FDTD simulation of optimized multi-layer air-trench mirrors (TM) 
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Since this waveguide has index contrast 2.3%, which is not very low, its angular 

spectrum is relatively wide compared with other lower-∆ waveguides in Chapter 3.  Therefore the 

multi-layer mirrors here didn’t give very high efficiency, and it is expected that higher efficiency 

can be achieved for lower-∆ waveguides with narrower angular spectrum.  The narrower the 

angular spectrum is, it is more close to a plane-wave approximation, for which the multi-layer can 

better force a constructive reflection.  

Although the layer’s length in Figure 4.2 is also set to be one variable when doing 

optimization, it is found that it doesn’t affect the performance very much as long as it is not very 

short.  The layer’s thickness and separations between air-trenchs are critical parameters for 

achieving an optimal performance.  Table 4.1 shows the detailed optimal geometry dimensions 

for each case of Figure 4.2.  

Table 4.1 Geometry and performance of waveguide 90° bends with multi-layer structures  

Bending Efficiency 
(TM) 

 

Structure 

(# of air 
trenches) 

 

Trench 
Dimensions    

(µm) 

 

Trench 
Separation 

(µm) 
By 

MOI 
By Power 

ratio 

 

1 Layer 

 

11.10×1.28 

 

⎯ 

 

81.7% 

 

85.7% 

 

2 Layers 

 

10.35×0.90 

6.95×0.81 

 

0.44 

 

93. 4% 

 

94.8% 

 

 

3 Layers 

 

10.05×1.05 

9.42×0.52 

8.70×0.70 

 

0.44 

0.38 

 

 

93.1% 

 

 

97.2% 
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Figure 4.3 Comparison of electrical field amplitude for 90° bends of Figure 4.2 

 

 

Figure 4.4 BE dependence on wavelength for 90° bends of Figure 4.2  
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Shown in Figure 4.3 is an electric field amplitude profile comparison among the input 

mode and the actual reflected field profiles across the output waveguide for the cases in Figure 

4.2.  In general, the profiles match the input profile better at the center position than the sides.  

The two and three-layer mirrors match better than the one-layer configuration.   

An additional attractive feature of multiple air-trench 90° bends is illustrated in 

Figure 4.4 in which the bend efficiency (calculated by power ratio, not MOI, limited by the 

FDTD code) is shown as a function of wavelength.  In each case, the bend efficiency is only 

weakly dependent on wavelength.  However, it is seen that the more-layer mirrors are a little 

more sensitive to the wavelength than the one-layer mirror.  

Although neither of the optimal geometry has a rigorous periodic structure as shown in 

Table 4.1, the multi-layer air-trench structures do work like Bragg mirrors having high 

reflectance.  They are called Quasi-Bragg mirrors in this dissertation.  This leads us to investigate 

how a periodic Bragg mirror works as a 90° waveguide bend.  However due to the TIR situation 

from a plane wave approximation, no analytical layer thickness can be available.  By experience 

and with some judicious choice based on the geometry in Figure 4.2, a 3-layer periodic mirror 

with air-trench layer thickness 0.8 µm and separation 0.4 µm is simulated for the TM case.   

Figure 4.5 is the FDTD simulation for this 3-layer Bragg mirror, which has surprisingly 

high-efficiency 93.6%, even a little better than the optimized two and three-layer air-trench 

mirrors.  Figure 4.6 is the bend efficiency (calculated by power ratio) curve as a function of 

wavelength for the two 3-layer Bragg and Quasi-Bragg mirrors.  It is seen that this Bragg mirror 

has similar performance as the Quasi-Bragg mirror has. 
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Figure 4.5 FDTD simulation for 3-layer air-trench Bragg mirror (TM) 

 

Figure 4.6 BE dependence on wavelength for 3-layer mirrors 
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This infers that a wide latitude of geometries may exist giving high efficiency for this 90° 

waveguide bend.  An indirect support for this inference is the property of Figure 4.6, that is, BE is 

weekly dependent on wavelength.  For multi-layer structures to have high reflectance, the 

fundamental reason comes from the constructive phase difference between layers.  As we know, 

the phase difference between the neighboring interfaces is a function of wavelength, layer 

thickness and propagating directions.  If the BE is weakly dependent on wavelength, it will also 

have relaxed tolerance on the layer thickness.  A direct proof for this inference is a relationship of 

BE and layer thickness change.   However, from another point of view, it is seen that µGA-FDTD 

is very helpful in quickly finding one good solution although the solutions may be not limited to 

only one.  

Shown in Figure 4.7 are the FDTD simulations for TE light with the same geometry as in 

Figures 4.2 and 4.5.  It is seen that there is not much improvement with the application of multi-

layer mirrors, and the bend efficiency stays essentially the same except that the 3-layer Bragg 

mirror has about 10% lower BE.  The reason for this low TE reflectivity may be related with the 

unique Brewster phenomena especially for TE light, and the Brewster angle here is about 34.0° 

based on a plane wave approximation with n=1.485 and n=1.  This Brewster angle incidence is 

still in the left range of ±18° around  from the angular spectrum shown in Figure 4.1.  

This means the TE reflectance will be zero for those plane-wave components having incidence at 

neighbor of 34.0°, and these components will transmit through any interfaces and lost.  Adding 

more layers will not improve the reflectance for these components.  

o450 =θ
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Figure 4.7 FDTD simulation of the multiple-layer mirrors (TE)  

4.2 Bragg air-trench waveguide bends  

The following example is to design a waveguide bend for a Gyro project using the Gyro 

waveguide as stated in Section 2.3.3.  This waveguide has a 2D transformed slab waveguide core 

and cladding indices of 1.6302 and 1.6251 respectively, index contrast 0.3%, and width 3.5 µm to 

support its only TM fundamental mode at wavelength of λ0=1.33 µm.  Figure 4.8 is the 

normalized field and power space profiles. 
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Figure 4.8 Electric field and power profile for Gyro waveguide 

 

Figure 4.9 Field and power angular spectrum for Gyro waveguide 

Due to the project’s needs, this waveguide bend is required to work at Brewster angle 

incidence, and to reflect TM light while transmitting TE light.  The reflectance for TM light is 
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required to be as high as possible.  The Brewster angle is defined by the cladding index 1.6414 

seen by the TE light.  With an approximate interface of this cladding and air the Brewster angle is 

approximately 31.35°, which is equivalent to a 117.3° bend angle.  FDTD predicts bend 

efficiency of 20.7% for a single air-interface mirror with TM illumination.  

This low bend efficiency 20.7% can be understood from the waveguide’s angular 

spectrum as shown in Figure 4.9.  The critical angle is about 38.0° based on a plane wave 

approximation with cladding refractive index 1.6251, seen by the TM light, and air n=1.  

Figure 4.9 shows that most of the plane wave components are at the left side of the critical line 

 and those components can only have partial reflection.  Thus it is not a surprise 

to get the low bend efficiency of 20.7% for a single air-interface mirror approach.   

189.0 −= mkxc µ

However, because of this partial reflection for the 117.3° waveguide bend from a plane-

wave approximation, a Bragg mirror with periodic air interlayers can be designed to improve the 

TM bend efficiency.  The reason to choose air is for the consideration of high index contrast and 

feasibility of fabrication.  To design a high-efficiency Bragg mirror, the important parameters to 

define are the thickness and number of the alternate layers.  For an abnormal incidence, the 

formula calculating the thickness is [75] 

 

4
cos 0λθ Mnt =  , (4.1) 

 

where θ and , tn  stand for refractive index, layer thickness and propagating angle in each 

alternate layer, M  stands for any odd numbers, and 0λ  = 1.33 µm for this example.  

For the feasibility of fabrication, it is better to have thick layers, thus taking M =1 for the 

air layer and M =3 for the layer with n=1.6251, then the layer thickness is 0.62 µm and 0.72 µm 

respectively.  To get a reflectivity higher than 99% with a plane-wave approximation at TM 

illumination, five alternate layers are needed.  
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(a) TM  

 

(b) TE 

 

Figure 4.10 FDTD simulation of an air-trench Bragg mirror for Gyro waveguide  
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Figure 4.10 are the FDTD simulations for this 117.3° waveguide bend with the air Bragg 

mirror approach with FDTD grid size λ0/60.  Because of the Brewster angle incidence, this five-

layer mirror achieves a high bend-efficiency (98.8% by MOI and 99% by power ratio) for TM 

light while very low efficiency (5.9%) for TE light.  It is seen from Figure 4.10(b) that the TE 

light has mostly transmitted.   

4.3 Bragg/Quasi-Bragg silicon waveguide 90° bends 

Section 4.2 has designed a rigorous periodic Bragg mirror for the 117.3° Gyro waveguide 

bend with five air interlayers.  As explained before, the reason to choose air is for the 

consideration of high index contrast and feasibility of fabrication.  If just for the consideration of 

high index contrast, other material, for example, silicon (Si, n=3.4), is also a good alternative 

option.  In this section, a Bragg mirror as a 90° waveguide bend with a stack of Si for the same 

waveguide as in Section 4.1 with core and cladding indices of  n=1.5, 1.465 is examined.  

This example also has a partial reflectance approximation, thus an analytical layer 

thickness can be calculated using Equation 4.1 with n1=1.465, θ1=45°, and n2=3.4 at λ0=1.55 µm.  

The alternate layer thicknesses are 0.37 µm and 0.12 µm for the cladding and Si layer, and it 

takes three alternate layers to achieve higher than 99% reflectivity theoretically for TM light.   

Figure 4.11 is the 3-layer Si Bragg mirror as waveguide 90° bend with FDTD grid size 

λ0/100.  The relatively higher resolution is for accurate simulation for the small thickness 

dimension for the Si layer.  The bend efficiency is 97.8% for the TM case, which is better than 

the multiple air-layer bends as in Section 4.1 (93%).  Part of the reason can be that the multiple 

layers in Figure 4.11 work together to increase the partial reflectance for the entire waveguide 

mode, or all the plane-wave components, while the multiple-layer structures with air in 

Section 4.1 have to compensate for some TIR part while improving the partial reflectance part. 
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Figure 4.11 FDTD simulation of silicon Bragg mirror as a waveguide 90° bend 

Figure 4.12 is the bend efficiency (calculated by power ratio without MOI) as a function 

of wavelength, and it is still a relatively flat curve over a range of 1.3 µm to 1.7 µm.  Therefore 

this Si Bragg mirror is also not very sensitive to wavelength as the multiple air-layer bend is. 

 

Figure 4.12 Bend efficiency dependence on wavelength for a Si Bragg mirror  
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Figure 4.13 FDTD simulation of Si mirrors in Figure 4.12 (TE) 

Figure 4.13 is the FDTD simulation with TE light for the same geometry as in 

Figure 4.11.  The bend efficiency is not high, 73.3%.  However, based on interference for 

stratified films, a more-layer structure is expected to give higher reflectance than a less-layer one 

is.  Based on plane-wave approximation for TE light, a six-Si-layer structure can improve bend 

efficiency higher than 99%.   

The top two figures in Figure 4.14 are the FDTD simulations for this 6-layer Si Bragg 

mirror with both TM and TE illuminations.  It is seen that the bend efficiency for TE light has 

been improved approximately 13% from the 3-layer structure.   

Applying µGA-FDTD to optimize this 6-layer structure for higher BE with TE light gives 

the two figures at bottom of Figure 4.14. 
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(a) Si Bragg mirror (TM) 
 

 

(b) Si Bragg mirror (TE) 

 
 
 

(c) Quasi-Bragg mirror (TM) 

 
 

(d) Quasi-Bragg mirror (TE) 
 

Figure 4.14 FDTD simulations of 6-layer Si mirrors  

The optimized Quasi-Bragg mirror has slightly unequal Si layer thickness starting from 

the side close to waveguide, 0.149, 0.153, 0.145, 0.157, 0.114, 0.106, in the unit of µm.  BE 

improvement about 6% from the rigorous periodic mirror has been achieved by µGA 

optimization.  This again shows the powerfulness of µGA-FDTD design tool.  The BE for TM 

stays essentially unchanged high for the three and six-layer Bragg or Quasi-Bragg mirrors.  This 
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again shows the wide thickness tolerance for the multiple-layer Si mirror just as the multiple-

layer air-trench structures in Section 4.1.  

Figure 4.15 is the bend efficiency (calculated by power ratio without MOI) as a function 

of wavelength for the 6-layer Si mirror.   It is still a relatively flat curve over a range of 1.5 µm to 

1.7 µm for TM light for both these 6-layer mirrors.  For TE light, the 6-layer Bragg mirror does 

not have a flat range while the Quasi-Bragg mirror does have a flat range from 1.5 µm to 1.7 µm.  

This is another slightly favorite characteristic for this 6-layer Quasi-Bragg mirror besides having 

higher bend efficiency.  

 

 

Figure 4.15 Bend efficiency dependence on wavelength for 
 the 6-layer Si Bragg mirror in Figure 4.14  

Overall, Chapter 4 has proposed and numerically simulated multiple-layer structures as 

waveguide bends.  Bend efficiency can be effectively improved by using the multi-layer 

structures.  Rigorous periodic Bragg mirrors can be analytically designed for bends with a partial 

reflection from a plane-wave approximation.  High bend efficiency can be achieved for 
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waveguide contrast at 2.4%, and it is expected to have further improvement for waveguides with 

lower-∆ because they are more close to plane-wave approximation.  It has been shown that the 

µGA-FDTD design tool is very powerful in helping search for a good solution at situations 

without analytical guidance, or some other difficult conditions.  One common feature for the 

multiple-layer air or silicon waveguide bends is that they have relatively flat wavelength 

response, which infers that they have relaxed thickness tolerance.  This is because the phase 

difference forming the constructive interference from the neighboring layers is a function of 

wavelength and layer thickness for a fixed incident angle.  

 

 

 

 



 

CHAPTER 5 

 

 AIR-TRENCH BEAMSPLITTERS  

Chapters 3 and 4 present several approaches to realize compact high-efficiency 

waveguide bends by taking a panoramic view of a waveguide’s angular spectrum.  Inspired from 

the observed frustrated total internal reflection (FTIR) [76] phenomenon when designing the one-

layer 90° bend in Section 4.1,  amplitude beamsplitters are first designed in this chapter.  This 

FTIR phenomenon has been widely used in bulk optics, for example, the prism coupler can 

couple light from a fiber or free space into a waveguide.  The same phenomenon can also been 

used to create a waveguide beamsplitter with an air-gap as the separation medium [69].  Changing 

the air-gap thickness can vary the ratio of reflectance and transmittance.  However, to make an 

even-ratio beamsplitter, it turns out that TE and TM light needs different air-gap thickness for the 

same waveguide as in Section 3.1.  The second part of this chapter presents a design of a 

waveguide polarization beamsplitter for a Gyro project, which is based on two principles: (1) 

high-efficiency multiple-layer structure reflects TM light; (2) Brewster angle incidence transmits 

TE light.  Combining these two, the TM and TE lights get split.  

5.1 Air-trench amplitude beamsplitter  

The amplitude beamsplitter designed in this section uses the same waveguide as in 

Section 3.1 with n=1.5, 1.465 and width 2 µm at wavelength λ0=1.55 µm.  Based on FTIR 
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phenomenon, changing the air-gap thickness can get variable power ratio of reflection (R) and 

transmission (T).  The design goal here is to get an even-ratio beamsplitter for both TM and TE 

light at a 90° crossing.   

5.1.1 Air-trench amplitude beamsplitter (TM) 

For a single air-gap FTIR beamsplitter, the air-gap thickness has the lowest limit of zero, 

then all the light will go through and no reflection, which represents T=1 and R=0.  The highest 

limit is to have infinite gap thickness, which is close to the single air-interface 90° bend as 

simulated in Section 3.1, which has reflection R=78.4% (by power ratio).  In the middle of these 

two limits with increasing gap thickness, the reflection generally gets higher while transmission 

gets lower.  However, it is not a direct proportional relationship for the R and T with the air-layer 

thickness.  Reflection for TM light achieves its highest, 85.7% (by power ratio), for an optimized 

thickness t=1.14 µm as simulated in Section 4.1.   

 

Figure 5.1 Reflection and Transmission vs. thickness of a single air layer (TM) 
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A quantitative relationship of R and T with the air-gap thickness for TM light is shown in 

Figure 5.1.  This figure is attained after a series of FDTD simulations for the one air-layer 90° 

beamsplitter with different layer thickness by keeping the input and output waveguide unmoved.  

The maximum reflection occurs at thickness of t=1.0 µm approximately, which matches the 

optimized result (t=1.14 µm) as in Figure 4.2 (page 81).  Also it is noticed that the total addition 

of R and T drops when the layer thickness gets greater than 1.5 µm.  This can be understood that 

a thicker layer spreads the light due to the angular spectrum of the waveguide mode and thus 

some light gets lost and can’t couple into either the refection or transmission arm.  

 

 
(a) with waveguide mode as a source 

 
         (b) with a  pulse as a source 

 
 

Figure 5.2 Even-ratio air-trench amplitude beamsplitter (TM) 
  

It is shown in Figure 5.1 that a 50/50 beamsplitter can be achieved with an air thickness 

at around t=0.4 µm.  This even-ratio amplitude beamsplitter for TM light is simulated as shown in 

Figure 5.2 with an actual air-trench thickness of 0.39µm and FDTD simulation grid size of λ0/80.  

The actual power ratio of reflection over transmission is 48.8/49.7 (by power ratio).  Figure 5.2(a) 
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and (b) have the same geometry, but they use a different source.  Figure 5.2(a) uses a continuous 

waveguide mode with a fixed wavelength λ0=1.55µm as a source, while (b) uses a pulse of 

∆λ=0.36µm as its source and the plot is a time snap shot of square of the electrical field.     

 

Figure 5.3 Air-trench amplitude beamsplitter spectrum response (TM) 

With the pulse ∆λ=0.36µm as a source, the spectrum response of the beamsplitter is 

generated as in Figure 5.3.  It is seen that the reflection and transmission changes differently with 

the wavelength.  Comparing Figure 5.3 with Figure 4.4 (page 83), the spectrum response for the 

one-layer bend, the beamsplitter is a little more sensitive to the wavelength than the one-layer 

bend is.   

5.1.2 Air-trench amplitude beamsplitter (TE ) 

Following the same procedure as above by first doing a series of FDTD runs with 

different air-layer thicknesses, Figure 5.4 is generated for TE light, it turns out that a thickness 

close to 0.7 µm is needed for an even-ratio beamsplitter with TE light. 
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Figure 5.4 Reflection and Transmission changes with thickness of one air-layer (TE) 

 

 
 

(a) with waveguide mode as a source 
 

(b) with a  pulse as a source 
 

Figure 5.5 Even-ratio air-trench amplitude beamsplitter (TE) 
  

FDTD simulation of the even-ratio amplitude beamsplitter for TE light is shown in 

Figure 5.5 with an actual air-trench thickness of 0.69 µm and FDTD grid size of λ0/80.  The 
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actual power ratio of reflection over transmission is 48.7/49.4 (by power ratio).  Figure 5.5(a) and 

(b) have the same geometry, but use a different source as in Figure 5.2. 

 

Figure 5.6 Air-trench amplitude beamsplitter spectrum response (TE) 

With the same pulse of ∆λ=0.36µm as a source as for Figure 5.3, the spectrum response 

of the beamsplitter for TE light is generated as in Figure 5.6.  It can be seen that the reflection and 

transmission changes differently with the wavelength.  Comparing Figure 5.6 with Figure 5.3, the 

spectrum response for TM and TE light has the similar pattern: the reflection gets lower with 

increasing wavelength while transmission changes oppositely.  

5.2 Air-trench polarization beamsplitter 

The scheme of designing a polarization beamsplitter (PBS) is totally different from the 

amplitude beamsplitter.  It fully uses the high reflectance property for a multi-layer structure as in 

Section 4.3 while combining a Brewster angle incidence.  With a special Brewster angle 
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incidence, TE light should transmit through the multiple layers while TM light gets reflected in 

very high-efficiency, thus TE and TM polarizations get split.  

A design example for this polarization beamsplitter (PBS) with a multi-layer structure is 

based on Gyro waveguide.  The Gyro waveguide has core and cladding refractive indices of 

1.6302 and 1.6251 for TM light and 1.6464 and 1.6414 for TE light, and width 3.5 µm to support 

its only fundamental mode at wavelength λ0=1.33 µm.  Because of the birefringence effect for the 

Gyro waveguide, the Brewster angle is decided by the waveguide’ cladding refractive index seen 

by the TE light, which is n=1.6414.  At an interface of such a waveguide system and air, the 

Brewster angle is approximately 31.35°.  For such a Brewster angle incidence, the corresponding 

bend angle is 117.3°.  

The Bragg mirror in Section 4.1 uses five alternative air layers to achieve bend efficiency 

of 98.8% for TM light.  However, it is found that this five-layer structure degrades the 

transmittance for TE light.  Part of the reason is because of the waveguide mode incidence.  The 

Brewster angle 31.35° is calculated based on an approximation of a plane wave incidence.  With 

an actual waveguide mode incidence, some of the plane-wave components decomposed from the 

mode have different incident angles from the Brewster angle, which will have both reflection and 

transmission at each mirror interface.  The more layers the structure has, the reflection effect for 

TE light will be more severe.  However, fewer layers will degrade the reflection for TM light.  

For a balance for TM and TE, the PBS here is chosen to have three air layers and the layer 

thicknesses are the same as the Bragg mirror in Section 4.2, which are 0.62 µm for the air layer 

and 0.72 µm for the cladding layer.  
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(a) reflection for TM light 

 

(b) transmission for TE light 

Figure 5.7 FDTD simulation of an air-trench polarization beamsplitter for Gyro waveguide  
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Figure 5.7 is the FDTD simulation for this polarization beamsplitter with FDTD grid size 

of λ0/60.  The polarization splitting ratio of reflection (TM) over transmission (TE) is 

97.0%/92.8% (by MOI), and 97%/96.0% (by power ratio).  The reflections for TE and 

transmission for TM are 0.24% and 1.9% with MOI.  This small numbers stand for cross-talk.  It 

is observed that the field profile from the reflection path matches with the waveguide mode better 

than from the transmission path.  Therefore the reflection is higher than the transmission, 

especially by MOI calculation.  

This polarization beamsplitter, together with the air Bragg mirror designed in Section 4.2, 

are two critical components for the waveguide depolarizer given in Chapter 6.  To have high 

performance it generally requires a polarization beamsplitter with balanced transmission and 

reflection.   

  

 



 

CHAPTER 6 

 

INTEGRATED DEPOLARIZER  

For a system using intrinsically polarized light, such as most of the laser sources, the state 

of polarization generally will evolve in a random way during the propagation, as on the long 

single-mode optical fibers.  The polarization change is a response to any environment changes, 

such as temperature, bending, inhomogeneity of the fiber itself.  Most of the detectors are 

sensitive to the state of polarization, thus a noise from the random change of polarization may 

appear [77].  

Specially for an Interferometric Fiber Optic Gyroscope (IFOG) system that needs long 

fiber coils as the sensing part, high performance is generally made by winding polarization 

maintaining (PM) fibers following a special procedure to remove the unwanted polarization-

related noise.  However, PM fibers are expensive.  To avoid its high cost, inexpensive single 

mode (SM) fibers can be used instead.  However, if polarized light enters a SM fiber coil, small 

variations, such as in temperature, stress, or vibration, will cause random birefringence changes, 

which will cause the polarization state to vary randomly.  Because of this random variation, the 

beam’s intensity, when measured after the polarizer, will vary to the point when the signal at 

times will drop all the way to zero.   This phenomenon is called polarization fading.  However, if 

a depolarizer is introduced before the fiber coils, these variations will not result in polarization 

fading.  The function of a depolarizer is to change a polarized light to an unpolarized light, and 
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the depolarized beam will have no definite polarization state.  Therefore the random perturbations 

along the fibers can’t cause a polarization change, thus polarization fading is avoided.  

Some fiber-version depolarizers using fibers in meters have already been in use [78,79].  

However, they are not in a compact form and are at high cost.  In this chapter a waveguide-

version depolarizer (called Gyro depolarizer) is proposed for a waveguide Gyro project, which 

means to make a low-cost waveguide Gyro system.  The Gyro depolarizer needs to be designed 

compatible with other components developed by other groups for a Navy program.  The 

components introduced in Chapters 4 and 5, the Bragg mirror and the polarization beamsplitter 

are used to compose this depolarizer, which are all in very compact form.  Its working principle 

and overall performance will be presented in this chapter.  

6.1 Depolarizer concept 

A depolarizer is a device that transforms either completely or partially polarized light to 

an unpolarized light.  To best describe the Gyro depolarizer approach in mathematics, it is better 

to start from Jones vectors and polarization ellipse together with Stokes vectors and Poincare 

sphere.  Stokes vectors describe incoherent light and its intensity (coherent light is a special case 

of incoherent light), while Jones vectors describe only coherent light and its fields.  

6.1.1  Jones vector and polarization ellipse for coherent light 

For a monochromatic time-harmonic plane wave traveling in the z direction (coherent 

light), its electric field can be decomposed into x and y components as (shown in Figure 6.1) 
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where and  are amplitude magnitudes in x and y directions, 1a 2a rkt •−= ωτ  is the time-

changing phase, and 1δ  and 2δ  are initial phase at x and y directions. 

The phase difference δ is defined as 12 δδδ −= .  

 

Figure 6.1 Polarization ellipse for coherent light 

After eliminating τ of Equation 6.1, the ellipse function is left as 
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In general the ellipse axes are not in the Ox and Oy directions.  Let Oξ (major) and Oη 

(minor) be a new set of axes along the ellipse axes and let ψ [0,π) be the angle between Ox and 

the major axis Oξ, then the components Eξ and Eη are related to Ex and Ey by 
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where ψ ( 0≤ψ<π ) is the orientation angle of the ellipse, which describes the separation between 

the Ox axis and the major axis Oξ, and 

 

δαψ sin2tan2tan =  , (6.4) 

 

where angle α  is defined as 
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where and ( ) are the half lengths along the elliptical axes Oξ and Oη.  The quantities of  

 and b are related with  and  by 

a b ba ≥

a 1a 2a
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The ellipticity χ (−π/4 ≤ χ ≤ π/4) is defined as 
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6.1.2  Stokes vectors and Poincare sphere for incoherent light 

The Poincare sphere shown in Figure 6.2 is a powerful tool to express all kinds of 

polarization states.  Going from the surface to the central point, the light goes from completely 

polarized to completely unpolarized.  The equator stands for all linearly polarized light, while the 

top and bottom polar points are right and left handed polarized states, respectively.  Between 

them, on the surface are all possible elliptically polarized states.  Any incoherent light can be 

expressed as Stoke vectors ( ) (G.G. Stokes introduced in 1852 the four 

vectors), and Stokes vectors can be added together for incoherent light, just as adding Jones 

vectors for coherent light.  

Tssss )( 3210

 

 

Figure 6.2 Poincare sphere for incoherent light 
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Using the same notation as in Figure 6.1, the Stokes parameters of a plane 

monochromatic wave (which is special coherent light) are 
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Only three of them are independent and they are related by the identity 
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The parameter s0 is proportional to the intensity of the wave.  Equation 6.9 is especially true for a 

polarized light while it is generally  for a partially polarized light.  The other 

parameters are related to the orientation angle ψ of the ellipse and the ellipticity χ as 
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The two stokes vectors s1 and s2 are related by the orientation angle ψ  as 

 

ψ2tan12 ss =  . (6.11) 
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6.1.3  Depolarizer concept expressed in Poincare sphere  

As stated above, Stokes vectors can be added together for incoherent light.  Thus adding 

two incoherent beams with equal intensity and orthogonal polarization together will result to be 

an unpolarized light [77].  To be general, the two parts are assumed to be both elliptically 

polarized, which can be expressed in the Poincare sphere as Sa and Sb vectors shown in Figure 6.3.  

When they meet incoherently, their Stokes vectors will add up and result to the central point of 

the sphere O, which stands for an unpolarized light.  This is the basic design principle for the 

Gyro depolarizer.   

 

Figure 6.3 Depolarizer concept expressed in Poincare sphere 

Degree of polarization (DoP) is used to describe the performance of a depolarizer.  The 

smaller the DOP is, the better a depolarizer is.  The Degree of Polarization (0≤DoP≤1) is defined 

with stokes parameters as 
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1=DoP stands for a fully polarized light, which is on the surface of the sphere.  

0=DoP stands for a fully unpolarized light, which means every component of s1, s2, and 

s3 would be 0.  That is the central point O at the Poincare sphere and its stokes vector is  
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An ideal depolarizer (with Muller matrix as in Equation 6.14) will change any incident 

polarization state to an unpolarized light, and such a depolarizer is an incident-state-independent 

depolarizer.  The Gyro depolarizer is, however, an incident-state-dependent depolarizer. 
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6.2 Depolarizer approach   

In connection with other Gyro components, the incoming light for the Gyro depolarizer is 

TM polarized light.  Based on the depolarizer concept explained above, the component layout of 

the Gyro depolarizer is illustrated in Figure 6.4.  The TM incidence is first transformed half of its 

intensity to its orthogonal polarization by the polarization rotator.  Then the TM and TE light gets 

split apart and combined back by two polarization beamsplitters after going through a path 

difference greater than the source’s coherent length.  When these two equal-intensity and 
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incoherent light combine again, their Stokes vectors get added to generate an unpolarized light. 

At real situations, it is impossible to have a mirror of 100% reflection and a polarization 

beamsplitter of 100% reflection for TM and 100% transmission for TE light.  However it should 

be pointed out that the critical point is at point E to have equal intensity of TE and TM light to 

have a better-performance depolarizer. 

 

 
Figure 6.4 Component layout of the Gyro depolarizer approach  

The Gyro depolarizer is required to work on both directions, where from left to right, the 

incidence is TM polarized light, and from right to left, the incidence is an unpolarized light 

coming from the fiber coils.  To check how this depolarizer works in both ways, a detailed 

mathematical derivation is given in the following.  

 

(1) When TM light goes from left to right (→) 

The incident TM polarized light at point A can be expressed as Jones and Stokes vectors 

as 
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Then the light comes through a polarization rotator which transforms the TM state to a state with 

equal-intensity TE and TM.  Generally this state is elliptically polarized (with arbitrary phase 

difference δ).  Specially it can be 45° linearly polarized light (with zero phase difference δ), or 

circularly polarized light (with phase difference δ= ±90°).  Assuming an arbitrary phase 

difference δ, the Jones and Stokes vectors at point B become 
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The polarization beamsplitter next reflects TM light while transmitting TE light, ideally at 100% 

for TM reflection and TE transmission.  Thus after this component, the states at point C and D 

will be orthogonally different as 
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In the TM path, two mirrors will reflect ideally 100% of TM light without varying its 

polarization.  A critical requirement is that the TM path should be long enough to make the path 

difference for TE and TM greater than the source’s coherence length.  Then TE and TM can 

incoherently meet at C’ and D’ points with a polarization state at E point as  
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The Stokes vectors for the output light at E point will be a completely depolarized light at ideal 

condition.  

 

(2) When unpolarized light goes from right to left (←) 

For application of the Gyro depolarizer at its opposite direction, the light source comes 

from the fiber coils, which will still be the depolarized light inputting to the coils.  The 

depolarizer function for this direction should be keeping the light depolarized.  The right-side 

polarization beamsplitter will spit the depolarized light to TE and TM polarized light; however, 

their phase difference is still arbitrary.  When they combine after the left-side polarization 

beamsplitter, it will recover back to an unpolarized light at point B.  The rotator would leave the 

polarization unchanged for an unpolarized light.  Therefore for an unpolarized incidence from 

right to left, the depolarizer keeps its unpolarized nature.  

Together this depolarizer approach is expected to work for both directions.  
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6.3 Waveguide implementation 

As stated before, the Gyro project is meant to make a waveguide-version Gyro system in 

a very robust and compact form.  To be compatible with other subsystems from other groups, the 

Gyro depolarizer uses the same waveguide material system.  The waveguide is given to be a ridge 

waveguide in 3D, and can be transformed to a 2D slab waveguide by using the Effective Index 

Method (EIM).  Detailed information about this transformation has been given in Section 2.3.3.  

The transformed 2D waveguide has width 3.5 µm to support its only fundamental mode at 

wavelength λ0 =1.33 µm, and refractive index 1.6302 and 1.6251 for TM light and 1.6464 and 

1.6414 for TE light.  

The main components as shown in Figure 6.4 are the polarization rotator, two identical 

polarization beamsplitters (PBS) and two identical mirrors.  This dissertation focuses on the 

design of the latter two components while another graduate student Jinbo Cai is working on the 

rotator design.  Detailed design and simulation for the waveguide mirrors and polarization 

beamsplitters have been given in Section 4.2 and Section 5.2 with air-trench multilayer structures.  

Table 6.1 lists their performance for both TM and TE light incidences.  

Table 6.1 Component performance of waveguide depolarizer 

 
TM (Reflection) 

 

 
TE (Transmission) 

 

Component 
 
by MOI 
 

 
by Power ratio 

 
by MOI 

 
by Power ratio 

 
Mirror 

 

 
98.8% 

 
99.0% 

 
   --- 

 
     --- 

 
PBS 

 

 
97.0% 

 
97.0% 

 
92.4% 

 
96.0% 
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Based on Table 6.1, the DoP value and power loss of the Gyro depolarizer can be 

approximately calculated.  First, the intensity at point C’ for TE and D’ for TM light can be 

calculated as  

 

4269.0924.0924.0
2
1

=××=′CI  , 

4592.097.0988.097.0
2
1 2 =×××=′DI  . 

 

Then the Stokes vectors at C’, D’ and E points will be the follows from Equation 6.19 

 

[ ]TCS 004269.04269.0 −=′  , 

[ ]TDS 004592.04592.0=′  , 

[ ]TDCE SSS 000323.08861.0=+= ′′  .  

 

The DoP value of the Gyro depolarizer can be calculated based on Equation 6.12 as 

 

dBDoP 4.140365.0
8861.0
0323.0

−===  . 

 

The power through-out of this depolarizer is 0.8861, which is an addition of  and .  This is 

equivalent to loss=0.525 dB.   

CI ′ DI ′

Both DoP and power loss exceeds the requirement for the Gyro depolarizer, which is 0.05 

(-13 dB) and 1 dB respectively.  However the above calculation is approximate.  In a real 

situation, the rotator will take some power budget; cross leaking of TM and TE light and 

misalignment of the whole system will degrade the depolarizer’s performance.  From Table 6.1 
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and above DoP and power loss calculation, it is the transmission of the polarization beamsplitter 

(92.4% by MOI) that is relatively poor, which degrades both the power through-out and the DoP.  

Originally using the numbers calculated by the power ratio method as in Table 6.1, the DoP and 

power through-out would be 0.000325 (-34.9 dB) and 0.9216 (0.353 dB), which is extremely 

good.  This mainly benefits from the balanced T and R for the PBS, 97%/96%.  Therefore 

improving the transmission of the polarization beamsplitters to get a balanced TE and TM will be 

one effective way to improve the depolarizer’s performance if needed.   

6.4 Experimental demonstration with bulk optical components 

To test the performance of the Gyro depolarizer before its waveguide components get 

fabricated, a benchtop experiment was setup with bulk optical elements with similar performance 

as its waveguide counterparts.  A schematic diagram of the setup is shown in Figure 6.5.  The 

polarizing beamsplitter (PBS) specifications for TE transmission, Tp, and TM reflection, Rs are 

Tp>96% and Rs>98%, respectively.  The mirror reflectance is R>99.8%.   

 

Figure 6.5 A benchtop arrangement for testing a bulk-version Gyro depolarizer  
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The optical source is a Superluminescent Diode (SLD) (model SLD-1310) from 

Fermionics Lasertech with an output power of 0.3 mW (-5.23 dBm).  Figure 6.6 shows the SLD’s 

power spectrum measured with an ANDO optical spectrum analyzer (AQ-6315E).  The center 

wavelength is approximately 1330 nm and the full width half maximum (FWHM) spectral width 

is 53.3nm and so its coherence length is 33 µm.  The path difference between the R and T paths 

in the depolarizer is about 10 cm, which is far greater than the coherence length of the source. 

 

Figure 6.6 SLD (SuperLuminescent Diode) scanned spectrum 

The depolarizer is mounted between the polarization state generator (PSG) and 

polarization state analyzer (PSA) of a polarimeter, which is an automatic dual-rotating-retarder 

Mueller Matrix Polarimeter (Axometrics) to measure polarization characteristics of the 

depolarizer.  Accurate measurements depend upon careful alignment of the R and T beam paths 

to ensure colinearity of the output beams from each path. 

To obtain equal-intensity TE and TM components at the output of the depolarizer, the 

input polarization state to the depolarizer from the source is set to 48° linear polarization to 
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compensate the small amount of unequal Tp and Rs (Tp<Rs).  The experiments have been arranged 

to test three configurations: (1) T path only, (2) R path only, and (3) Combined T and R paths.  

For the first two cases the DoP values are expected to be close to 1 while the DoP should be very 

close to zero for the third.   

Experimental results are listed in Table 6.2.  For the first two cases, the output DoP is 

very close to one, indicating that the light is highly polarized as expected.  For the third case, the 

DoP is 0.002 (-27.0 dB), which means the light has been well depolarized.  Note that the insertion 

loss for the depolarizer is quite small at 0.079 dB and that the insertion loss for the T only and R 

only paths is 3dB as one would expect.   

Table 6.2 Measurement results of the bulk-version Gyro depolarizer  

 
Configurations

 
 

 
Output 

DoP 

 
Out 

DoP (dB) 

 
Out 

T 

 
Insertion 
Loss (dB) 

 
T  only 

 

 
0.980 

 
-0.088 

 
0.497 

 
3.054 

 
R only 

 

 
0.993 

 
-0.03 

 
0.491 

 
3.076 

 
R&T 

 

 
0.002 

 
-27.0 

 
0.982 

 
0.079 

 

 

Based on the experimental measurements, the Mueller matrix for this bulk-version Gyro 

depolarizer (R&T configuration) is  

 

⎥
⎥
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⎤

⎢
⎢
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000004.0
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This is close to the ideal Mueller matrix for depolarizing a beam with equal TE and TM 

polarization components, which is given by 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0000
0010
0001

ideal
RT

M  . 

 

Obviously this Gyro depolarizer is an incident-dependent depolarizer, which is different 

from the Mueller matrix in Equation 6.14 (page 113). The upper left-hand element of the 

measured matrix, MRT, 0.982, is the total transmission for the depolarizer (T and R 

configuration), which is exactly the same as the Output T in Table 6.2 for the R&T configuration.  

The four numbers in the central 2×2 matrix  of M⎥⎦

⎤
⎢⎣

⎡
012.00114.0
104.0957.0

RT represent a 3° diattenuation 

for the T only path.  The other nonzero matrix elements are all very small and represent slight 

non-idealities of the depolarizer together with measurement noise.  

This experiment shows that the DoP can achieve up to 0.002 (-27 dB) with component 

properties as explained above, and the power through-out can be 0.982 (Loss= 0.079 dB).             

 
 

 

 

 



 

CHAPTER 7 

 

 CONCLUSION AND DISCUSSION 

This dissertation focuses on the design and simulation of compact waveguide 

components, bends and beamsplitters.  Single air-interface waveguide bends with different bend 

angles have been designed for several waveguide material systems.  In the meantime waveguide 

mode plane wave expansion theory has been explored in a panoramic view to explain the bend’s 

performance.  Among all the approaches presented in this dissertation, multi-layer bends and 

beamsplitters are originally proposed in this dissertation, which includes Bragg and Quasi-Bragg 

mirrors.  Besides component designs, as an application example, a waveguide depolarizer, has 

been designed using some of the above components.  Since waveguide bends and beamsplitters 

are very basic components in the integrated optics regime, a wide range of applications can be 

found, and some of them will be mentioned in the recommendation section in this chapter.   

7.1 Summary   

This dissertation belongs to practical application type.  It has lots of design and 

simulation figures for waveguide bends, beamsplitters.  However, the designs of these waveguide 

components are all based on theories, basically from physics optics, which involves reflection, 

transmission, interference, and polarization. 
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124 
The design of waveguide bends is based on reflection and transmission, and improving 

bend efficiency is actually equivalent to improving power reflectivity.  Balancing the ratio of 

reflection and transmission is the basis for designing an amplitude beamsplitter.  However, all 

these components are designed not for a simple single plane wave, but for some waveguide mode.  

The waveguide mode nature makes all these designs not so straightforward.   

The finite-size waveguide mode can be looked as an infinite range of plane-wave 

components from a waveguide mode plane wave expansion theory.  Therefore the design of 

bends and beamsplitters has to deal with all these plane-wave components that are propagating in 

slightly different directions and in slightly different mediums.  For some waveguide systems, part 

of the plane-wave components have incident angles greater than a critical angle, and this part will 

have total internal reflection (TIR) (100% reflection); the other part has different partial reflection 

for different plane-wave components.  This complicated situation is faced basically in Chapters 3 

and 4 for all the bend structures.  Chapter 3 proposes several approaches for improving bend 

efficiency based on understanding the angular spectrum in a panoramic view. Using smaller bend 

angles or smaller index-contrast waveguide material system can make more plane-wave 

components have TIR.  To evaluate the approaches proposed in Section 3.3 experimentally and 

explore the usage of polymer material, the bends designed in Section 3.6 have been fabricated on 

some polymer waveguide.  Extensive laboratory tests are at present under way. 

The approaches proposed in Chapter 4 are directly working on improving the reflectance 

for the part having partial reflection by using multilayer structures.  The multilayer structures 

utilize constructive interference to provide high power reflectivity.  The quarterwave-thickness 

periodic Bragg mirrors can work well as waveguide bends for a waveguide mode incidence 

having partial reflection approximation.  However for situations with a TIR plane-wave 

approximation but still having low overall bend efficiency due to partial reflection from a large 

part of the plane-wave components, there is no analytical guidance for the geometry of a Bragg 

mirror.  Improving the bend efficiency for this tough situation initially needs our powerful tool, 
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µGA-FDTD, to find an optimal geometry for a multi-layer structure.  The multilayer structures 

work on the full spectrum of the waveguide mode and it has to compensate the frustrated TIR 

(FTIR) due to the finite thickness of the first layer.   The optimized multilayer structures given by 

the µGA-FDTD are generally not rigorous periodic structures; however, it is found later that 

some periodic structure works well too for this tough situation.  This indicates that there is a wide 

latitude of geometries for the multi-layer structures that can have similar high performance.   The 

relatively flat spectrum response for the multilayer structures in Chapter 4 is the basic support for 

this indication.   However, direct support is a relationship of bend efficiency as a function of layer 

thickness change, which needs further more FDTD runs.    

This dissertation treats the optical electromagnetic fields in vector form. The light’s 

polarization state plays a big factor on the design of waveguide components and the depolarizer 

device.  For the bends and amplitude beamsplitters, separate designs and simulations have been 

done for each polarization, TE and TM.   One important phenomenon involved in bend designs is 

the Goos-Hanchen (G-H) shift related to the total internal reflection for a finite-size beam.  

Different polarizations produce different G-H shifts generally, the optimal bend geometry in 

Chapter 3 has given preference for TM light for each single bend case.  For the design of 

polarization beamsplitters, the Brewster phenomenon has been applied to combine with high-

reflectivity multilayer bends to split the TM and TE light.  Finally the design of the waveguide 

depolarizer heavily involves the light’s polarization state.  Jones ellipse and Poincare sphere, 

Jones vectors and Stokes vectors, are reviewed to help explain the depolarizer concept.  The 

waveguide depolarizer is one application example for our simple bend and beamsplitter 

structures. 

In the process of designing waveguide components, some related techniques have been 

reviewed and investigated in detail.  The mode overlap integral (MOI) method has been used to 

calculate the bend efficiency, and detailed derivation and explanation have been accomplished in 

this dissertation, which, however, is not available from any literature.  A graphic explanation 
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about how to transform from a 3D waveguide to a 2D slab waveguide using the effective index 

method (EIM) is given in Section 2.3.3.  Through so many designs in this dissertation, the 

application of FDTD and µGA-FDTD tools have been expanded considerably. 

Finally, besides all the computer work for the design and simulations, some laboratory 

experiments are performed to test the Gyro depolarizer’s performance.  This benchtop experiment 

has shown low degree of polarization (DoP) and low power loss can be achieved by using 

similar-performance bulk-version optical elements replacing their waveguide counterparts.  

7.2 Recommendations for future research 

Extensive designs of waveguide bends and beamsplitters have been accomplished in this 

dissertation.  One application example, a waveguide depolarizer has been designed using some of 

the waveguide components.  However, these components are such basic elements for the 

integrated optics regime, a wide latitude of applications should exist and are worth exploring.  

Besides, along designing these waveguide components, there are still some unsolved and 

interesting problems that are worth working on further.  This section will address these issues to 

conclude this dissertation. 

Direction change is a very basic need for a simple waveguide device or a complicated 

planar integrated circuit.  Approaches for high-efficiency waveguide bends and variable-ratio 

beamsplitters with different bend angles and for different material systems have been proposed in 

this dissertation.  Further applications for these components can be anywhere with a need of 

direction change.    

One special example can be a waveguide-version Fresnel’s rhomb [75], which is 

essentially a phase-shifter.  A phase shifter with linear phase shift of π/2 or π is practically the 

most important one because it allows any state of polarization be created out of the linear states of 

polarization [77].  One simple way to make these components in macro optics is using isotropic 
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materials in total reflection [75].  The use of vitreous reflections at the separation surface of two 

different isotopic media makes the most of the properties concerning the phase states of TE and 

TM polarization in total reflection.  Traditional Fresnel’s rhomb has a parallelogram 

configuration made of a block glass of n=1.51, and with a specific interior angle of 54°37′.  A 90° 

phase difference between TM and TE is attained by two total internal reflections (TIR) where 

each reflection generates a 45° phase difference.  Thus a linearly 45° polarized light incident from 

air can be transformed to a circularly polarized light by this Fresnel’ rhomb.   

A waveguide version of Fresnel’s rhomb can be easily realized on a waveguide having 

effective index of 1.51 and with two single air-interface bends of 54°37′.  However, a different 

waveguide material may be used, which may need a different bend angle.  Combining two of 

such Fresnel’s rhombs in row, a π phase-shifter can be easily composed.  These devices are in 

principle simple and have a non-negligible advantage----quasi-achromatism.  Nevertheless, to 

achieve some phase shift based on TIR phenomenon, it requires the incident light have a special 

polarization state, which sometimes can be hard to achieve for a waveguide-version phase-shifter.  

More examples can be as follows.  Traditional S bends can be redesigned to Z bends, 

which can be applied to the in and out arms of a n×n coupler.  Bends and beamsplitters can be 

easily combined to construct a ring, which can function as a resonator, or a Mach-Zehnder (MZ) 

interferometer.  Complicated devices, such as an arrayed waveguide grating (AWG) multiplexer, 

may be composed by these basic bends and beamsplitters.  Active devices, such as switches, may 

be made from some transformation of these components by adding some extra power source. 

During the development process of the waveguide components in this dissertation, there 

are interesting problems occurring along the way.  Some of them have been addressed in this 

dissertation while some of them need further future explorations. 

Regarding the waveguide bends, the main focus of this dissertation is on low-index and 

low-∆ waveguides; however, it is worthwhile to investigate how the multi-layer structures work 
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for other materials, such as high-index and high-∆ waveguides.  From the literature the bend 

efficiency for an actual fabricated high-index and high-∆ waveguide mirror bends is still not very 

high although analysis or numerical simulation expects super high numbers.  And it is also 

expected that the multiple-layer structures may work better for lower-∆ waveguides than 2.4% as 

used in this dissertation. 

As introduced in Section 2.2, three factors contribute to the bend loss: pure radiation loss, 

transition loss between the straight and the bent waveguide, and the phase constant of the 

propagating field.  Among them radiation loss is the most significant one, thus the approaches 

proposed in this dissertation mainly focus on decreasing radiation loss and improving power 

reflectivity.   However, the transition loss and phase change will become critical when further 

improvement is desired for an already high-efficiency bend.  Some phase compensators can be 

considered to compensate the small phase distortions from the reflections at the bend area for the 

waveguide mode by either inserting in the output waveguide path or along the reflecting surfaces.  

Curved reflecting surfaces have been applied in some switch structures [80] to improve the 

reflection effect for a waveguide mode, it will be worthy to explore further its application and 

combination with the bend structures presented in this dissertation.  

It is found in Section 4.1 that a mirror with a periodic structure (3-layer Bragg mirror) 

can work as well as an optimized structure can.   However, it needs more FDTD runs to prove 

directly that a wide latitude of geometries exist for that waveguide 90° bend.  This will need a 

relationship of bend efficiency as a function of layer thickness change. 

For the waveguide component application example, the integrated depolarizer, this 

dissertation has proposed the design concept and accomplished initial waveguide component 

designs.  However, as a small functional system, the depolarizer needs more simulations at the 

system level for its overall performance.  Further simulation works may include tolerance 

analysis for the system, alignment analysis, and 3D simulations.  All these simulations involve 
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big-size heavy computations, which will highly depend on cluster-based super computers.  

Besides that, further research can focus on improving the transmission for the polarization 

beamsplitter to improve the depolarizer’s performance. 
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APPENDIX A 

 

MATLAB M FILE FOR CALCULATING BEND EFFICIENCY BASED ON  

WAVEGUIDE MODE PLANE WAVE EXPANSION THEORY 

%The following program named Pwr_Ref_singangl.m calculates power reflectance based 
% on waveguide-mode plane-wave expansion theory, waveguide mode theory, and Fresnel' law 

% This program runs at Matlab 6.5 
% TE refers to Ey polarized out of plane (TM in this dissertation) 
%TM refers to Ex polarized in plane (TE in this dissertation) 
 
% Waveguide geometry 
wg_width =2; 
core_index = 1.5; 
clad_index1 =1.465; 
clad_index2 =1.465; 
lam= 1.55; 
 
incident_angle =45*pi/180;   %90° bend with 45° incident angle in unit of radians 
k0=2*pi/lam; 
m=0;                       % waveguide mode number 
dx = 0.019375;        %sampling size 
N=2000;              % total sampling numbers for the waveguide mode 
x0=dx*N/2;        %center of waveguide mode 
start_id = 1; 
 
DFT_size = N;        % DFT(Discrete Fourier transform) 
delta_kx = 2*pi/(DFT_size*dx);    % sampling size in kx domain 
kx =(-DFT_size/2:DFT_size/2-1)*delta_kx; 
 
% Solving Maxwell equations to get analytical mode by 
% loading function named TE_guide_mode() 
 
[n_eff_TE, x_pos, Ey_TE_mode, Hx_TE_mode] = TE_guide_mode(wg_width, 

core_index,clad_index1,clad_index2, lam,m,N,x0,dx, start_id); 
 
power_TE = -0.5*Ey_TE_mode.* Hx_TE_mode; %get a power distribution      
%plot(x_pos, Ey_TE_mode) 
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%plot(x_pos, power_TE) 
mode_total_power =sum(power_TE)*dx;    % get total power 
 
% Calculate equivalent medium n for each kx plane 
n_eff_TE_fft = sqrt(kx.*kx/k0/k0+ n_eff_TE*n_eff_TE);  
 
Kz= n_eff_TE*k0;   %Kz is the propagation constant 
theta_critical=asin(1/n_eff_TE); 
% Calculate incident angle for each plane wave component 
theta_kx=incident_angle+atan(kx/Kz); 
%Fresnel' equation 
Rs_fld_kx=(cos(theta_kx)-sqrt((1./n_eff_TE_fft).^2-(sin(theta_kx)).^2))./ ... 
    (cos(theta_kx)+sqrt((1./n_eff_TE_fft).^2-(sin(theta_kx)).^2)); 
% “space+…” is the row change sign 
 
% Calculate power reflectance by summation of each reflection  
%theta_kx_tran=theta_kx(theta_kx<theta_critical & theta_kx>=0); 
% Snell's Law for theta2_kx 
%theta2_kx=asin(n_eff_TE*sin(theta_kx_tran)); 
% Fresnel formula 
%t_kx=(2*n_eff_TE*cos(theta_kx_tran))./(n_eff_TE*cos(theta_kx_tran)+ … 
cos(theta2_kx)); 
%T_power_kx= (cos(theta2_kx)./(n_eff_TE*cos(theta_kx_tran))).*abs(t_kx).^2; 
%power_reflect_TE=1-sum(T_power_kx.*Ey_TE_mode_FFT_amp_2(theta_kx<  
%   theta_critical&theta_kx>=0))/sum(Ey_TE_mode_FFT_amp_2); 
 
% Get Ey(kx) by Fourier transform 
FFT_in =zeros(1, DFT_size); 
%FFT_in(DFT_size/2-N/2:DFT_size/2-N/2+N-1) = Ey_TE_mode; 
FFT_in = Ey_TE_mode; 
% Now do FFT on the mode profile 
Ey_TE_mode_FFT  = fft(FFT_in, DFT_size); 
Ey_TE_mode_FFT = fftshift(Ey_TE_mode_FFT); 
%Ey_TE_mode_FFT_amp = abs(Ey_TE_mode_FFT)/max(Ey_TE_mode_FFT); 
Ey_TE_mode_FFT_amp = abs(Ey_TE_mode_FFT); 
% get power distribution along kx 
Ey_TE_mode_FFT_amp_2= Ey_TE_mode_FFT_amp.* Ey_TE_mode_FFT_amp; 
 
% get reflected field Er(kx) 
%Real_Er_TE_kx=Ey_TE_mode_FFT_amp.*real(Rs_fld_kx); 
%Imag_Er_TE_kx=Ey_TE_mode_FFT_amp.*imag(Rs_fld_kx); 
Er_TE_kx=Ey_TE_mode_FFT_amp.*Rs_fld_kx;       % Er(kx) is complex 
% get phase of Er(kx) 
Er_TE_kx_phs =atan2(imag(Er_TE_kx), real(Er_TE_kx)); 
% get Er(x) by inverse FFT 
Er_TE_x = fftshift(ifft(Er_TE_kx)); 
% get phase of Er(x) by processing the Pi/2Pi phase jump at every other sampling point 
Er_TE_x_phs =atan2(imag(Er_TE_x), real(Er_TE_x)); 
E_phs = Er_TE_x_phs; 
%plot(x_pos,E_phs) 
%E_phs(2:2:length(E_phs)) =pi+E_phs(2:2:length(E_phs)); 
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E_phs(2:2:315) =pi+E_phs(2:2:315); 
%plot(x_pos,E_phs) 
E_phs(316:2:2000) = E_phs(316:2:2000)-pi; 
%plot(x_pos,E_phs) 
E_phs(1743:2:2000) =E_phs(1743:2:2000)-2*pi; 
%plot(x_pos,E_phs) 
% equivalent process of the phase 
%E_phs(2:2:length(E_phs)) =pi+E_phs(2:2:length(E_phs)); 
%E_phs(316:2:1741) = E_phs(316:2:1741)-2*pi; 
%plot(x_pos,E_phs) 
%E_phs(1742:2000) =E_phs(1742:2000)-2*pi; 
%plot(x_pos,E_phs) 
%plot(x_pos,Er_TE_x_phs) 
%plot(x_pos,E_phs) 
%plot(x_pos(x_pos>9.375 & x_pos<=29.375),E_phs(x_pos>9.375 & x_pos<=29.375)) 
%Er_TE_x_phs=unwrap(Er_TE_x_phs,0.9*pi); 
%Er_TE_x = circshift(Er_TE_x, 45); 
%Er_TE_x=Er_TE_x(x_pos-0.7); 
 
% get best matched Er(x) with E0(x) by Goos-Hachen shift some amount 
% to maximize power reflectance by Mode integral method (MOI) 
shift_size = 41;  % amount of G-H shift in # of sampling points 
Er_TE_x_shifted = zeros(1,DFT_size); 
Er_TE_x_shifted = [Er_TE_x(shift_size+1:DFT_size), Er_TE_x(1:shift_size)]; 
%plot(x_pos,abs(Er_TE_x_shifted)) 
 
% Calculate power reflectance after G-H shift by MOI 
R_TE_MOI=((sum(abs(real(Er_TE_x_shifted)).*Ey_TE_mode)).^2 +(sum (abs(imag … 
(Er_TE_x_shifted)).*Ey_TE_mode)).^2)/(sum(Ey_TE_mode.*Ey_TE_mode))^2; 
 
% TM case 
%k0=2*pi/lam; 
%m=0; 
%dx = 0.019375; 
%N=2001; 
%x0=dx*N/2; 
%start_id = 1; 
 
%DFT_size = 2^14+1; 
%delta_kx = 2*pi/(DFT_size*dx); 
%kx =(-DFT_size/2:DFT_size/2-1)*delta_kx; 
 
[n_eff_TM, x_pos, Ey_TM_mode, Hx_TM_mode] = TM_guide_mode (wg_width, 

core_index, clad_index1,clad_index2, lam,m,N,x0,dx, start_id); 
power_TM = -0.5*Ey_TM_mode.* Hx_TM_mode;       
%figure(2) 
%plot(x_pos, Ey_TM_mode) 
mode_total_power_TM =sum(power_TM)*dx; 
%plot(x_pos, power_TM) 
%n_eff_TE = 1.5; 
Kz_TM= n_eff_TM*k0;   
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theta_critical_TM=asin(1/n_eff_TM); 
 
% Calculate incident angle for each palne wave component 
theta_kx_TM=incident_angle+atan(kx/Kz_TM); 
n_eff_TM_fft= sqrt(kx.*kx/k0/k0+ n_eff_TM*n_eff_TM); 
 
% Fresnel's equation for TM relection 
Rp_fld_kx=(cos(theta_kx_TM)-n_eff_TM_fft.*sqrt(1-(n_eff_TM_fft).^2.* 

(sin(theta_kx_TM)).^2))./(cos(theta_kx_TM)+n_eff_TM_fft.*sqrt(1-
(n_eff_TM_fft).^2.*(sin(theta_kx_TM)).^2)); 

 
%calculate power reflectance by summation 
%theta_kx_tran_TM=theta_kx_TM(theta_kx_TM<theta_critical_TM&  
%  theta_kx_TM>=0); 
% Snell's Law for theta2_kx 
%theta2_kx_TM=asin(n_eff_TM*sin(theta_kx_tran_TM)); 
% Fresnel formula 
%t_kx_TM=(2*n_eff_TM*cos(theta_kx_tran_TM))./(cos(theta_kx_tran_TM)+  
%   n_eff_TM*cos(theta2_kx_TM)); 
%T_power_kx_TM= 

%(cos(theta2_kx_TM)./(n_eff_TM*cos(theta_kx_tran_TM))).*abs(t_kx_TM).^2; 
%power_reflect_TM=1sum(T_power_kx_TM.*Ey_TM_mode_FFT_amp_2 

%(theta_kx_TM<theta_critical_TM & theta_kx_TM>=0))/sum(Ey_TM_mode_FFT_amp_2); 
 
% get Ey(kx) by FFT 
FFT_in =zeros(1, DFT_size); 
%FFT_in_TM(DFT_size/2-N/2:DFT_size/2-N/2+N-1) = Ey_TM_mode; 
FFT_in=Ey_TM_mode; 
 
% Now do FFT on the mode profile 
Ey_TM_mode_FFT  = fft(FFT_in, DFT_size); 
Ey_TM_mode_FFT = fftshift(Ey_TM_mode_FFT); 
%Ey_TM_mode_FFT_amp = abs(Ey_TM_mode_FFT)/max(Ey_TM_mode_FFT); 
Ey_TM_mode_FFT_amp = abs(Ey_TM_mode_FFT); 
Ey_TM_mode_FFT_amp_2= Ey_TM_mode_FFT_amp.* Ey_TM_mode_FFT_amp; 
%Real_Er_kx=Ey_TM_mode_FFT_amp.*real() 
 
%get reflected Er(kx)and Er(x) 
Er_TM_kx=Ey_TM_mode_FFT_amp.*Rp_fld_kx; 
Er_TM_kx_phs =atan2(imag(Er_TM_kx), real(Er_TM_kx)); 
Er_TM_x = fftshift(ifft(Er_TM_kx)); 
Er_TM_x_phs =atan2(imag(Er_TM_x), real(Er_TM_x)); 
Em_phs = Er_TE_x_phs; 
%plot(x_pos,E_phs) 
%Em_phs(2:2:length(Em_phs)) =pi+Em_phs(2:2:length(Em_phs)); 
Em_phs(2:2:315) =pi+Em_phs(2:2:315); 
%plot(x_pos,E_phs) 
Em_phs(316:2:2000) = Em_phs(316:2:2000)-pi; 
%plot(x_pos,E_phs) 
Em_phs(1743:2:2000) =Em_phs(1743:2:2000)-2*pi; 
 

 



135 
%Er_TM_x_phs=unwrap(Er_TM_x_phs); 
%Er_TE_x = circshift(Er_TE_x, 45); 
%Er_TE_x=Er_TE_x(x_pos-0.7); 
%hold on 
%plot(x_pos_shift,abs(Er_TE_x)) 
Er_TM_x_shifted = zeros(1, DFT_size); 
shift_size = 41; 
Er_TM_x_shifted = [Er_TM_x(shift_size+1:DFT_size), Er_TM_x(1:shift_size)]; 
%plot(x_pos,abs(Er_TM_x_shifted)) 
%calculate power reflectance by MOI 
R_TM_MOI=((sum(abs(real(Er_TM_x_shifted)).*Ey_TM_mode)).^2+(sum(abs(imag 

(Er_TM_x_shifted)).*Ey_TM_mode)).^2)/(sum(Ey_TM_mode.*Ey_TM_mode))^2; 
 
%output figures of Ey(kx) and abs(Er(kx)), Ey(x) and abs(Er(x)) for TE  light 
%plot(x_pos, Ey_TE_mode) 
plot(kx(kx<5 & kx>-5), Ey_TE_mode_FFT_amp(kx<5 & kx>-5) … 

/max(Ey_TE_mode_FFT_amp (kx<5 & kx>-5))) 
hold on 
plot(kx(kx<5 & kx>-5),abs(Er_TE_kx(kx<5 & kx>-5))/max(abs(Er_TE_kx(kx<5 & kx>-

5)))) 
%hold on 
figure (2) 
plot(x_pos, Ey_TE_mode) 
hold on 
plot(x_pos,abs(Er_TE_x)) 
figure (3) 
% output phase change of Er(kx) or Er(x) for TE light 
plot(kx(kx<5 & kx>-5), Er_TE_kx_phs((kx<5 & kx>-5))) 
figure (4) 
plot(x_pos(x_pos>9.375 & x_pos<=29.375),E_phs(x_pos>9.375 & x_pos<=29.375)) 
% the center of the 40 µm-width mode is in 19.375 µm 
 
%output reflectance by MOI for TE and TM 
R_TE_MOI 
R_TM_MOI 
 
%*******End of main program named Pwr_Ref_singangl.m******** 
 
 
% Function TE_guide_mode() loaded in main  
 
function [n_eff_TE, x_pos, Ey_TE_mode, Hx_TE_mode] = TE_guide_mode( 

guideWidth,guideIndex, substrIndex,supstrIndex, waveLength,m,N,x0,deltaX, start_id) 
 
%  real(8):: V % waveguide normalized frequency 
%  real(8):: B % waveguide normalized porpogation constant 
%  integer,intent(in):: m  % mode subscript 
%  real(8),intent(in):: guideWidth % diameter of waveguide core in unit of meter 
%  real(8),intent(in):: waveLength % wavelength in free space in unit of meter 

  
%  real(8),intent(in):: guideIndex % refractive index of waveguide core  
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%  real(8),intent(in):: substrIndex % refractive index of lower cladding. 
%  real(8),intent(in):: supstrIndex % refractive index of upper cladding. 
%  integer, intent(in) :: start_id 
%  real(8):: cladIndex_biger, cladIndex_smler 
%  real(8):: waveNum  % wavenumber in free space 
%  real(8):: belta   % waveguide propogation constant 
%  
%  integer, intent(in):: N % size of corrosponding dimension of FDTD Ey array.  
% (Ez for Taflove's convention) 
%  real(8), intent(in):: x0 % waveguide central line position in FDTD grid,  
% measured from the center of FDTD grid. 
%  real(8), intent(in):: deltaX % size of corrosponding dimension of FDTD  
% Yee Cell.  
%  real(8), allocatable,dimension(:):: x_pos 
%  real(8) kapa, sigma, ksi, init_phi 
%  integer i 
%  real(8) epsi_0, mu_0, c0 
 
 
 mu_0 = 1.2566e-6; 
 epsi_0 = 8.8542e-12; 
 c0 = 1.0/sqrt(mu_0 * epsi_0); 
 
 
 waveNum = 2.0 * pi / waveLength; 
 cladIndex_biger = max(substrIndex,supstrIndex); 
 cladIndex_smler = min(substrIndex,supstrIndex); 
 
% Calculate Normalized freq. 
 
 V = sqrt((waveNum * guideWidth / 2.0)^ 2 * (guideIndex* guideIndex - 

cladIndex_biger * cladIndex_biger)); 
 B=EIGEN_TE(V,guideIndex,supstrIndex,substrIndex,m); 
 
% Calculate porpogation constant 
 belta = waveNum * sqrt(B * (guideIndex *guideIndex - cladIndex_biger * 

cladIndex_biger) + cladIndex_biger ... 
        *cladIndex_biger); 
 
 n_eff_TE = belta / waveNum; 
 kapa = sqrt((waveNum * guideIndex)*(waveNum * guideIndex) - belta *belta); 
 sigma = sqrt(belta *belta - (waveNum * supstrIndex)*(waveNum * 

supstrIndex)); 
 ksi = sqrt(belta *belta - (waveNum * substrIndex)*(waveNum * substrIndex)); 
 
    x_pos = zeros(1, N); 
    x_pos = (start_id-1:N+start_id-2).*deltaX; 
% x_pos = (/(dble(i - 1) * deltaX, i = start_id,N+start_id-1)/) 
% x_pos = (/((i - 1) * deltaX - (N - 1) * deltaX / 2.0, i = 1,N)/) 
 
% init_phi = m * pi / 2 
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 init_phi = get_phi_TE(kapa,sigma,ksi,m); 
 
    Ey_TE_mode = zeros(1,N); 
    for i = 1:N 
     Ey_TE_mode(i) = find_Ey_TE(init_phi,kapa,sigma,ksi,guideWidth / 2.0, 

x_pos(i) - x0); 
    end 
     
    Hx_TE_mode = zeros(1, N); 
 Hx_TE_mode = -belta / (2.0 * pi * c0 / waveLength * mu_0) .* Ey_TE_mode; 
 
% *******End of function TE_guide_mode() ******* 
 
 
% Function find_Ey_TE() loaded in function TE_guide_mode() 
 
function the_value=find_Ey_TE(init_phi,kapa,sigma,ksi,a,x)  
 % init_phi, kapa, sigma, ksi,a, x 
 % the_value 
 
 if (x > a) 
  the_value = cos(kapa * a - init_phi) * exp(-sigma * (x - a)); 
    elseif((x < -a))  
  the_value = cos(kapa * a + init_phi) * exp(ksi * (x + a)); 
    else 
     the_value = cos(kapa * x - init_phi);  
 end 
 
 
 
% *******End of function find_Ey_TE() ******* 
 
% Function get_phi_TE() loaded in function TE_guide_mode() 
 
function the_value=get_phi_TE(kapa,sigma,ksi,m) 
 % TE mode means Ey, Hx and Hz. Z is the propogation direction, Y is the 
 % uniform direction, and X is the index varying direction. 
 % kapa %wavenumbers along x-axis in core. 
 % sigma  %wavenumbers along x-axis in upper clading 
 % ksi  %wavenumbers along x-axis in lower clading 
 % m  %mode subscript 
 % the_value  % the phi value 
 
 the_value = m * pi / 2.0 + atan(ksi / kapa) / 2.0 - atan(sigma / kapa) / 2.0; 
 
% *******End of function get_phi_TE() ********** 
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% Function TM_guide_mode() loaded in main  
 
function [n_eff_TM, x_pos, Hy_TM_mode, Ex_TM_mode] = 

TM_guide_mode(guideWidth,guideIndex, substrIndex,supstrIndex, waveLength, ... 
            m,N,x0,deltaX, start_id) 
 
%  real(8):: V % waveguide normalized frequency 
%  real(8):: B % waveguide normalized porpogation constant 
%  integer,intent(in):: m  % mode subscript 
%  real(8),intent(in):: guideWidth % diameter of waveguide core in unit of meter 
%  real(8),intent(in):: waveLength % wavelength in free space in unit of meter 

  
%  real(8),intent(in):: guideIndex % refractive index of waveguide core  
%  real(8),intent(in):: substrIndex % refractive index of lower cladding. 
%  real(8),intent(in):: supstrIndex % refr*active index of upper cladding. 
%  integer, intent(in) :: start_id 
%  real(8):: cladIndex_biger, cladIndex_smler 
%  real(8):: waveNum  % wavenumber in free space 
%  real(8):: belta   % waveguide propogation constant 
%  integer, intent(in):: N % size of corrosponding dimension of FDTD Ey array. 
% (Ez for Taflove's convention) 
%  real(8), intent(in):: x0 % waveguide central line position in FDTD grid,  
% measured from  the center of FDTD grid. 
%  real(8), intent(in):: deltaX % size of corrosponding dimension of FDTD  
% Yee Cell.  
%  real(8), allocatable,dimension(:):: x_pos 
%  real(8) kapa, sigma, ksi, init_phi 
%  integer i 
%  real(8) epsi_0, mu_0, c0 
 
             mu_0 = 1.2566e-6; 
 epsi_0 = 8.8542e-12; 
 c0 = 1.0/sqrt(mu_0 * epsi_0); 
 
 
 waveNum = 2.0 * pi / waveLength;  
 cladIndex_biger = max(substrIndex,supstrIndex); 
 cladIndex_smler = min(substrIndex,supstrIndex); 
 
% Calculate Normalized freq. 
 
 V = sqrt((waveNum * guideWidth / 2.0) ^ 2 * (guideIndex *guideIndex - 

cladIndex_biger *cladIndex_biger)); 
 B = EIGEN_TM(V,guideIndex,supstrIndex,substrIndex,m); 
 
   % Calculate porpogation constant 
 belta = waveNum * sqrt(B * (guideIndex *guideIndex - cladIndex_biger 

*cladIndex_biger) + ... 
        cladIndex_biger *cladIndex_biger); 
 
 n_eff_TM = belta / waveNum; 
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 kapa = sqrt((waveNum * guideIndex)*(waveNum * guideIndex) - belta *belta);  
 sigma = sqrt(belta *belta - (waveNum * supstrIndex) *(waveNum * 

supstrIndex)); 
 ksi = sqrt(belta *belta - (waveNum * substrIndex) *(waveNum * substrIndex)); 
            x_pos = (start_id-1:N+start_id-2).*deltaX; 
% x_pos = (/((i - 0.5) * deltaX - N * deltaX / 2.0, i = 1,N)/) 
 
% init_phi = m * pi / 2 
 init_phi = get_phi_TM(kapa,sigma,ksi,m,guideIndex,supstrIndex,substrIndex); 
 
    Hy_TM_mode = zeros(1, N); 
    for i = 1:N 
     Hy_TM_mode(i) = find_Hy_TM(init_phi,kapa,sigma,ksi,guideWidth / 2.0, 

x_pos(i) - x0); 
    end 
     
    Ex_TM_mode = zeros(1, N); 
 
 
    Ex_TM_mode(x_pos - x0 >= -guideWidth / 2.0 & x_pos - x0 <= guideWidth / 2.0) = 

... belta / (2.0 * pi * c0 / waveLength * epsi_0 * guideIndex *guideIndex) .* Hy_TM_mode( ... 
        x_pos - x0 >= -guideWidth / 2.0 & x_pos - x0 <= guideWidth / 2.0); 
     
 Ex_TM_mode(x_pos - x0 < -guideWidth / 2.0) = belta / (2.0 * pi * c0 / 

waveLength * epsi_0 * substrIndex ^ 2) ... 
        .* Hy_TM_mode(x_pos - x0 < -guideWidth / 2.0); 
 
 Ex_TM_mode(x_pos - x0 > guideWidth / 2.0) = belta / (2.0 * pi * c0 / 

waveLength * epsi_0 * supstrIndex^ 2) ... 
        .* Hy_TM_mode(x_pos - x0 > guideWidth / 2.0); 
     
 
% *******End of function TM_guide_mode() ******* 
 
 
% Function find_Hy_TM() loaded in function TM_guide_mode() 
 
 
function the_value = find_Hy_TM(init_phi,kapa,sigma,ksi,a,x) 
 %init_phi, kapa, sigma, ksi,a, x 
 
 if (x > a) 
          the_value = cos(kapa * a - init_phi) * exp(-sigma * (x - a)); 
            elseif ((x < -a))  
          the_value = cos(kapa * a + init_phi) * exp(ksi * (x + a)); 
            else 
        the_value = cos(kapa * x - init_phi);  
         end 
 
 
% *******End of function find_Hy_TM() ********** 
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% Function get_phi_TM() loaded in function TM_guide_mode() 
 
function the_value=get_phi_TM(kapa,sigma,ksi,m,ng,ng_up,ng_low) 
 % TE mode means Ey, Hx and Hz. Z is the propogation direction, Y is the 
 % uniform direction, and X is the index varying direction. 
 % kapa %wavenumbers along x-axis in core. 
 % sigma  %wavenumbers along x-axis in upper clading 
 % ksi  %wavenumbers along x-axis in lower clading 
 % m  %mode subscript 
 % ng % refractive index of waveguide core 
 % ng_up % refractive index of upper clading 
 % ng_low % refractive index of lower clading 
 % the_value  % the phi value 
 
 the_value = m * pi / 2.0 + atan((ng / ng_low) *(ng / ng_low) * ksi / kapa) / … 
 2.0 - atan((ng / ng_up) *(ng / ng_up) * sigma / kapa) / 2.0; 
 
 
 
% *******End of function get_phi_TM() ********* 
 
 
 

 



 

APPENDIX B 

 

IGOR PROCEDURE FILE FOR CALCULATING BEND EFFICIENCY  

BASED ON FDTD NUMERICAL SIMULATIONS 

// Before running this procedure, the data file of amplitude and phase of E field needs to 
//be loaded into Igor as waves (2D data). 

// This function named Bd_slant.ipf runs under the command window of Igor 
//environment, and this procedure works on Igor Pro 4.09A. 

//This Igore procedure process data from FDTD simulations to calculate bend efficiency 
//using MOI method for slanted bend cases and waveguide n=1.5, 1.465. 
 
Function Bd_slant(w_E,w_phs,wm_E,wm_phs,Cord_X,Cord_z,theta) 
variable Cord_X,Cord_z,theta 
wave w_E,w_phs,wm_E,wm_phs 
wave Emd60,Emd60m   // variables and waves in the function must be first defined 
variable BE_E,BE_M,num_points, xValue, yValue 
 
// wavelength λ=1.55 µm, FDTD grid size λ/60. Actual Yee cell is about 0.0258 µm. 
// Power monitor width is 10 µm, corresponding to 388 cells. 
 
make/O/N=388  out_e,out_phs,out_ae1,out_ae2,out_aa 
make/O/N=388  outm_e,outm_phs,outm_ae1,outm_ae2,outm_aa 
 
// Using interpolation method to get best matched E field and phase 
for (num_points = 0; num_points<388; num_points+=1) 
 xValue = (Cord_x)*0.0258 -(num_points-

388/2)*0.0258*cos(theta*3.1415926/180) 
 yValue = ( cord_z)*0.0258 + (num_points-

388/2)*0.0258*sin(theta*3.1415926/180) 
 //Out_p=w_p[Cord_x-72+round(p*0.4586)][cord_z-139+round(p*0.8886)] 
 //Out_p[num_points] =  Interp2D (w_p, xValue, yValue)  
 out_e[num_points] = Interp2D (w_E, xValue, yValue) 
 out_phs[num_points] = Interp2D (w_phs, xValue, yValue) 
 outm_e[num_points] = Interp2D (wm_E, xValue, yValue) 
 outm_phs[num_points] = Interp2D (wm_phs, xValue, yValue) 
endfor 
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//Out_e=w_E[Cord_x][155+p] 
//out_phs=w_phs[Cord_x][155+p] 
//phs_avg=w_phs[cord_x][217] 
//out_phs=out_phs-phs_avg 
 
out_ae1=out_e*cos(out_phs)*Emd60 
out_ae2=out_e*sin(out_phs)*Emd60 
//out_ae_nop=out_e*outmd_r80 
//out_ee=out_e^2 
out_aa=Emd60^2 
//out_aa2=outmd_r80^2 
//Eff_p=sum(out_p,0,517)/sum(inp_r80,0,517) 
 
 
//Outm_e=wm_E[Cord_x][155+p] 
//outm_phs=wm_phs[Cord_x][155+p] 
 
outm_ae1=outm_e*cos(outm_phs)*Emd60m 
outm_ae2=outm_e*sin(outm_phs)*Emd60m 
outm_aa=Emd60m^2 
 
BE_E=((sum(out_ae1,0,388))^2+(sum(out_ae2,0,388))^2)/(sum(out_aa,0,388))^2 
BE_M=((sum(outm_ae1,0,388))^2+(sum(outm_ae2,0,388))^2)/(sum(outm_aa,0,388))^2 
//Eff_E_nop=(sum(out_ae_nop,0,517))^2/sum(out_ee,0,517)/sum(out_aa,0,517) 
//Eff_all=Eff_p*Eff_E 
//Eff_all2=((sum(out_ae1,0,517))^2+(sum(out_ae2,0,517))^2)/sum(out_aa,0,517)/sum(ou

t_aa2,0,517) 
//Eff_all_nop=Eff_p*Eff_E_nop 
 
print BE_E,BE_M 
 
end 
 
 
//**************End of Igor procedure*********************// 
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