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Forward

This book is intended to provide useful resource for information about Fourier Analysis and
related transforms. While many excellent texts have been written on the subject, this book
is intended to be a working reference designed especially for Electrical Engineers using
common notation and definitions in the field. Key concepts and applications of Fourier
Analysis are outlined with the focus on the approaches encountered by Electrical Engineers
in practice. This is followed by comprehensive transform and auxilary reference tables. For
detailed derivations and explanations the reader is referred to books, for example, those by
Bracewell [4], Elliott and Rao [8], Oppenheim and Schafer [18], Papoulis [19], Poularikas
[20] and Ulaby and Yagle [24], among others.

The outline of this book is as follows: First, signal fundamentals, notational conven-
tions, the definition of the Fourier Transform, are given in Chapter 1. In Chapters 2 and
3, the Fourier transform family and its relations are derived from each other from different
view points. Presenting multiple viewpoints can significantly enhance a student’s under-
standing of the Fourier Analysis: In Chapter 2, the Fourier Series is introduced as a special
case of an orthogonal transform. In Chapter 3 the Fourier transform is derived from the
Fourier Series and the Fourier Series is derived from the Fourier Transform. The Fourier
Transform as the limit of finite interval integral is also explored. The Discrete Time Fourier
transform and the Discrete Fourier Transform are discussed in Chapter 4. In Chapter 5, the
relationship of the Fourier transform and the LaPlace and Z transforms is explored. Re-
lated transforms are introduced in Chapter 6 and applications of Fourier Analysis common
to electrical engineering are discussed in Chapter 7. Chapter 8 consists of comprehensive
transform tables for the Fourier transform, Fourier series, and related transforms. Chapter
9 contains useful tables of trigonmetric identities, series, physical constants, unit conver-
sions, etc. An extensive index is provided.

This reference is not complete, and probably never can be! However, it is released with
the hope that it can be a useful aid to students in Electrical Engineering. Your comments and
suggestions are solicted.Please send your suggestions to the author at long@ee.byu.edu.
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Notation and Glossary

Note: in general,
x(t) denotes a continuous time function (signal)
x[n] denotes a discrete sequence (signal)
F{·} denotes an operation by F
x ∗ y denote convolution of the signals x and y

δ[n]: Discrete delta function.

δ(t): Dirac delta function.

δ′(t): Derivative of the Dirac delta function (doublet).

E{·}: Statistical expectation.

Even{·}: Even part of a function.

f : Frequency (Hz or 1/s).

f(t), g(t): General signal functions.

F (ω): Fourier transform of f(t).

F (s): Laplace transform of f(t).

F (z): Z transform of f(t).

F{·}: Forward Fourier tranform.

F−1{·}: Inverse Fourier tranform.

Γ(x): Gamma function.

H{·}: Hilbert tranform.

Hp{·}: Hartley tranform.

Hn{·}: Hankel tranform.

Im{·}: Imaginary part.

I: Continuous signal definition interval.

Id: Discrete signal definition interval.

j: The imaginary number j =
√
−1.

k, n, l, m: Sample index numbers (unitless).

KF : Forward Fourier transform scale factor.
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KI : Inverse Fourier transform scale factor.

L{·}: Forward bilateral (two-sided) Laplace tranform.

L−1{·}: Inverse bilateral (two-sided) Laplace tranform.

L+{·}: Forward unilateral (one-sided) zero-positive Laplace tranform.

L−{·}: Forward unilateral (one-sided) zero-negative Laplace tranform.

L−1
+ {·}: Forward unilateral (one-sided) zero-positive Laplace tranform.

L−1
− {·}: Forward unilateral (one-sided) zero-negative Laplace tranform.

L∗{·}: Forward discrete Laplace transform (starred Laplace transform.

L−1
∗ {·}: Inverse discrete Laplace transform (inverse starred Laplace trans-

form.

N : Discrete signal period (unitless).

Odd{·}: Odd part of a function.

Π(t): Gate or rect function.

ω: Angular radian frequency ω = 2πf (radians/s).

ω0: Fundamental frequency (radians/s).

Ω: Angular frequency (radians/s) (associated with discrete signals).

Re{·}: Real part.

s: Laplace transform variable s = σ + jω.

ST (t): Sampling or picket fence function.

sgn(t): Signum (or, sign) function.

σ: real part of the Laplace transform variable s = σ + jω.∐
(t): “Shah” or sampling function.

t: Time (often in s).

T : Sample interval or Period (in s).

T0: Period (often in s).

Tn: nth order Chebychev polynomial of the first kind.

τ : Time (often in s).

u(t): Unit step function.

u[n]: Discrete unit step function.

Un: nth order Chebychev polynomial of the second kind.

Λ(t): Triangle function.

λ: spatial radian frequency (2π/distance).

z: Z transform variable z = rejω.

ζ(x): Riemann’s zeta function.
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Z{·}: Forward Z tranform.

Z−1{·}: Inverse Z tranform.

〈·〉: Statistical average.

A∗: Complex conjugate of A.

x(t) ∗ y(t): Convolution of x(t) and y(t).
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Chapter 1

Fundamentals and Introduction to the
Fourier Transform

1.1 Continuous and Discrete Signals
Following standard conventions, a continuous signal x(t) can be viewed as a function of a
continuous parameter t over a specified interval t ∈ I = [a, b] (generally I = [−∞,∞]
unless otherwise specified). Note that x(t) is allowed to have discontinuities or be infinite at
some values of t. Generally, t is time but it may also be distance or some other parameter.
A two-dimensional continuous signal can be written as x(t1, t2). x(t) and x(t1, t2) are
generally real, but may be complex. If x(t) is a complex signal then we may write,

x(t) = xr(t) + jxi(t)

where xr(t) and xi(t) are strictly real and j =
√
−1 is the imaginary number1.

A discrete-time signal or discrete signal x[n] can be viewed as a function of the discrete
parameter n where n is a member of the set of integers, i.e., n ∈ Id = {n}. The square
brackets holding the argument distinquish discrete functions from continuous functions.
Generally Id is the set of natural numbers (the set of all integers both positive and nega-
tive, including zero). Discrete signals are frequently called sequences. A two-dimensional
discrete signal (sequence) is written as, x[n1, n2]. As in continuous signals, discrete signals
may be real or complex. Two commonly used relationships between a discrete x[n] and a
continuous signal x(t) are,

x[n] =
1

T
x(nT )

x[n] = x(nT )

where T is the sample period. For the discrete real signal to exactly represent the continu-
ous signal, the sample rate 1/T must be twice the highest frequency present in x(t). This is
the Nyquist frequency. The Nyquist frequency for a complex signal is highest frequency
present. Sampling, or the conversion of a continuous signal to a discrete signal, is discussed
further in Chapter 8.

1Electrical Engineers generally prefer to use j rather than i for the imaginary number.

1



2 CHAPTER 1. FUNDAMENTALS AND INTRODUCTION

1.2 Even and Odd Signals
Note that a continuous signal x(t) can be written in terms of its even and odd components
as,

x(t) = xe(t) + xo(t)

where

xe(t) =
1

2
[x(t) + x(−t)] = Re{x(t)}

xo(t) =
1

2
[x(t)− x(−t)] = Im{x(t)}.

Similarily, a discrete signal x[n] can be written in terms of its even and odd components
as,

x[n] = xe[n] + xo[n]

where

xe[n] =
1

2
(x[n] + x[−n]) = Re{x[t]}

xo[n] =
1

2
(x[n]− x[−n]) = Im{x[t]}.

A complex signal is termed Hermitian if the real part is even and the imaginary part is odd.
It is anti-Hermitian if the real part is odd and the imaginary part is odd.

1.3 Shifting and Scaling
A signal x(t) is time shifted by a value of a by writing x(t − a). If a is positive, the time
shift can be viewed as a delay, i.e., x(t− a) is to the right of x(t). For negative a the time
is advanced so that x(t− a) is left of x(t).

A time scaled signal is written as x(at). For a > 1, x(at) is compress relative to x(t)
while for 0 < a < 1, x(t) is expanded or lengthened relative to x(t). For a negative, x(at)
is time-reversed of flipped about the origin.

1.4 Causality and Stability
A continuous signal is causal if x(t) = 0 for t < 0. It is termed anti-causal if x(t) = 0 for
t > 0. For discrete signals (sequences) the sequence is causal if x[n] = 0 for n < 0 and
anti-causal if x[n] = 0 for n > 0.

A continuous signal is bounded if |x(t)| < K for all t where K is some constant. By
definition, all discrete signals are bounded, i.e., |x[n]| < K. A discrete signal (sequence)
corresponding to the impulse response of a system is called stable if and only if it is abso-
lutely summable, i.e., if and only if

∞∑
n=−∞

|x[n]| <∞.
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A continuous system is stable if its impulse response is absolutely summable,∫ ∞
−∞
|x(t)|dt <∞.

1.5 Convolution and Correlation
Convolution of two continuous signals f(t) and g(t) is denoted by f(t) ∗ g(t) (or, f ∗ g to
be short) and is defined as,

f(t) ∗ g(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ =

∫ ∞
−∞

f(t− τ)g(τ)dτ

since convolution is commutative. Note that convolution operations can be viewed as the
integration of the product of a signal and a time-shifted signal.

For discrete signals, convolution is defined as,

f [n] ∗ g[n] =
∞∑

k=−∞

f [k]g[n− k] =
∞∑

k=−∞

f [n− k]g[k].

The time correlation functionRfg(τ) of two signals f(t) and g(t) is defined as,

Rfg(τ) =

∫ ∞
−∞

f(t)g(t+ τ)dt =

∫ ∞
−∞

f(t)g(t− τ)dt = Rfg(−τ).

A special case of the correlation function is the time autocorelation functionRg(τ)

Rg(τ) =

∫ ∞
−∞

g(t)g(t+ τ)dt =

∫ ∞
−∞

g(t)g(t− τ)dt.

For random processes, the correlation function is the expected value of f(t)g(t + τ),
i.e., Rfg(t, τ) = E{f(t)g(t + τ)}. When both f and g are wide sense stationary then
Rfg(t, τ) = Rfg(t− τ).

1.6 Ordinary Functions
In this section some symbols for commonly used ordinary functions are defined in single
and multiple dimensions.

1.6.1 Continuous Functions
The Continuous Unit Step function denoted by u(t) is

u(t) =


1 t > 0

(1/2 t = 0)

0 t < 0.
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Often, the u(t) is defined to be 1 at t = 0 rather than 1/2. For most applications this
distinction is irrelevant. The definition given here simplifies computation of the derivative.
u(t) is also known as the Heavyside function that may be denoted by H(t).

In multiple dimensions theN dimensional Multi-D Continuous Unit Step function is2

u(x1, x2, . . . , xN) = u(x1)u(x2) · · ·u(xN).

The Continuous Unit Gate function (also known as the rect function) denoted here by
Π(t) is

Π(t) =


1 |t| < 1/2

(1/2 |t| = 1/2)

0 |t| > 1/2.

As in the case of the unit step, Π(t) is often defined to be 1 at |t| = 1/2. For most
applications the distinction is irrelevant. The definition given here simplifies computation
of the derivative.

In multiple dimensions the Multi-D Continuous Gate (also known as the Unit Square
or Unit Cube function) is

Π(x1, x2, . . . , xN) = Π(x1)Π(x2) · · ·Π(xN).

The Triangle function here denoted by Λ(t) is defined as

Λ(t) =

{
1− |t| |t| < 1

0 t ≥ 1.

In multiple dimensions the triangle becomes the Pyramid function defined as

Λ(x1, x2, . . . , xN) = Λ(x1)Λ(x2) · · ·Λ(xN).

The Signum function is denoted by sgn (t) and is defined as

sgn (t) =


1 t > 0

0 t = 0

−1 t < 0.

2Since multi-D functions are often used for spatial signals, the spatial variable x is often used as the ‘time’
variable instead of t.
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sgn (0) is defined here consistent with Fourier analysis. However, some authors leave
sgn (0) undefined.

The Sinc function denoted by sinc (t) is here defined as

sinc (t) =
sin πt

πt

Note that some authors neglect the π in the definition of the sinc function; however, the
standard definition includes π.

In multiple dimensions the Multi-D Sinc function is

sinc (x1, x2, . . . , xN) = sinc (x1)sinc (x2) · · · sinc (xN).

A Unit Gaussian pulse function denoted by pg(t) is defined as

pg(t) =
1√
2π
e−t

2

1.6.2 Discrete Functions and Sequences
Unlike the continuous case, discrete signals are always bounded. Thus, appeal to general-
ized functions is not required for computing the Fourier transform of discrete functions.

The Discrete Impulse function denoted by δ[n] is

δ[n] =

{
1 n = 0

0 else.

In multiple dimensions the Multi-D Discrete Impulse function is

δ[n1, n2, . . . , xN ] = δ[n1]δ[n2] · · · δ[nN ].

The Discrete Unit Step function, also known as the Heavyside function, is denoted by
u[n]3. and is defined as

3The discrete unit step is also frequently denoted by H[n]
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u[n] =

{
1 n ≥ 0

0 n < 0.

In multiple dimensions the Multi-D Discrete Unit Step function is

u[n1, n2, . . . , xN ] = u[n1]u[n2] · · ·u[nN ].

The Discrete Gate function denoted by Πm[n] is

Πm[n] =

{
1 |n| ≤ m

0 |n| > m

In multiple dimensions the Multi-D Discrete Gate function (also known as the Dis-
crete Square or Discrete Cube is defined as,

Πm[n1, n2, . . . , nN ] = Πm[n1]Πm[n2] · · ·Πm[nN ].

The Discrete Signum function denoted by sgn [n] is defined as

sgn [n] =


1 n > 0

0 n = 0

−1 n < 0.

1.7 Periodic Functions
Periodic functions are functions which exactly repeat at evenly spaced intervals known
as the period, i.e., if f(t) is a periodic function then f(t) = f(t + nT ) ∀n where T is a
multiple of the period of the function (the period is the smallest T for which this expression
holds).

1.7.1 Standard Periodic Functions
Some standard periodic functions include the Euler functions cos(at), sin(at), and ejat =
cos(at) + j sin(at) where a is a constant.
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a = 1

(solid blue=real part, dotted red=imaginary part)

Note: Using Euler’s equations the trigonometric functions cos(t) and sin(t) may be
expressed as functions of complex exponentials, i.e.,

cos(t) =
1

2

(
ejt + e−jt

)
sin(t) =

j

2

(
ejt − e−jt

)
.

Further,

ejt = cos(t) + j sin(t)

e−jt = cos(t)− j sin(t).

In these expressions, t is generally real. However, complex t values can be used.

1.8 Limit Functions
Oliver Heavyside, an electrical engineer/scientist of the late 19th century, first developed
the concept we now call the δ function.

Associated with a δ function is its “weight” which is its area when integrated. When un-
specified, the weight is one.

The δ function is a special case of what are somes known as generalized functions or
limit functions. Such “functions” are not functions is the strict sense but are defined in
terms of the limit of a sequence of function. However, they may often be usefully treated
as conventional functions. The δ function is particularily useful in Fourier Analysis though
its Fourier transform does not, strictly speaking, exist, though we say that it ‘exists in the
limit’. Additional information is given in Chapter 3.
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1.8.1 Common Limit Functions
In addition to the δ function, some standard limit functions include the Doublet function
denoted by δ′(t) is the derivative of δ(t) function, i.e.,

δ′(t) = d
dt
δ(t)

and the periodic Picket Fence or Sampling Function, denoted by ST (t) is defined as,

ST (t) =
∞∑

k=−∞

δ(t− kT )

The picket fence function with T = 1 is sometimes known as the “shah” function and
denoted as

∐
(t).



Chapter 2

The Continuous Fourier Transform

2.1 Definition of the Fourier Transform

2.1.1 Single Dimension
Different authors in different fields use different mathematical definitions for the Fourier
Transform1. In this handbook, two variations of the forward2 Fourier Transform common
to electrical engineering are used. The first form, known as the frequency or f form, is
written in terms of the frequency variable while the second form, known as the radian or
ω form, is written in terms of the radian frequency ω = 2πf . The forward definition of
the Fourier Transform F{g(t)} = G(f) [f form] or F{g(t)} = G(ω) [ω form] of a signal
g(t) is defined as

G(f) = F{g(t)} =

∫ ∞
−∞

g(t)e−j2πftdt [f form] (2.1)

G(ω) = F{g(t)} =

∫ ∞
−∞

g(t)e−jωtdt [ω form].

1For example, a commonly used definition of the Fourier Transform pair used in Physics and Mathematics
is,

G(ω) = F{g(t)} =
1√
2π

∫ ∞
−∞

g(t)ejωtdt

g(t) = F−1{G(ω)} =
1√
2π

∫ ∞
−∞

G(ω)e−jωtdω

Note the sign of the exponentials. This form of the Fourier transform is termed the root form due to the square
root in the leading term.

2Note the sign of the exponential term. In some definitions forward transform is with e+jωt rather than
e−jωt as is commonly used in electrical engineering.

9
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The corresponding inverse Fourier transform g(t) = F−1{G(f)} [f form] or g(t) =
F−1{G(ω)} [ω form] is defined as

g(t) = F−1{G(f)} =

∫ ∞
−∞

G(f)ej2πtdf [f form] (2.2)

g(t) = F−1{G(ω)} =
1

2π

∫ ∞
−∞

G(ω)ejωtdω [ω form].

Both the f and ω forms are frequently used. Thus, both forms are used in this book for
the one-dimensional Fourier Transform. Note the signs of the arguments of the exponential
functions. Conditions for the existence of the Fourier Transform are given in Chapter 3. To
be short in notation, a Fourier transform pair is denoted by g(t)←→ G(ω).

While t is commonly “time” (in s) and f is frequency (in Hz) [ω = 2πf is the “radian
frequency” in radians per second], a spatial variable (e.g., x) can be used for t, e.g., x can be
distance in meters. Then, f is the spatial frequency in units of 1/m. This spatial frequency
is sometimes called the “wavenumber”.

2.2 Existence of the Fourier Transform
Mathematical conditions for the existence of the Fourier transform can be very involved.
These conditions are covered in detail by Bracewell [4] and Papoulis [19]. In this book
only provides working definitions.

A sufficient, but not necessary, condition for the existence of the Fourier Transform
G(ω) of g(t) is that g(t) is absolutely integrable, i.e.,∫ ∞

−∞
|g(t)|dt <∞,

and that it has only a finite number of finite discontinuities. This requirement is generally
met for real-world signals. However, this requirement is not met for Euler functions or for
periodic functions which, strictly speaking, do not have Fourier Transforms. Instead, the
concept of the transform in the limit if often used. If the limit exists, it is the transform
of the function. This convenience, often troublesome to mathematicans, is very useful in
engineering applications.

Note that when the function is square integrable, i.e.,∫ ∞
−∞
|g(t)|2dt <∞,

the Fourier integral is guaranteed to be finite and that the mean squared error between the
function and its Fourier representation is zero, i.e., defining x̂(t) as the inverse Fourier
transform of X(ω)

x̂(t) =
1

2π

∫ ∞
−∞

X(ω)ejωtdω,

and the error e(t) as e(t) = x(t)− x̂(t), then∫ ∞
−∞
|e(t)|2dt = 0.
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This suggests that x̂(t) = x(t) for all t except possible for a few points at which x(t) is
discontinuous. At these point x̂(t) converges to the the average value of x(t) on either side
of the discontinuity.

2.2.1 Dirichlet Conditions
A more general set of requirements for convergence of the Fourier transform are known as
the Dirichlet conditions. If these requirements are met the Fourier transform converges.

1. x(t) must be absolutely integrable, i.e.,∫ ∞
−∞
|x(t)|dt <∞,

2. x(t) can have only a finite number of maxima and minima within any finite interval.

3. x(t) can have only a finite number of discontinuities in any finite interval. All dis-
continuities must be finite.

2.3 Multiple Dimensions
For higher-order dimensions, the ω form is most commonly used. In two dimensions, the
Fourier transform pair may be expressed as

F (v, ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j(vx+ωy)dxdy

f(x, y) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

F (v, ω)ej(vx+ωy)dvdω

while in three dimensions the Fourier transform pair become

F (u, v, ω) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j(ux+vy+ωz)dxdydz

f(x, y, z) =
1

(2π)3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F (u, v, ω)ej(ux+vy+ωz)dudvdω.

In general, it is easy to see that if x and ω are n dimensional vectors then,

F (ω) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x)e−jx·ωdx1 · · · dxn

f(x) =
1

(2π)n

∫ ∞
−∞
· · ·
∫ ∞
−∞

F (ω)ejx·ωdω1 · · · dωn.
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2.4 Key Properties of the Fourier Transform

2.4.1 One Dimension
The following table lists the even/odd properties of the Fourier transform:

g(t) F{g(t)}
real, even real, even
real, odd imag, odd

imag, even imag, even
imag, odd real, odd

These properties can be shown from directly from the definition of the Fourier transform.
It can easily be shown that the Fourier transform is linear, i.e., if g1(t)←→ G1(f) and

g2(t)←→ G2(f), [f form] then

F{ag1(t) + bg2(t)} = aG1(f) + bG2(f). (2.3)

or for the [ω form] if g1(t)←→ G1(ω) and g2(t)←→ G2(ω) then

F{ag1(t) + bg2(t)} = aG1(ω) + bG2(ω) (2.4)

where a and b are any constants.
Duality or Symmetry is also exhibited by the Fourier transform, i.e., if g(t)←→ G(ω)

then G(t)←→ 2πg(−ω) [ω form]. To prove this, note from the definition that,

2πg(−t) =

∫ ∞
−∞

G(ω)e−jωtdω [ω form] (2.5)

g(−t) =

∫ ∞
−∞

G(f)e−j2πftdf [f form] (2.6)

Interchange the roles of t and ω (or f f) so that,

2πg(−ω) =

∫ ∞
−∞

G(t)e−jtωdt [ω form] (2.7)

g(−f) =

∫ ∞
−∞

G(t)e−jtωdt [f form] (2.8)

hence, 2πg(−ω)←→ G(t) [ω form] and g(−f)←→ G(t) [f form]. Note that g(−t)←→
G(−ω) and g(−t)←→ G(−f).

The Fourier transform Scaling property yields for the real constant a,

g(at)←→ 1

|a|
G
(ω
a

)
(2.9)

if g(t)←→ G(ω) [ω form] and

g(at)←→ 1

|a|
G

(
f

a

)
(2.10)
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if g(t)←→ G(f) [f form].
Time Shifting can be used to simplfy the computation of the Fourier transform: if

g(t)←→ G(ω) or then g(t)←→ G(f)

g(t− τ) ←→ e−jωτG(ω). [ω form]
g(t− τ) ←→ e−j2πτG(f). [f form]

Similarly, Frequency Shifting yields,

ejω0tg(t) ←→ G(ω − ω0) [ω form]
ej2πf0tg(t) ←→ G(f − f0) [f form].

These can be easily shown by substitution.
For time differentiation and integration: if g(t)←→ G(ω) then

dn

dtn
g(t)←→ (jω)nG(ω)

and ∫ t

−∞
g(x)dx = g(t) ∗ u(t)←→ G(ω)

jω
+ πG(0)δ(ω).

For g(t)←→ G(f) then
dn

dtn
g(t)←→ (j2πf)nG(f)

and ∫ t

−∞
g(x)dx = g(t) ∗ u(t)←→ G(f)

j2πf
+ πG(0)δ(f).

Similarly, for frequency differentiation:

(−jt)ng(t)←→ dn

dωn
G(ω) [ω form]

(−jt)ng(t)←→ dn

dfn
G(f). [f form]

The convolution theorem states that if g(t)←→ G(ω) and f(t)←→ F (ω) then

f(t) ∗ g(t)←→ F (ω)G(ω)

for the ω form and
f(t) ∗ g(t)←→ F (f)G(f)

for the f form when g(t)←→ G(f) and f(t)←→ F (f).
Parseval’s formula: if g(t)←→ G(ω) and f(t)←→ F (ω) then∫ ∞

−∞
f(t)g∗(t)dt =

1

2π

∫ ∞
−∞

F (ω)G∗(ω)dω
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for the ω form. For the f form,∫ ∞
−∞

f(t)g∗(t)dt =

∫ ∞
−∞

F (f)G∗(f)df

when g(t) ←→ G(f) and f(t) ←→ F (f). From these formulas, the energy theorem
provides ∫ ∞

−∞
|f(t)|2dt =

1

2π

∫ ∞
−∞
|F (ω)|2dω

and ∫ ∞
−∞
|f(t)|2dt =

∫ ∞
−∞
|F (f)|2df.

2.4.2 Multiple Dimensions
Let g(t1, t2, . . . , tN)←→ G(ω1, ω2, . . . , ωN) and g2(t1, t2, . . . , tN)←→ G2(ω).

The multi-dimensional Fourier transform is linear, i.e.,

F{ag(t1, t2, . . . , tN) + bg2(t1, t2, . . . , tN)} = aG(ω1, ω2, . . . , ωN) + bG2(ω1, ω2, . . . , ωN)

where a and b are any constants (which may be complex).
Duality or Symmetry

G(t1, t2, . . . , tN)←→ (1/2π)Ng(−ω1,−ω2, . . . ,−ωN).

The Scaling property yields for the real constants ai,

g(a1t1, a2t2, . . . , aN tN)←→ 1

|a1|
1

|a2|
· · · 1

|aN |
G

(
ω1

a1

,
ω2

a2

, . . . ,
ωN
aN

)
.

Time Shifting can be used to simplfy the computation of the Fourier transform for real
τi:

g(t1 − τ1, t2 − τ2, . . . , tN − τN)←→ e−j(ω1τ1+ω2τ2+···+ωN τN )G(ω1, ω2, . . . , ωN).

Similarly, Frequency Shifting yields,

ej(τ1t1+τ2t2+···+τN tN )g(t1, t2, . . . , tN)←→ G(ω1 − τ1, ω2 − τ2, . . . , ωN − τN).

For time differentiation and integration:

∂

∂tn1

∂

∂tn2
· · · ∂

∂tN1
g(t1, t2, . . . , tN)←→ (jω1)n1(jω2)n2 · · · (jωN)nNG(ω1, ω2, . . . , ωN)

and ∫ t

−∞
g(x)dx = g(t) ∗ u(t)←→ G(ω)

jω
+ πG(0)δ(ω).

Similarly, for frequency differentiation:

(−jt1)n1(−jt2)n2 · · · (−jtN)nNg(t1, t2, . . . , tN)←→ ∂

∂ωn1

∂

∂ωn2
· · · ∂

∂ωN1
G(ω1, ω2, . . . , ωN).
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Multi-dimensional convolution f ∗ g of f(t1, t2, . . . , tN) and g(t1, t2, . . . , tN) is de-
fined as,

f ∗ g =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(t1 − τ1, t2 − τ2, . . . , tN − τN)g(τ1, τ2, . . . , τN)dτ1dτ2 · · · dτN .

In multiple dimensions, the convolution theorem states that if f(t1, t2, . . . , tN)←→ F (ω1, ω2, . . . , ωN)
and g(t1, t2, . . . , tN)←→ G(ω1, ω2, . . . , ωN) then

f ∗ g ←→ F (ω1, ω2, . . . , ωN)G(ω1, ω2, . . . , ωN).

Parseval’s formula: if f(t1, t2, . . . , tN)←→ F (ω1, ω2, . . . , ωN) and g(t1, t2, . . . , tN)←→
G(ω1, ω2, . . . , ωN) then∫ ∞

−∞
· · ·
∫ ∞
−∞

f(t1, t2, . . . , tN)g∗(t1, t2, . . . , tN)dt1dt2 · · · dtN =

1

(2π)N

∫ ∞
−∞
· · · · · ·

∫ ∞
−∞

F (ω1, ω2, . . . , ωN)G∗(ω1, ω2, . . . , ωN)dω1dω2 · · · dωN .

2.5 Computation of the Fourier Transform
Computing the Fourier transform of a given g(t) or determining the inverse transform of
G(ω) can require skill. There are a wide variety of techniques and “tricks” which can be
used to simplify the problem. The primary techniques are 1) the direct method, 2) using
the “sifting” property of the δ function, or 3) using look up tables. Of these three, the latter
is usually chosen. Examples of the application of each of these techniques is given in the
following sections.

2.5.1 The Direct Method
The direct method, also known as the integral method, consists of directly applying the
equations defining the Fourier transform or it’s inverse. As an example, using the ω form,
let g(t) = pτ (t) where

pτ (t) =

{
1 −τ ≤ t ≤ τ

0 else.

G(ω) = F{g(t)} is then,

G(ω) =

∫ τ

−τ
e−jωtdt = − 1

jω
e−jωt|τt=−τ

=
1

jω

(
ejωτ − e−jωτ

)
=

2

ω
sin(ωτ)

= 2τ
sin(ωτ)

ωτ
= 2τsinc(

ωτ

π
).



16 CHAPTER 2. THE CONTINUOUS FOURIER TRANSFORM

2.5.2 Sifting Property of the δ Function
The sifting property of the δ function (see Chapter 4) is that∫ ∞

−∞
δ(t− a)f(t)dt = f(a).

Using this property the Fourier transform of δ(t) is

F{δ(t)} =

∫ ∞
−∞

δ(t)ejωtdt

= ejωt|t=0 = 1

and related signals such as Sδ(t) =
∐

(t),

F{Sδ(t)} =

∫ ∞
−∞

Sδ(t)e
jωtdt

=
∞∑

n=−∞

ejωnT

=
2π

T

∞∑
n=−∞

δ(ω − nω0)

=
2π

T

∐
(t).

2.5.3 The Table-Based Method
The table-based method of computing the Fourier Transform, sometimes known as the
transform method, might be called the “divide and conquer” method. Computing the
Fourier transform of general signals can be simplified by using a table of previously com-
puted transformations. This method is based on the linearity of the Fourier transform and
it’s inverse. Using a table of known transforms, a composite function is constructed of
known functions using linear operations. The tranform is then computed by applying the
same operations to the coresponding transforms of the individual function components.

As a simple example, note that the inverse Fourier transform of δ(ω) is 1/2π; hence,
1←→ 2πδ(ω).

Remember that finite length signals ALWAYS have infinite length Fourier transforms.
Finite length Fourier transforms ALWAYS have infinite length inverse transforms. How-
ever, converse is not true: infinite length signals can have infinite length Fourier transforms.

2.6 Alternate Forms of the Fourier Transform
The Fourier Transform may be applied to a general class of functions. For special classes
of functions, other Fourier analysis techniques have been developed to simplify analysis
and provide additional insight. These include the Fourier Series (FS), the Discrete Fourier
Series (DFS), Discrete Fourier Transform (DFT), and the Discrete Time Discrete Fourier
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Transform (DTFT). The FS is applicable for continuous, periodic signals. The DTFT,
which is applicable for general discrete signals, is the Fourier transform for discrete signals.
The DFS is applicable to discrete periodic signals and is similar to the Fourier series. The
DFT is conceptually similar to the DFS. It assumes a discrete, periodic signal. When ap-
plied to an aperiodic signal, the frequency domain representation corresponds to a periodic
extention of the input signal. The Fast Fourier Transform (FFT) is an efficient numerical
implementation of the DFT. The Fourier Series is developed in Chapter 3 and Chapter 5
while the DFS, DFT, DTFT, and the FFT are considered in Chapter 4. Generalizations of
the Fourier transform, the Laplace and Z transforms, are considered in Chapter 6.

The Table 2.1 summarizes the applicability of each form of the Fourier Transform. Note
that by using the limit concept the Fourier transform of a Fourier series representation of
a periodic signal can be computed. Similarly, the discrete-time Fourier transform can be
computed from the discrete Fourier series representation of a discrete, periodic signal.

Table 2.1: Signal Class and Applicable Fourier Transform

Signal class Applicable transform
Continuous Fourier Transform
Continuous, Periodic Fourier Series −→

Fourier Transform
Discrete Discrete Time Fourier Transform
Discrete, Periodic Discrete Time Fourier Series −→

Discrete Time Fourier Transform
Discrete Fourier Transform

The frequency domain representation is somewhat different for each transform. Ta-
ble 2.2 summarizes the frequency domain representation for each transform. While the
Fourier transform’s frequency domain is, in general, continuous and aperiodic, when ap-
plied to periodic or discrete signals using limit techniques, the frequency domain represen-
tation may become periodic and/or discrete. Table 2.3 further summarizes the relationship
between the time domain signal properties, the appropriate Fourier transform, and the fre-
quency domain properties.
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Table 2.2: Fourier Transform and Frequency Domain Properties

Transform Frequency Domain Properties
Fourier Transform Continuous
Fourier Series Discrete, Periodic
Discrete Time Fourier Transform Periodic
Discrete Time Fourier Series Periodic, Discrete
Discrete Fourier Transform Periodic, Discrete

Table 2.3: Relationship Between Time Domain Signal Properties and It’s Frequency Do-
main Properties for Each Fourier Transform

Time Domain Transform Frequency Domain
Continuous, Aperiodic Fourier Transform Aperiodic, Continuous
Continuous, Periodic Fourier Series Aperiodic, Discrete

Fourier Transform Aperiodic, Discrete∗

Discrete, Aperiodic Discrete Time Fourier Transform Periodic, Continuous
Discrete, Periodic Discrete Time Fourier Series Periodic, Discrete

Discrete Time Fourier Transform Periodic, Discrete∗

Discrete, Periodic† Discrete Time Fourier Transform Periodic, Discrete

* δ functions
† assumed periodic
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2.7 Fourier Transform Tables
The following sections provide tables of Fourier transform pairs.

2.7.1 Pictitorial Fourier Transforms
These pictitorial exampes are for the ω form. Real parts are shown in solid blue while
imaginary parts (if any) are shown in dotted red.

←→

u(t) 2sinc(ω/2)

←→

sinc (t) Π(ω/2π)

←→

δ(t) 1 (constant)

←→

1 (constant) δ(ω)
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←→

Λ(t) sinc2(ω/2)/π

←→

sinc2(t) Λ(t/2)/π

←→

ST (t) S1/T (ω)

←→

pg(t)
√

2πpg(ω)

←→

cos(ω0t)
1
π
[δ(ω − ω0) + δ(ω + ω0)]
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←→

sin(ω0t) j 1
π
π[δ(ω − ω0)− δ(ω + ω0)]

←→

e−jω0t 1
π
δ(ω − ω0)

←→

δ(ω − ω0) 1
π
e−jω0t
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2.7.2 One-Dimensional Fourier Transform (f Form)
Definition and Key Properties

g(t) = F−1{G(f)} G(f) = F{g(t)}

1 g(t)

∫ ∞
−∞

g(t)e−j2πftdt

2
∫ ∞
−∞

G(f)ej2πftdf G(f)

3 G(t) g(−f)

4 G(−t) g(f)

5 g(at)
1

|a|
G(
f

a
)

6 g(t− to) e−j2πftoG(f)

7 g(t)ej2πfot G(f − fo)

8 g(t)ej(2πfot+φ) G(f − fo)ejφ

9
dn

dtn
g(t) (j2πf)nG(f)

10 g1(t) ∗ g2(t) G1(f)G2(f)

11 g1(t)g2(t) G1(f) ∗G2(f)

12 g(−t) G(−f) = G∗(f)

13
∫ t

−∞
g(τ)dτ

1

j2πf
G(f) +

1

2
G(0)δ(f)
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1-D Fourier Transform Table (f Form)

1-D Fourier Transform Table (f Form)

g(t) = F−1{G(f)} G(f) = F{g(t)}

1 e−atu(t)
1

(a+ j2πf)

4 δ(t) 1

5 1 δ(f)

6 u(t)
1

2
δ(f) +

1

j2πf

7 cos 2πfot
1
2
[δ(f − fo) + δ(f + fo)]

8 sin 2πfot
1
2j

[δ(f − fo)− δ(f + fo)]

12 2Bsinc(2Bt) Π

(
f

2B

)
13 Π

(
t

τ

)
=

{
1 |t| < τ/2

0 else
τsinc(fτ)

14 Λ
(
t
τ

)
=

{
1− |t|/τ |t| < τ

0 else
τsinc2(fτ)

15 sinc2(fot)
1

fo
Λ

(
f

fo

)
16 e−a|t|

2a

a2 + (2πf)2

17 e−t
2/σ2

σe−πσ
2f2

18 sgn(t)
1

jπf

19 ej(2πfot+φ) δ(f − fo)ejφ

20
∞∑

k=−∞

δ(t− kT )
1

T

∞∑
n=−∞

δ(f − n 1

T
)

21
1

t
− j

2sgn(f)

23
d

dt
f(t) ∗ 1

πt
|f |F (f)

24 α/(α2 + t2) πe−α|f |

25 tne−αtu(t)
n!

(α + jf)n+1

26
−1

πt2
|w|

29 te−jαt (α + jf)−2

30 tu(t) −f−2 + πjδ′(f)
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2.7.3 One-Dimensional Fourier Transform (ω Form)
Definition and Key Properties

g(t) = F−1{G(ω)} G(ω) = F{g(t)}

1 f(t)

∫ ∞
−∞

g(t)e−jωtdt

2
1

2π

∫ ∞
−∞

G(ω)ejωtdω G(ω)

3 G(t) 2πg(−ω)

4
1

2π
G(−t) g(ω)

5 g(at)
1

|a|
G(ω)

6 g(t− to) e−jωtoG(ω)

7 g(t)e−jωot G(ω − ωo)

8
dn

dtn
g(t) (jω)nG(ω)

9 g1(t) ∗ g2(t) G1(ω)G2(ω)

10 g1(t)g2(t)
1

2π
G1(ω) ∗G2(ω)
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1-D Fourier Transform Table (ω Form)

1-D Fourier Transform Table (ω Form)

g(t) = F−1{G(ω)} G(ω) = F{g(t)}

1 e−atu(t)
1

(a+ jω)

2 te−atu(t) 1/(a+ jω)2

3 |t| −2ω−2

4 δ(t) 1

5 1 2πδ(ω)

6 u(t) πδ(ω) +
1

jω

7 cosωot π[δ(ω − ωo) + δ(ω + ωo)]

8 sinωot jπ[δ(ω − ωo)− δ(ω + ωo)]

9 cosωotu(t)
π

2
[δ(ω − ωo) + δ(ω + ωo)] + jω/(ω2

o − ω2)

10 sinωotu(t) j
π

2
[δ(ω − ωo) + δ(ω + ωo)] + ω/(ω2

o − ω2)

11 e−at sinωotu(t)
ωo

(a+ jω)2 + ω2
0

12 2Bsinc(2Bt) Π
( ω

4πB

)
13 Π

(
t

τ

)
=

{
1 |t| < τ/2

0 else
τsinc

(ωτ
2π

)
14 Λ

(
t
τ

)
=

{
1− |t|/τ |t| < τ

0 else
τsinc2

(ωτ
2π

)
15 sinc2

(
ωot

2π

)
2π

ωo
Λ

(
ω

ωo

)
16 e−a|t|

2a

a2 + ω2

17 e−t
2/2σ2

σ
√

2πe−σ
2ω2/2

18 sgn(t)
2

jω

19 ejωot 2πδ(ω − ωo)

20
∞∑

k=−∞

δ(t− kT )
2π

T

∞∑
n=−∞

δ

(
ω − n2π

T

)
21

1

t
−πjsgn(ω)
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1-D Fourier Transform Table (ω Form) [Continued]

g(t) = F−1{G(ω)} G(ω) = F{g(t)}

22
j

πt
sgn(ω)

23
d

dt
f(t) ∗ 1

πt
|ω|F (ω)

24 α/(α2 + t2) πe−α|ω|

25 tne−αtu(t)
n!

(α + jω)n+1

26
−1

πt2
|w|

27
1

t
−jπsgnω

28 |t|e−α|t| 2(α2 − ω2)

α2 + ω2

29 te−jαt (α + jω)−2

30 tu(t) −ω−2 + πjδ′(ω)

31
1√
2πσ

e−t
2/(2σ2) e−(ωσ)2/2

32 pg(t)
√

2πpg(ω)

33
1

t2
−π|w|

34 pa(t)
[
1 + cos(

π

a
t)
] 2π2 sin aω

ω(π2 − aω2)
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2.7.4 One-Dimensional Fourier Transform (Root Form)
Definition and Key Properties

g(t) = F−1{G(ω)} G(ω) = F{g(t)}

1 f(t)
1√
2π

∫ ∞
−∞

g(t)ejωtdt

2
1√
2π

∫ ∞
−∞

G(ω)e−jωtdω G(ω)

3 G(t) g(−ω)

4 G(−t) g(ω)

5 g(at)
1

|a|
G(ω)

6 g(t− to) e−jωtoG(ω)

7 g(t)e−jωot G(ω − ωo)

8
dn

dtn
g(t) (jω)nG(ω)

9 g1(t) ∗ g2(t) G1(ω)G2(ω)

10 g1(t)g2(t) G1(ω) ∗G2(ω)

2.7.5 Two-Dimensional Fourier Transform

2.7.6 Definition and Key Properties
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g(t1, t2) = F−1{G(ω1, ω2)} G(ω1, ω2) = F{g(t1, t2)}

1 g(t1, t2)

∫ ∞
−∞

∫ ∞
−∞

g(t1, t2)e−j(ω1t1+ω2t2dt1dt2

2
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

G(ω1, ω2)ej(ω1t1+ω2t2)dω1dω2 G(ω1, ω2)

3 G(t1, t2) (2π)2g(−ω1,−ω2)

4
1

(2π)2
G(−t1,−t2) g(ω1, ω2)

5 g(at1, bt2)
1

|ab|
G(ω1, ω2)

6 g(t1 − τ1, t2 − τ2) e−j(ω1τ1+ω2τ2)G(ω1, ω2)

7 g(t1, t2)e−j(v1t1+v2t2) G(ω1 − v1, ω2 − v2)

8
dm

dtm1

dn

dtn2
g(t1, t2) (jω1)m(jω2)nG(ω1, ω2)

9 g1(t1, t2) ∗ g2(t1, t2) G1(ω1, ω2)G2(ω1, ω2)

10 g1(t1, t2)g2(t1, t2)
1

(2π)2
G1(ω1, ω2) ∗G2(ω1, ω2)

11 g(t1, t2) ∗ g(−t1,−t2) |G(ω1, ω2)|2

12 g1(t1)g2(t2) G1(ω1)G2(ω2)
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2-D Fourier Transform Table

2-D Fourier Transform Table

g(t1, t2) = F−1{G(ω1, ω2)} G(ω1, ω2) = F{g(t1, t2)}

1 δ(t1, t2) 1

2 sinc t1 sinc t2 Π(ω1, ω2)

3 sinc2 t1 sinc2 t2 Λ(ω1, ω2)

4 cos 2πt1 sin 2πt2
1

2
[δ(ω1 − 1/2, ω2 − 1/2) + δ(ω1 − 1/2, ω2 + 1/2)+

δ(ω1 + 1/2, ω2 − 1/2) + δ(ω1 + 1/2, ω2 + 1/2)]

5 sinc2 t1 sinc t2 Λ(ω1)Π(ω2)

6 δ(t1) δ(ω2)

7 e−π(a
2ω2

1+b2ω2
2) abe

−π
(

t21
a2

+
t22
b2

)

Note that additional transforms may be generated by interchanging t1 and t2 and ω1 and
ω2, respectively.

2.7.7 Multi-Dimensional Fourier Transform
Definition and Key Properties

g(t1, . . . , tN) = F−1{G(ω1, . . . , ωN)} G(ω1, . . . , ωN) = F{g(t1, . . . , tN)}

1 g(t1, . . . , tN)

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(t1, . . . , tN)

e−j(ω1t1+ω2t2dt1 · · · dtN

2
1

(2π)N

∫ ∞
−∞
· · ·
∫ ∞
−∞

G(ω1, . . . , ωN) G(ω1, . . . , ωN)

ej(ω1t1+···+ωN tN )dω1 · · · dωN
3 g1(t1) · · · gN(tN) G1(ω1) · · ·GN(ωN)

Other properties are easily seen from the one- and two-dimensional cases.
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n-D Fourier Transform Table

n-D Fourier Transform Table

g(t1, . . . , tN) = F−1{G(ω1, . . . , ωN)} G(ω1, . . . , ωN) = F{g(t1, . . . , tN)} Notes

1 δ(t1, . . . , tN) 1 point

2 sinc t1 · · · sinc tN Π(ω1, . . . , ωN) cube

3 sinc2 t1 · · · sinc2 tN Λ(ω1, . . . , ωN) prism

4 δ(t1 − τ1, . . . , tN − τN) ej2π(τ1ω1+···+τNωN ) offset point

5 e−π(ω2
1/a

2
1+···+ω2

N/a
2
N ) a1 · · · aNe−π(ω2

1/a
2
1+···+ω2

N/a
2
N ) Gaussian

6 Π(t/2)
1

2π2ω3
(sin 2πω − 2πω cos 2πω) ball

7 e−πt
2

e−πω
2

8 Π(t1, . . . , tN) sincω1 · · · sincωN cube

9 Π(t1, . . . , tN−1) sincω1 · · · sincωN−1δ(ωN) bar

10 Pi(t1) sincω1 δ(t2, . . . , tN) slab

Where t2 = t21 + · · ·+ t2n and ω2 = ω2
1 + · · ·+ω2

N . Additional transforms may be generated
by permutation of the ti’s and corresponding ωi’s.



Chapter 3

The Fourier Transform as a Limit

In general, the sufficient condition described above may be violated because (1) the func-
tion has infinite energy (e.g., a periodic function), or (2) because it contains δ or impulse
functions or other generalized limit functions. Both exceptions, however, are usefull in en-
gineering applications. Viewing the Fourier transform as a limit process enables simplified
application Fourier analysis in these cases that they can be treated more like conventional
cases, i.e.,

F (ω) = lim
T−→∞

∫ T

−T
f(t)e−jωtdt.

Using this definition the “transforms” of periodic functions and generalized functions
can be determined. In the following subsections, generalized functions are first considered
followed by periodic functions. Later sections consider how the Fourier transform can be
considered as the limiting case of the Fourier Series and Gibb’s phenomenon.

3.1 Integral Limits and Generalized Functions
The δ or impulse “function” is not, strictly speaking, a function at all, but is a generalized
function. A generalized function is defined in terms of the class of all equivalent regular
sequences of particularily well-behaved functions. A particularily well-behaved function
f(t) is bounded by |t|N as for any large N as t −→ ∞. A regular sequence fx(t) of
well-behaved functions have the property that

lim
x−→0

∫ ∞
−∞

fx(t)g(t)dt

exists for any well-behaved function g(t). Strictly speaking, this definition precludes sim-
ple sequences such as Π(t/τ) as τ goes to 0 (which is often used to develop the δ function)
since Π(t/τ) is not well-behaved. However, so long as the derivative is not required, this
approach is useful. For further information see Bracewell [4].

It is important to note that a generalized function is not defined in terms of the limit of
a single sequence of functions but rather as a class of equivalent functions. For example,
the δ function may be (loosely) defined in terms of the limit of Π(t/τ) as τ goes to 0 or

31
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equivalently in terms of the limit of τ−1eπt
2/τ2 as τ goes to 0. The are an infinite number

of equivalent approaches to defining the δ function.
Note that whenever a generalized function f(t) appears in an integral, the integral

should be interpreted as the limit of the integral, i.e., the integral∫
f(t)g(t)dt

should be interpreted as

lim
x−→0

∫
fx(t)g(t)dt

where fx(t) is the sequence defining f(t). Hence, the Fourier transform is treated a limit
for the case of a generalized function.

A particular property of the generalized function δ(t) is the so-called “sifting” or “sam-
pling” property, i.e., ∫ ∞

−∞
δ(t− τ)f(t)dt = f(τ).

Note that whenever a generalized function appears in an integral the integral should be
intepreted as a limit; hence, this equation should be understood to be,

lim
x−→0

∫ ∞
−∞

δx(t− τ)f(t)dt = f(τ)

where δx(t) is the defining class of the regular sequence of well-behaved functions.
Using these relatively obscure concepts invented to permit mathematicans work with

the generalized functions (the δ in particular) is useful in engineering, to enable easily
computing the derivative of the δ function (the doublet, denoted δ′(t)) and its integral (the
unit step function u(t)). The approach enables determination that δ(t) is even (δ(t) =
δ(−t)) and that

δ(at) =
1

|a|
δ(t).

Using the sifting property of the δ function is can be easily seen that δ(t) ←→ 1.
Based on the symmetry property of the Fourier Transform, it follows that 1 ←→ 2πδ(ω)
(ω definition) or 1←→ δ(f) (f definition).

3.2 Fourier Transform of Periodic Signals as a Limit
The Fourier transform of a non-trival periodic function (as well as some others such as
x−1) does not, strictly speaking, exist because the function is not absolutely integrable.
However, viewing the Fourier transform as the limit of a sequence for which the transform
exists allows us to use the Fourier transform for many of these cases.

Consider the periodic function f(t) multiplied by a function g(t) which has gx(t) −→
0 as t −→ ∞, e.g., gx(t) = e−xt

2 . The function gx(t) is choosen so that the Fourier
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transform Fx(ω) of gx(t)f(t) exists in the conventional sense. A sequence of transform
pairs gx(t)f(t)←→ Fx(ω) as x −→ 0 is then considered. If this limit exists,

F{f(t)} = lim
x−→0

Fx(ω).

This can be applied in the generalized function sense.
This limit method can be tricky to apply but is essential for computing the Fourier trans-

form of many functions. For example, although sgn(t) is not periodic, the limit technique
can be used to compute the Fourier transform of this function. First note that sgn(t) is not
absolutely integrable. Let gx(t) = e−xt. Then,

gx(t)f(t) = e−xtu(t)− extu(−t)

with corresponding Fx(ω) (using transform tables for extu(t))

Fx(ω) =
1

x+ jω
− 1

x− jω
←→ gx(t)f(t) = e−xtu(t)− extu(−t)

In the limit as x −→ 0,

F{sgn(t)} = lim
x−→0

Fx(ω) =
2

jω
.

For the f definition form of the Fourier Transform,

F{sgn(t)} = lim
x−→0

Fx(f) =
1

jπf
.

3.3 The Fourier Transform From the Fourier Series
The Fourier transform can be viewed as the limiting case of the Fourier Series as the period
T0 −→ ∞. Consider the case of a non-periodic function f(t) which is assumed to be
neglible for some t > t0. Construct a periodic function fT (t) which consists of the sum of
f(t + nT ). Ideally, T > t0. fT (t) consists of periodic copies of f(t) and has period T .
Since fT (t) is periodic the Fourier series is computed as

fT (t) =
∞∑

n−∞

Fne
jnω0t (3.1)

where ω0 = 2π/T and

Fn =
1

T

∫ T/2

−T/2
fT (t)e−jnω0tdt. (3.2)

Note that write Fn can be written as Fnω0 .
As T −→∞, ω0 −→ 0. In the limit (assumed to exist), the spectrum is continuous and

Eqs. (3.2) and (3.1) can be written as an integrals, i.e.,

F (ω) =
1

2π

∫ ∞
−∞

f(t)e−jωtdt

and
f(t) =

1

2π

∫ ∞
−∞

F (ω)e−jωtdt.

The 2π in this equation comes from the definition of ω0.
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3.4 The Fourier Series From the Fourier Transform
The Fourier Series is a special case of the Fourier transform. To show this note that (with
the limits applied), recall

δ(t− τ) ←→ e−jωτ

ejωτ ←→ 2πδ(ω − τ).

From these relationships it follows that δN(t)←→ ∆N(ω) where

δN(t) =
N∑

n=−N

δ(t− nT )

and

∆N(ω) =
N∑

n=−N

ejnωT =
sin[(N + 1/2)Tω]

sin(Tω/2)
.

In the limit at N −→∞, the transform pair,

Sδ(t)←→ ω0Sδ(ω)

is obtained where ω0 = 2π/T and

Sδ(t) =
∞∑

n=−∞

δ(t− nT )

Sω(t) =
∞∑

n=−∞

δ(ω − nω0).

That δN(t) −→ Sδ(t) is obvious. To see that ∆N(ω) −→ Sω(ω) note that ∆N(ω) is a
periodic function (in ω) with period ω0. As N −→∞, in the interval (−ω/2, ω/2), ∆N(ω)
tends toward ω0δ(ω).

Now consider a periodic function f(t) with period T . Define fo(t) as,

fo(t) =

{
f(t) |t| ≤ T/2

0 else.

Then,

f(t) =
∞∑

n=−∞

fo(t+ nT ) = fo(t) ∗ Sδ(t).

Taking the transform both sides of this expression using the convolution theorem and the
transform pair Sδ(t)←→ ω0Sδ(ω),

F (ω) = Fo(ω) · ω0Sω(ω) = ω0Fo(ω)
∞∑

n=−∞

δ(ω + nω0).
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Since Fo(ω)δ(ω − a) = Fo(a)δ(ω − a), it follows that

F (ω) = ω0

∞∑
n=−∞

Fo(nω)δ(ω + nω0).

Thus, the Fourier transform consists of a weighted sum of δ functions at equally-spaced
intervals. Taking the inverse transform of this expression (noting that ejωτ ←→ 2πδ(ω−τ))
the familiar Fourier series is obtained

f(t) =
∞∑

n=−∞

Fne
jnω0t

where

Fn =
1

T
Fo(nω0) =

1

T

∫ T/2

−T/2
f(t)e−jnω0tdt.

An interesting result of this derivation is that when computing Fn it may be simplier to
compute Fo(ω) and sample it at nω0 rather than directly computing Fn from it’s definition.

3.5 Gibb’s Phenomenon
The Fourier transform of signals with discontinuities can exhibit what is known as the
Gibb’s Phenomenon. To see this, consider the Fourier transform pair f(t) ←→ F (ω) in
which f(t) has a finite discontinuity at the point t = t0. Form the function fT (t) where

fT (t) =

∫ T

−T
F (ω)ejωtdω.

Since f(t)←→ F (ω), with some manipulation it can be shown that

fT (t) =

∫ ∞
−∞

f(t)
sinT (t− τ)

π(t− τ)
dτ ;

hence, fT (t) can be viewed as the convolution of f(t) with the Fourier-integral kernal
sinTt/πt. As T −→ ∞, fT (t) −→ f(t). However, at t − t0 (the point of discontinuity),
the limit of fT (t) is the average of the limit of f(t) from the below and from above, i.e.,

lim
T−→∞

fT (t) =
1

2

{
lim

t−→t−0
f(t) + lim

t+0 ←−t
f(t)

}
.

Since, in this case, fT (t) is never close to f(t) at t = t0 for any T , fT (t) exhibits a high fre-
quency oscillation as t approaches t0. This oscillation is known as the Gibb’s phenomenon
as illustrated in Fig. 3.1.
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Figure 3.1: Illustration of Gibb’s phenomenon. The black line shows the “true” func-
tion. The solid blue and dotted red lines show different levels of Fourier approximation for
true curve based on the frequency cutoff (bandlimit) of the Fourier computation. Higher
frequency cutoffs better approximate the function rise, but there is always overshoot and
ringing.



Chapter 4

The Discrete Time Fourier Transform
and The Discrete Fourier Transforms

While the Fourier transform can be directly applied to both continuous and discrete signals,
special forms of the Fourier transform for discrete signals (sequences) are availble. These
are the Discrete-Time Fourier Transform (DTFT), the Discrete Fourier Series (DFS),
and the Discrete Fourier Transform (DFT). The DTFT can be applied to arbitrary discrete
signals and is the discrete-time equivalent to the Fourier Transform (FT) while the DFS is
the discrete-time equivalent of the Fourier Series (FS). The DFT is conceptually similar
to the DFS but is often applied to aperiodic signals (even when it does not apply!). The
relationship between the various transforms is summarized in Tab. 4.1.

Table 4.1: Relationship Between Signal Time and Frequency Domain Characteristics and
Different Fourier Transforms

Time Domain Frequency Domain
Continuous Discrete

Fourier Transform DTFT
Aperiodic Continuous, Aperiodic Continuous, Periodic

Fourier Series DFS / DFT
Periodic Discrete, Periodic Discrete, periodic

37
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4.1 The Discrete Time Fourier Transform
The Discrete Time Fourier Transform (DTFT) is the general version of the Fourier trans-
form designed for use with discrete signals (sequences). The DTFT of a discrete signal
x[n] is expressed as function of frequency ω as X(ejωn) where

X(ejωn) =
∞∑

n=−∞

x[n]ejωn.

The DTFT is frequency written in this unusual form to emphasize the fact that X(ejωn) is
periodic (with period 2π) in ω. Some authors use Ω in place of ω to emphasize that the
transform is applicable discrete signals. In this case Eq. (4.1) is written as

X(Ω) =
∞∑

n=−∞

x[n]ejΩn.

This latter notation is prefered in this text.
In effect, the DTFT maps a discrete signal (sequence) in the time domain, to a periodic

signal in the frequency domain.
The inverse DTFT is,

x[n] =

∫
2π

X(Ω)ejΩndΩ.

Since X(Ω) is periodic in Ω with period 2π, the limits of the integration be chosen conve-
niently.

4.1.1 Derivation of the DTFT from the Fourier Transform
A discrete signal x[n] can be modelled as a continuous signal xc(t) sampled at times t = nT
where T is the sample interval, i.e., x[n] = xc(t = nT ). Note that xc(t = nT ) can be
written as

xc(t = nT ) = x(t)ST (t)

where ST (t) is the sampling function defined in Chapter 1, i.e.,

ST (t) =
∞∑

k=−∞

δ(t− kT ).

By decomposing the product x(t)ST (t) into the terms x(t) and ST (t), noting that ST (T )←→
ST (f) where

ST (f) =
∞∑

k=−∞

δ(f − 2πk/T ),
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and using the sifting property of the δ function, we can easily compute the Fourier transform
Xc(f) of x(t)ST (t) as

F{x(t)ST (t)} = F{x(t)} ∗ F{ST (t)}
= X(f) ∗ ST (f)

=

∫ ∞
−∞

X(α)ST (f − α)dα

=

∫ ∞
−∞

X(α)
∞∑

k=−∞

δ(f − α− 2πk/T )dα

=
∞∑

k=−∞

∫ ∞
−∞

X(α)δ(f − α− 2πk/T )dα

=
∞∑

k=−∞

X(f − 2πk/T )

4.1.2 The DTFT of Periodic Signals
Just as the Fourier transform can be defined in the limit so as to apply to periodic signals, the
DTFT can be extended to apply to periodic signals. Given a discrete Fourier series (DFS)
representation of a periodic signal (i.e., the DFS coefficients ak), X(Ω) can be expressed
as,

X(Ω) =
∞∑

k=−∞

2πakδ

(
Ω− 2πk

N

)
.

Given the DTFT of a periodic signal with period N , the DFS coefficients ak are

ak =
1

N
X(2πk/N).

4.2 The Discrete Fourier Series (DFS)
Coming...

4.3 The Discrete Fourier Transform (DFT)
The Discrete Fourier Transform (DFT) is a special version of the Fourier transform de-
signed for use with periodic discrete signals (sequences). It is equivalent to the discrete
Fourier seris. The DFT of a discrete signal x[n] with a period is N , is expressed as X[k]
where

X[k] =
N−1∑
n=0

x[n]e−j2πnk/N .

This is often written in terms of a twiddle factor WN where

WN = e−j2π/N
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as

X[k] =
N−1∑
n=0

x[n]W nk
N .

The inverse DFT is1

x[n] =
1

N

N−1∑
k=0

X[k]ej2πnk/N ,

or, in terms of the twiddle factor,

x[n] =
1

N

N−1∑
k=0

X[k]W−nk
N .

In effect, the DFT maps a periodic, discrete signal (sequence) in the time domain, to
a periodic, discrete signal (sequence) in the frequency domain. An efficient numerical
implementations of the DFT is known as a Fast Fourier Transform (FFT). Such imple-
mentations employ the symmtry properties of the twiddle factor as it is raised to an integer
power. For example, an N length DFT can be expressed in a radix 2 formulation as

X[k] =

N/2−1∑
n=0

x[2n]W 2nk
N +W k

N

N/2−1∑
n=0

x[2n+ 1]W 2nk
N

as two smaller (N/2) DFT formulations. The radix 3 formulation is

X[k] =

N/3−1∑
n=0

x[3n]W 3nk
N +W k

N

N/3−1∑
n=0

x[3n+ 1]W 3nk
N +W 2k

N

N/3−1∑
n=0

x[3n+ 2]W 3nk
N .

The computational complexity of the DFT is 6N2 real operations, whereas an FFT
approaches 5N log2N − 3N real operations.

4.3.1 Derivation of the DFT from the DTFT
Coming...

4.3.2 Derivation of the DFT from the Fourier Series
Coming...

4.4 Transform Tables
This section includes tables of DTFT pairs.

1There is an alternate definition of the DFT and its inverse which involve leading scale factors of 1/
√
N .

However, these are not commonly used in Electrical Engineering.
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4.4.1 Discrete Time Fourier Transform (DTFT) Tables
Definition and Key Properties

X(ejωn) =
∞∑

n=−∞

x[n]ejωn

x[n] =

∫ π

−π
X(ejωn)ejωndω

Alternately, using Ω,

X(Ω) =
∞∑

n=−∞

x[n]ejΩn

x[n] =

∫
2π

X(ejΩn)ejΩndΩ

Key DTFT Properties
x[n] = DTFT−1{X(ejω)} DTFT{x[n]} = X(ejω)

1 x[n]

∫ π

−π
X(Ω)ejΩndΩ

2
∞∑

n=−∞

x[n]ejΩn X(Ω)

3 ax[n] + by[n] aX(Ω) + bY (Ω)

4 x[n+ n0] ejΩN
0
X(Ω)

5 x∗[n] X∗(−Ω)

6 x[−n] X(−Ω)

7 x[n] ∗ y[n]
1

2π

∫
2π

X(Ω′)Y (Ω− Ω′)dΩ′

8 ejΩ0nx[n] X(Ω− Ω0)

9 x[n]y[n] X(Ω)Y (Ω)

10 x[n]− x[n− 1] (1− e−jΩ)X(Ω)

11 nx[n] j
d

dΩ
X(Ω)

12
n∑

k=−∞

x[n]
1

1− e−jΩ
X(Ω)πX(0)

∞∑
k=−∞

δ(Ω− 2πk)

13 x(k)[n] =

{
x[n/k] n multiple of k
0 else

X(kΩ)

14
∞∑

k=−∞

|x[n]|2 1

2π

∫
2π

X(Ω′)|X(Ω)|2dΩ
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Discrete Time Fourier Transform Table

Discrete Time Fourier Transform Table
x[n] = DTFT−1{X(Ω)} X(Ω) =DTFT{x[n]}

1 δ[n] 1

2 δ[n− n0] e−jωn0

3 1 2π
∞∑

k=−∞

δ(Ω− 2πk)

4 u[n]
1

1− e−jΩ
+ π

∞∑
k=−∞

δ(Ω− 2πk)

5 anu[n] (|a| < 1)
1

1− ae−jΩ
6 (n+ 1)anu[n] (|a| < 1)

1

(1− ae−jΩ)2

7 ejΩ0n 2π
∞∑

k=−∞

δ(Ω− Ω0 − 2πk)

8 cos Ω0n π
∞∑

k=−∞

[δ(Ω− Ω0 − 2πk) + δ(Ω + Ω0 − 2πk)]

9 sin Ω0n
π

j

∞∑
k=−∞

[δ(Ω− Ω0 − 2πk)− δ(Ω + Ω0 − 2πk)]

10
∞∑

k=−∞

δ[n− kN ]
2π

N

∞∑
k=−∞

δ(Ω− 2πk/N)

11 x[n] =

{
1 |n| < N

0 else
sin[Ω(2N + 1)/2]

sin(Ω/2)

12
sin Ω0n

πn

∞∑
k=−∞

{
1 0 ≤ |Ω− 2πk| ≤ Ω0

0 else

4.4.2 Discrete Fourier Series (DFS) Tables

4.4.3 Definition and Key Properties

Period=N
ak =

∑
n∈[N ]

x[n]e−j2πnk/N

x[n] =
1

N

∑
k∈[N ]

ake
j2πnk/N
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Key Discrete Fourier Series Properties
x[n] = DFT−1{X[k]} DFT{x[n]} = X[k]

1 x[n]
N−1∑
n=0

x[n]e−j2πnk/N

2
1

N

N−1∑
k=0

X[k]ej2πnk/N X[k]

3 ax[n] + by[n] aX[k] + bY [k]

4 x[n+ n0] e−j2πkn0/NX[k] = W−kn0
N X[k]

5 x∗[n] X∗[[−k]]N

6 Nx[n]y[n]
N−1∑
p=0

X[p]Y [k − p]

7
N−1∑
p=0

x[p]y[n− p] X[k]y[k]

8 e−j2πnk0/Nx[n] X[[k − k0]]N

where X[[k]]N is the N -point periodic extension of X[k], i.e., X[p] where p = k modN .

Discrete Fourier Series Table

Discrete Fourier Series Table
x[n] = DFS−1{ak} DFS{x[n]} = ak

1 δ[n] 1

2 N δ[k]

3 δ[n− n0] e−j2πkn0/N

4 cos kπn/N ak = a−k = 1/2

6 sin kπn/N ak = −j/2, a−k = j/2

4.4.4 Discrete Fourier Transform (DFT) Tables

4.4.5 Definition and Key Properties

X[k] =
N−1∑
n=0

x[n]e−j2πnk/N =
N−1∑
n=0

x(n)W nk
N

x[n] =
1

N

N−1∑
k=0

X[k]ej2πnk/N =
1

N

N−1∑
k=0

X[k]W−nk
N

WN = e−j2π/N
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Key DFT Properties
x[n] = DFT−1{X[k]} DFT{x[n]} = X[k]

1 x[n]
N−1∑
n=0

x[n]e−j2πnk/N =
N−1∑
n=0

x[n]W−nk
N

2
1

N

N−1∑
k=0

X[k]ej2πnk/N =
1

N

N−1∑
k=0

X[k]W−nk
N X[k]

3 ax[n] + by[n] aX[k] + bY [k]

4 x[n+ n0] e−j2πkn0/NX[k] = W−kn0
N X[k]

5 x∗[n] X∗[[−k]]N

6 Nx[n]y[n]
N−1∑
p=0

X[p]Y [k − p]

7
N−1∑
p=0

x[p]y[n− p] X[k]y[k]

8 e−j2πnk0/Nx[n] = W nk0
N x[n] X[[k − k0]]N

where X[[k]]N is the N -point periodic extension of X[k], i.e., X[p] where p = k modN .

Discrete Fourier Transform Table

See also the Discrete Fourier Series Table.

Discrete Fourier Transform Table
x[n] = DFT−1{X[k]} DFT{x[n]} = X[k]

1 δ[n] 1

2 N δ[k]

3 δ[n− n0] e−j2πkn0/N = W−kn0
N



Chapter 5

The Fourier Series and Orthogonal
Transforms

5.1 Background
The Fourier transform can be applied to virtually any signal. The Fourier Series is a
special case of the Fourier transform which can be used when the signal is periodic. The
basic idea of the Fourier series, first put forth by Joseph Fourier, is that a periodic function
with period T0 could be described by a weighted sum of cosine and sine functions, i.e.,

f(t) =
∞∑
n=0

(an cosnω0t+ bn sinnω0t)

where ω0 = 2π/T0. This idea is based on the more general concept on an orthogonal
transform.

5.2 Fourier Series
The Fourier Series (FS) is an orthogonal transform using Euler functions. The Fourier
series can be derived from the Fourier Transform or visa versa (see the next Chapter). The
orthogonal functions used in the Fourier Series are cosnω0t and sinnω0t or e−jnω0t where
ω0 = 2πT0.

With only a little effort it can shown that

〈cosmω0t, cosnω0t〉 =

∫ t0+T0

t0

cosmω0t cosnω0tdt =

{
0 if m 6= n,

1 if m = n
∀m,n ≥ 0

〈cosmω0t, sinnω0t〉 =

∫ t0+T0

t0

cosmω0t sinnω0tdt = 0 ∀m,n ≥ 0

〈sinmω0t, sinnω0t〉 =

∫ t0+T0

t0

sinmω0t sinnω0tdt =

{
0 if m 6= n,

1 if m = n
∀m,n ≥ 0

45



46 CHAPTER 5. FOURIER SERIES

and that

〈e−jmω0t, e−jnω0t〉 =

∫ t0+T0

t0

e−jmω0te−jnω0tdt =

{
0 if m 6= n,

1 if m = n
∀m,n.

Hence, the Euler functions form an orthonormal set.
Probably the most common form of the Fourier series is,

f(t) = a0 +
∞∑
n=1

{an cosnωot+ bn sinnω0t}

where an and bn are,

a0 =
1

T0

∫ t0+T0

t0

f(t)dt

an =
2

T0

∫ t0+T0

t0

f(t) cosnω0tdt ∀n > 1

bn =
2

T0

∫ t0+T0

t0

f(t) sinnω0tdt ∀n > 1

and ω0 = 2π/T0.
The Fourier Series can also be written as,

f(t) = a0 +
∞∑
n=1

Cn cos(nωot+ θn)

where Cn and θn are,

Cn =
√
a2
n + b2

n

θn = arctan bn/an

where an and bn are defined above.
An alternate form (known as the exponential Fourier Series) is defined as

f(t) =
∞∑

n=−∞

Fne
jnω0t

where ω0 = 2πf0 and T0 = 1/f0 is the fundamental period. The fundamental period is the
minimum value of T0 for which g(t) = g(t + T0) for all t. Fn (which we could write as
F (nω0)) is

Fn =
1

T0

∫ t0+T0

t0

f(t)e−jnω0tdt

where t0 is arbitrary.
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Fn and an and bn are related by the following:

a0 = F0

an = Fn + F−n n 6= 0

bn = j(Fn − F−n) n 6= 0

Fn =
1

2
(an − jbn) n ≥ 1

F−n =
1

2
(an + jbn) n ≥ 1

Note that Fn = F ∗−n.
As shown in the next Chapter, it follows from the definition of the Fourier series that

the Fourier transform of a periodic signal f(t) with Fourier series Fn, is

F{f(t)} = 2π
∞∑

n=−∞

Fnδ(ω − nω0).

5.2.1 Properties of the Fourier Series
The properties derived for the Fourier transform apply to the Fourier series.

Note that when the signal is even, the sine terms of the Fourier series are zero while if
the signal is odd, the cosine terms are zero.

For two signals f(t) and g(t) with Fourier series Fn and Gn with the same fundamental
period, the convolution of f(t) and g(t) has a Fourier series FnGn.

Parseval’s formula becomes

1

T

∫ t+T0

t

f(t)g∗(t)dt =
∞∑

n=−∞

FnG
∗
n.

5.2.2 Gibbs Phenomenon
The Fourier series exhibits the Gibb’s phenomenon (see Chapter 3). If there is a discon-
tinuity in the signal at a point t = a, the Fourier series will attempt converge to a point
midway between the left and right limits at t −→ a.
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5.3 Fourier Series Transform Tables

5.3.1 Definition and Key Properties

f(t) =
∞∑
n=1

(an cosnω0t+ bn sinnω0t) (Trig. form)

a0 =
1

T0

∫ t0+T0

t0

f(t)dt

an =
2

T0

∫ t0+T0

t0

f(t) cosnω0tdt ∀n > 1

bn =
2

T0

∫ t0+T0

t0

f(t) sinnω0tdt ∀n > 1

f(t) =
∞∑

n=−∞

Fne
jnω0t (Exponential form)

Fn =
1

T0

∫ t0+T0

t0

f(t)e−jnω0tdt

Coefficient relationships

a0 = F0

an = Fn + F−n n 6= 0

bn = j(Fn − F−n) n 6= 0

Fn =
1

2
(an − jbn) n ≥ 1

F−n =
1

2
(an + jbn) n ≥ 1
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Key Properties of the Fourier Series

Period= T , ω0 = 2π/T
x(t) Fourier Series Coefficients

x(t)
∞∑

n=∞

Fne
jnω0

y(t)
∞∑

n=∞

Gne
jnω0

1 x(t− τ) Fne
−jnω0τ

2 ejMω0tx(t) (M integer) Fn−M
3 x∗(t) F ∗−n
4 x(−t) F−n
5 x(αt) (period=T/α) Fn

6 x(t)y(t)
∞∑

k=−∞

FnGn

7 x(t) ∗ y(t) =

∫
T

x(τ)y(t− tau)dτ TFnGn

7 Even{x(t)} Re{Fn}
8 Odd{x(t)} jIm{Fn}

10
d

dt
x(t) jnω0Fn

11
∫ t

−∞
x(t)dt (F0 = 0) Fn/(jnω0)

12
1

T

∫
T

|x(t)|2dt
∞∑

n=−∞

|Fn|2
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5.3.2 Pictitorial Fourier Series Transforms
In the following T is the period and ω0 = 2π/T . All sums are over positive n.

f(t) =
4

π

∑
n odd

1

n
sinnω0t

f(t) =
1

2
+

2

π

∑
n odd

1

n
sinnω0t

f(t) =
2

π
− 4

π

∑
n even

1

n2 − 1
cosnω0t

f(t) =
1

π
+ sinω0t−

2

π

∑
n even

1

n2 − 1
cosnω0t

f(t) =
1

2
− 4

π2

∑
n odd

1

n2
cosnωt
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5.3.3 Fourier Series Transform Table
Period= T , ω0 = 2π/T

Signal over 1 period Fourier Series Coefficients

g(t)
∞∑
k=0

(ak cos kω0t+ bk sin kω0t)

ak =

∫
one period

f(t) cos kω0tdt

bk =
∫
one period f(t) sin kω0tdt

∞∑
k=∞

cke
jkω0 ck =

∫
one period

f(t)e−jkω0tdt

1 f(t) =

{
t |t| ≤ T/2

0 else
ak = 0 bk =

T

2πn
(−1)n+1

2 f(t) =

{
t2 |t| ≤ T/2

0 else
a0 = T 2

6
ak = T 2

n2π2 (−1)n bk = 0

3 f(t) =

{
t3 |t| ≤ T/2

0 else
ak = 0 bk =

T 3

4πn
(−1)n+1

(
1− 6

n2π2

)
4 f(t) =

{
ea|t| |t| ≤ π

0 else
ak =

2a[1 + (−1)n+1e−aπ]

π(n2 − a2
bk = 0 T = π

5 f(t) =

{
t |t| ≤ T1

0 else
a0 =

2T1

T
ak =

sin kω0T1

πk
bk = 0

5.4 Orthogonal Transforms
The Fourier series is a special case of the more general class of orthogonal transforms. In
this section a general othogonal transform is defined and two additional orthogonal trans-
forms are considered.

Define 〈f, g〉 in the continuous case as,

〈f, g〉 =

∫ H

L

f(x)g(x)w(x)dx

where w(x) is a weighting function defined over the interval I = [L,H] (L and H may
be infinite). A family of functions {φn, n ∈ Id} will be orthogonal with respect to the
weighting function w(x) over [L,H] if and only if,

〈φmφn〉 =

{
0 ifm 6= n,

λm (λm 6= 0) ifm = n.
∀m,n ∈ Id

The set Id may be [−∞,∞] or [0,∞]. {φn} will be orthonormal if λm = 1 for all m.
In the discrete case, 〈f, g〉 is defined as,

〈f, g〉 =
N∑
i=0

f(xi)g(xi)w(xi) xi 6= xj∀i, j.
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Given a spanning set of orthogonal functions {φn} defined over an interval I, an or-
thogonal transform allows us to write a function f(t), t ∈ I as,

f(t) =
∑
n∈Id

anφn(t)

where
an =

∫
τ∈I

f(t)φn(t)w(t)dt.

Examples of continuous orthogonal functions commonly used in orthogonal transforms
include the Euler functions (sine, cosine, and complex exponentials) and polynomials such
as Legendre, Chebychev, Laguere, and Hermit. For the discrete case, examples include
Walsh and Rademaker functions and Chebychev polynomials.

5.5 Orthogonal Polynomials
The Fourier series is a particular example of an orthogonal transform. For reference, the
following sections give the properties of two important families of orthogonal polynomials.

5.5.1 Chebychev Polynomials
Chebychev1 polynomials exhibit both continuous and discrete orthogonality. Chebychev
polynomials are defined over the interval I = [−1, 1]. To apply Chebychev polynomials in
terms of the parameter t over the interval [a, b], make the substitution,

t =
1

2
(a+ b) +

1

2
(b− a)x, t ∈ [a, b]⇐⇒ x ∈ [−1, 1]

An nth order Chebychev polynomial of the first kind is defined as

Tn(x) = cosnθ θ = arccosx

where x ∈ I = [−1, 1]. (Note: for x ≥ 1, the definition Tn(x) = coshnt where x = cosht,
t ≥ 0, may be used). Chebychev polynomials of the first kind satisfy the recussion relation,

T0(x) = 1

T1 = x

Tn+1(x) = 2xTn(x)− Tn−1(x) n ≥ 1

with the general formula,

Tn(x) =
n

2

[[n/2]]∑
i=0

(−1)i
(n− i− 1)!

i!(n− 2i)!
(2x)n−2i

1Also spelled as Tchebycheff
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Table 5.1: The Coefficients of Cheychev polynomials of the first kind

1 x x2 x3 x4 x5 x6 x7 x8

T0(x) 1
T1(x) 1
T2(x) -1 2
T3(x) -3 4
T4(x) 1 -8 8
T5(x) 5 -20 16
T6(x) -1 18 -48 32
T7(x) -7 56 -112 64
T8(x) 1 -32 160 -256 128

for n = 1, 2, . . . with T0(x) = 1 and with

[[n/2]] =

{
n/2 neven
(n− 1)/2 nodd.

An nth order Chebychev polynomial of the second kind is defined as

Un(x) =
sin(n+ 1)θ

sin θ
θ = arccosx.

Note that sin(arccosx) =
√

1− x2. Chebychev polynomials of the second kind satisfy the
recursion relation,

U0(x) = 1

U1(x) = 2x

Un(x) = 2Tn(x) + Un−2(x) n ≥ 2

The first few Chebychev polynomials are given in Tables 5.5.1 and 5.5.1. Chebychev
polynomials are special cases of the hypergeometric function

Tn(x) = F (−n, n, 1

2
;
1

2
− x

2
).

Key properties of Chebychev polynomials include:

1. The Chebychev polynomials are continuous and finite on I = [−1, 1].

2. On the interval x ∈ I = [−1, 1], |Tn(x)| ≤ 1 for all n. The points η(n)
i = cos iπ

n
,

i = 0, 1, . . . , n, in I = [−1, 1] at which |Tn(x)| = 1 are known as the extrema of
Tn(x).

3. The n roots ζ(n)
i = cos (2i−1)

n
π
2
, i = 1, . . . , n, of the Chebychev polynomial Tn(x),

n > 1, are all (a) simple, (b) real, and (b) lie in the interval I = [−1, 1].
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Table 5.2: The coefficients of Cheychev polynomials of the second kind

1 x x2 x3 x4 x5 x6 x7 x8

U0(x) 1
U1(x) 2
U2(x) -1 4
U3(x) -4 8
U4(x) 1 -12 16
U5(x) 6 -32 32
U6(x) -1 24 -80 64
U7(x) -8 80 -192 128
U8(x) 1 -40 240 -448 256

4. The Chebychev polynomials {Tn(x)}∞n=0 form a sequence of orthogonal polynomials
on I = [−1, 1] with respect to the weight function w(x) =

√
1− x2,

∫ 1

−1

Tk(x)Tm(x)w(x)dx =


0, m 6= k,
π
2
, k 6= 0,

π, k = 0

5. The Chebychev polynomials are orthogonal on a finite point sets in I where the
weight function is 1: if ζ1, . . . , ζn are the zeros of Tn(x) then,

n∑
i=1

Tk(ζi)Tm(ζi) =


(−1)p+(−1)q

2
n, if k +m = 2pnand|k −m| = 2qn

(−1)2 n
2
, if k +m = 2snand|k −m| 6= 2rn

or|k −m| = 2snandk +m 6= 2rn,

0, otherwise.

6. Symmetry property: Tn(−x) = (−1)nTn(x).

7. The leading coefficient of Tn(x) is 2n−1 for n ≥ 1 and 1 for n = 0.

8. Chebychev polynomials satisfy the minimax property. Of all nth-degree polynomi-
als with leading coefficient 1, the polynomial 21−nTn(x) has the smallest maximum
norm (of 21−n) in [−1, 1].

9. The leading coefficient of Un(x) = unx
n + · · ·+ u1x+ u0 is 2n and

Un(x) =
n∑
i=0

xiTn−i(x).
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Some useful Chebychev identities

1. T ′n(x) = nUn−1(x)
2. Un(x) = Un−2(x) = 2Tn(x)
3. Tn(x) = Un(x)− xUn−1(x)
4. 1

2
U2k(x) = 1

2
+ T2(x) + T4(x) + · · ·+ T2k(x) k ≥ 0

5. 1
2
U2k+1(x) = T1(x) + T3(x) + · · ·+ T2k+1(x) k ≥ 0

6. x1
2
U2k−1(x) = 1 + 2T2(x) + 2T4(x) + · · ·+ T2k−2(x) k ≥ 0

7. Unm−1(x) = Um−1(Tn(x))Un−1(x)
8. Tm(x)Tn(x) = 1

2
(Tm+n(x) + T|m−n|(x)) m ≥ 0, n ≥ 0

9. Tm(Tn(x)) = Tmn(x) m ≥ 0, n ≥ 0
10. (Tm+n(x)− 1)(T|m−n|(x)− 1) = (Tm(x)− Tn(x))2

11.
∫
Tn(x)dx =

1

2
[Tn+1(x)/(n+ 1)− Tn−1(x)/(n− 1)] + Const, n ≥ 2

5.5.2 Legendre Polynomials
Legendre polynomials are defined over the interval I = [−1, 1]. To apply Legendre poly-
nomials in terms of the parameter θ over the interval [a, b], make the substitution,

θ =
1

2
(a+ b) +

1

2
(b− a)x, t ∈ [a, b]⇐⇒ x ∈ [−1,+1]

Legendre polynomials are defined as

P0(x) = 1, Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n], n > 0

where x ∈ I = [−1, 1]. The weighting function is w(x) = 1. Legendre polynomials satisfy
the recursion relation,

P0(x) = 1

P1 = x

P2 =
1

2
(3x2 − 1)

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x) n ≥ 1.

The first few Legendre polynomials are given in Table 5.5.2.
Key properties of Legendre polynomials include:

1. The Legendre polynomials are continuous and finite on I = [−1, 1] with |Pn(x)| ≤ 1
for x ∈ [−1, 1].

2. The Legendre polynomials {Pn(x)}∞n=0 form a sequence of orthogonal polynomials
on I = [−1, 1] with respect to the weight function w(x) = 1,∫ 1

−1

Pk(x)Pm(x) =

{
0, m 6= k,

2
2k+1

, if m = k
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Table 5.3: Scaled Legendre polynomial coefficients

1 x x2 x3 x4 x5 x6 2nn!

2nn!P0(x) 1 1
2nn!P1(x) 2 2
2nn!P2(x) -4 12 8
2nn!P3(x) -72 120 48
2nn!P4(x) 144 -1440 1680 384
2nn!P5(x) 7200 -33600 30240 3840
2nn!P6(x) -14400 302400 -907200 665280 46080

3. Symmetry property: Pn(−x) = (−1)nPn(x).

4. The leading coefficient pn of Pn(x) is,

1

2nn!
2n(2n− 1)(2n− 2) . . . (n+ 1).



Chapter 6

The Laplace and Z Transforms

The Laplace andZ transforms represent important generalizations of the Fourier transform.
Unlike the Fourier transform, the Laplace transform can be applied to continuous unstable
signals and systems. Similarly, the Z transform is designed for application with discrete
signals and systems. These transforms, along with the discrete-time Laplace transform, are
considered in this Chapter. Other transforms related to the Fourier transform are consid-
ered in the next Chapter. This Chapter also contains a brief overview of partial fraction
expansion which is widely used in computing the inverse Laplace and Z transforms.

6.1 The Laplace Transform
The Laplace transform finds most frequent application in continuous linear differential
equation systems. The Laplace transform takes three general forms. The most general form
is the bilateral or two-sided Laplace transform. The unilateral or one-sided Laplace
transform may take two forms: the unilateral (one-sided) zero-postive Laplace trans-
form which is the most common, and the unilateral (one-sided) zero-negative Laplace
transform. The unilateral transform can be defined in terms of the bilateral Laplace trans-
form of a signal multiplied by u(t).

While these versions of the Laplace transform are for continuous signals and systems,
the discrete-time Laplace transform, sometimes referred to as the starred Laplace trans-
form, is also defined for discrete signals and systems. It is occasionally used in control
systems though the Z transform is more widely used because of its compactness. The
discrete-time Laplace transform is described in a separate subsection.

The Laplace transform variable is s = σ + jω where σ ≥ 0 and ω are generally
real. The unilateral (one-sided) zero-positive Laplace transform F+(s) = L+{f(t)} of the
signal f(t) is defined as,

F+(s) = L+{f(t)} =

∫ ∞
0+

f(t)e−stdt

while the unilateral (one-sided) zero-negative Laplace transform F−(s) = L−{f(t)} is
defined as,

F−(s) = L−{f(t)} =

∫ ∞
0−

f(t)e−stdt

57
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(if the integrals exist). The bilateral (two-sided) Laplace transform F (s) = L{f(t)} is
defined as,

F (s) = L{f(t)} =

∫ ∞
0+

f(t)e−stdt.

Note that if f(t) = 0 for all t ≤ 0 with no singularities (δ functions or higher-order δ
functions) at the origin, the three versions of the Laplace transform are equivalent.

In the definitions of the unilateral Laplace transforms the lower limit (0+) is used to
denote that the limit is from above, i.e.,

F+(s) =

∫ ∞
0+

f(t)e−stdt = lim
h−→0+, h>0

∫ ∞
h

f(t)e−stdt

while the lower limit (0−) is used to denote that the limit is from below, i.e.,

F−(s) =

∫ ∞
0−

f(t)e−stdt = lim
h−→0−, h<0

∫ ∞
h

f(t)e−stdt.

These distinctions may be critical when there are discontinuities in f(t) at t = 0. The
unilateral zero-positive Laplace transform is primarily used for initial condition problems
with linear differential equations.

The Laplace transform only exists if the defining integrals are less than infinity, i.e., the
one-sided zero-positive Laplace transform exists if and only if,∫ ∞

0+
f(t)e−stdt <∞

while the one-sided zero-negative Laplace transform exists if and only if,∫ ∞
0−

f(t)e−stdt <∞

and the two-sided Laplace transform exists if and only if,∫ ∞
−∞

f(t)e−stdt <∞.

In general, these conditions apply only over a Region of Convergence consisting of a band
of values in the s plane, e.g., the region of convergence R− ≤ Re[s] ≤ R+ where R− and
< R+ are real constants which may be infinite.

Frequently, the Laplace transform F (s) of a signal or system can be expressed as a
rational polynomials, e.g.,

F (s) =

N∑
n=0

bns
n

D∑
k=0

aks
k

=
N(s)

D(s)
.

The values of s corresponging to the roots of the denominator polynomial D(s) are known
as the poles of the transform while the roots of the numerator polynomial N(s) are the
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zeros of the transform. These are frequently mapped on a s-plane pole-zero map. On
the pole-zero map the region of convergence is a band delimited by poles. The region of
convergence does NOT contain any poles. For a given pole-zero map it may be possible
to define several possible regions of convergence. Each distinct region of convergence
corresponds to a separate time-domain signal. Note that a causal signal or system has a
region of convergence to the right of the right-most pole. However, just because the region
of convergence is to the right of the right-most pole does not guarantee that the signal is
causal.

The inverse Laplace transform f(t) = L−1{F (s)} (if it exists) is given by

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

where σ > 0 is a real constant within the region of convergence. The inverse Laplace
transform can be computed using tables, directly evaluating this integral, or, when the
Laplace transform is a rational polynomial, using partial fraction expansion and inverse
transforms from the table.

6.1.1 Relation of the Laplace and Fourier Transforms
The Laplace transform represents a generalization of the Fourier transform where the real-
valued ω in the Fourier transform is replaced with complex-valued s. If the jω axis is
contained within the region of convergence of the transform, the Fourier transform may be
computed from the Laplace transform by replacing s with jω, i.e.,

F{f(t)} = F (s)
∣∣∣
s=jω

.

If the jω axis is contained within the region of convergence, the existence of the Fourier
transform is assured and the corresponding time-domain system is stable.

The Laplace transform F (s) of a signal f(t) can be viewed as the Fourier transform of
the signal defined by f(t)e−σ, i.e.,

F (s) = L{f(t)} = F{f(t)e−σ}.

6.1.2 Key Properties of the Laplace Transform
Let X(s) and Y (s) be the Laplace transforms of x(t) and y(t), respectively, with corre-
sponding regions of convergence of Rx− < Re[s] < Rx+ and Ry− < Re[s] < Ry+ .
Unless otherwise noted, these results generally apply to all three forms of the Laplace
transform though they are defined for the bilateral transform here. Let a and b be complex
constants.

Linearity.

L{ax(t) + by(t)} = aX(s) + bY (s), R− < Re[s] < R+
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where R− = max{Rx− , Ry−} and R− = min{Rx− , Ry−}. The region of convergence is
at least as big as the intersection of the regions of convergence of x(t) and y(t).

Time Shift.
L{x(t− τ)} = esτX(s), Rx− < Re[s] < Rx+ .

Time Scaling (Similarity).

L{x(at)} =
1

|a|
X
(s
a

)
, Rx− < |a|−1Re[s] < Rx+ .

The region of convergence criterion for this exampled may be stated as, “s is in the region
of convergence of x(at) if s/a is in the region of convergence of X(s).”
Time Reversal.

L{x(−t)} = X(−s), −Rx+ < Re[s] < −Rx− .

Note the reversal of the region of convergence.
Time Differentiation.

L
{
d

dt
x(t)

}
= sX(s), Rx− < Re[s] < Rx+ .

Note the introduction of a zero at the origin which may impact the region of convergence.
The region of convergence is at least as big as the region of convergence of X(s). For the
unilateral (one-sided) zero-positive version of the Laplace transform:

L+

{
d

dt
x(t)

}
= sX(s)− x(0+), Rx− < Re[s] < Rx+ .

where x(0+) is defined as the limit of x(t) as t −→ 0 from above. Differentiaing a second
time:

L+

{
d2

dt2
x(t)

}
= s2X(s)− sx(0+)− x′(0+), Rx− < Re[s] < Rx+ .

where x′(t) = dx(t)/dt. In general,

L+

{
d2 = n

dtn
x(t)

}
= snX(s)−

n−1∑
k=0

skx(k)(0+), Rx− < Re[s] < Rx+ .

Differentiation in s.

L{tx(t)u(t)} = − d

ds
X(s), Rx− < Re[s] < Rx+

so that the region of convergence is unchanged. More generally,

L{(−t)nx(t)u(t)} = − dn

dsn
X(s), Rx− < Re[s] < Rx+ .
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Time Integration.
Two-sided case:

L
{∫ t

−∞
x(τ)dτ

}
=

1

s
X(s), max{Rx− , 0} < Re[s] < min{Rx+ , 0}.

The region of convergence is at least as large as the intersection of the region of convergence
of x(t) and u(t) [u(t) has a region of convergence of Re[s] > 0].

Note that this property is different for the unilateral (one-sided) zero-positive version
of the Laplace transform:

L+

{∫ t

−∞
x(τ)dτ

}
= f−1(t) =

1

s
X(s)+

1

s

1

x(0+)
, max{Rx− , 0} < Re[s] < min{Rx+ , 0}.

Integrating twice yields:

1

s2
X(s) +

1

s2

1

x(0+)
+

1

s

1

x′(0+)
, max{Rx− , 0} < Re[s] < min{Rx+ , 0}.

where x′(t) = dx(t)/dt.
Integration in s.

1

t
x(t)u(t) =

∫ ∞
s

X(s)ds, max{Rx− , 0} < Re[s] < min{Rx+ , 0}.

Time Convolution.

L{x(t) ∗ y(t)} = X(s)Y (s), R− < Re[s] < R+

where R− = max{Rx− , Ry−} and R− = min{Rx− , Ry−}. The region of convergence is
at least as big as the intersection of the two regions of convergence.
s-plane Convolution.

L{x(t)y(t)} =
1

2πj

∫ σ+j∞

σ−j∞
X(p)Y (s− p)dp, Rx− +Ry− < Re[s] < Rx+ +Ry+ .

Autocorrelation.

L{x(t) ∗ x(−t)} = X(s)X(−s), |Re[s]| < min{|Rx−|, |Rx−|}.

Finite Difference.

L{x(t+ τ/2)− x(t− τ/2)} = 2sinh(sτ/2)X(s), Rx− < Re[s] < Rx+ .

Initial Value Theorem. If x(t) = 0 for t < 0 and x(t) has no singularities at t = 0, then

lim
t→0

x(t) = lim
s→∞

X(s).

Final Value Theorem. If x(t) = 0 for t < 0 and x(t) has no singularities at t = 0, or
equivalently, if sF (s) is analytic for Re[s] ≥ 0, then

lim
t→∞

x(t) = lim
s→0

sX(s).
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6.2 Laplace Transform Tables

6.2.1 Bilateral (Two-Sided) Laplace Transform
Definition and Key Properties

x(t) = L−1{X(s)} X(s) = L{x(t)} Region of Convergence

1 x(t)

∫ ∞
0+

x(t)e−stdt Rx− < Re[s] < Rx+

2
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds X(s) Rx− < Re[s] < Rx+

3 ax(t) + by(t) aX(s) + bY (s) R− < Re[s] < R+

R− = max{Rx− , Ry−}
R− = min{Rx− , Ry−}

4 x(t− τ) esτX(s) Rx− < Re[s] < Rx+

5 x(at)
1

|a|
X
(s
a

)
Rx− < |a|−1Re[s] < Rx+

6 x(−t) X(−s) −Rx+ < Re[s] < −Rx−

7
d

dt
x(t) sX(s) Rx− < Re[s] < Rx+

8 tx(t)u(t) − d

ds
X(s) Rx− < Re[s] < Rx+

9
∫ t

−∞
x(τ)dτ

1

s
X(s) max{Rx− , 0} < Re[s] < min{Rx+ , 0}

10
1

t
x(t)u(t)

∫ ∞
s

X(s)ds max{Rx− , 0} < Re[s] < min{Rx+ , 0}

11 x(t) ∗ y(t) X(s)Y (s) Rx− < Re[s] < Rx+ ,
Ry− < Re[s] < Ry+

12 x(t)y(t)
1

2πj

∫ σ+j∞

σ−j∞
X(p)Y (s− p)dp Rx− +Ry− < Re[s] < Rx+ +Ry+

13 x(t) ∗ x(−t) X(s)X(−s) |Re[s]| < min{|Rx−|, |Rx−|}
14 x(t+ τ/2)− x(t− τ/2) 2sinh(sτ/2)X(s) Rx− < Re[s] < Rx+

Laplace Transform Limits

Assuming x(t) = 0 for t < 0 and that x(t) has no singularities at the origin,

lim
t→0

x(t) = lim
s→∞

X(s)

lim
t→∞

x(t) = lim
s→0

sX(s)
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Two-Sided Laplace Transform Table

Two-Sided LaPlace Transform Table
x(t) = L−1{X(s)} X(s) = L{x(t)} Region of Convergence

1 e−αtu(t)
1

s+ α
Re[α] < Re[s]

2 −eαtu(t)
1

s+ α
Re[s] < −Re[α]

3 u(t)
1

s
0 < Re[s]

4 −u(−t) 1

s
Re[s] < 0

5 tu(t)
1

s2
0 < Re[s]

6 δ(t) 1 all s
7 δ′(t) s all s

8 (1− e−αt)u(t)
α

s(s+ α)
max{0,−Re[α]} < Re[s]

9 Π(t)
sinh 1

2
s

1
2
s

all s

10 Π(t− 1
2
)

1− e−s

s
all s

11 Λ(t)

(
sinh 1

2
s

1
2
s

)2

all s

12 sgn t
2

s
Re[s] = 0

13
tn

n!
u(t)

1

sn+1
Re[s] > 0

14 − t
n

n!
u(−t) 1

sn+1
Re[s] < 0

15 t2e−αtu(t)
2

(s+ α)3
Re[s] > −α

16
tn

n!
e−αtu(t)

1

(s+ α)n+1
Re[s] > −α

17 − t
n

n!
e−αtu(−t) 1

(s+ α)n+1
Re[s] < −α

18 [cosαt]u(t)
s

s2 + α2
Re[s] > 0

19 [sinαt]u(t)
α

s2 + α2
Re[s] > 0

20 [e−βt cosαt]u(t)
(s+ β)

(s+ β)2 + α2
Re[s] > −β

21 [e−βt sinαt]u(t)
α

(s+ β)2 + α2
Re[s] > −β
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Unilateral Laplace Transform Transform Table†

X(s) = L+{x(t)} x(t) = L−1
+ {X(s)}

1
1

s
1†

2 1 δ(t)

3 s δ′(t)

4
1

s+ a
e−at

5
1

s2
t

6
1

(s+ a)(s+ c)

e−at − e−ct

c− a
7

s+ a0

(s+ a)(s+ c)

(a0 − a)e−at − (a0 − c)e−ct

c− a
8

1

s(s+ a)(s+ c)

1

ac
+
ce−at − ae−ct

ac(a− c)
9

s+ a0

s(s+ a)(s+ c)

a0

ac
+

a0 − a
a(a− c)

e−at +
a0 − c
c(c− a)

e−ct

10
1− e−s

s
Π(t− 1

2
)

11
1

(s+ α)n+1

tn

n!
e−αt

12
s

s2 + α2
cosαt

13
α

s2 + α2
sinαt

14
(s+ β)

(s+ β)2 + α2
e−βt cosαt

15
α

(s+ β)2 + α2
e−βt sinαt

† Note that an implied u(t) is associated with all time domin signals.
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

21
s2 + a1s+ a0

s(s+ a)(s+ c)

a0

ac
+
a2 − a1a+ a0

a(a− c)
e−at +

c2 − a1c+ a0

c(c− a)
e−ct

22
1

(s+ a)(s+ c)(s+ d)

e−at

(c− a)(d− a)
+

e−ct

(a− c)(d− c)
+

e−dt

(a− d)(c− d)

23
s+ a0

(s+ a)(s+ c)(s+ d)

a0 − a
(c− a)(d− a)

e−at +
a0 − c

(a− c)(d− c)
e−ct

+
a0 − d

(a− d)(c− d)
e−dt

24
s2 + a1s+ a0

(s+ a)(s+ c)(s+ d)

a2 − a1a+ a0

(c− a)(d− a)
e−at +

c2 − a1c+ a0

(a− c)(d− c)
e−ct

+
d2 − a1d+ a0

(a− d)(c− d)
e−dt

25
1

s2 + b2

1

b
sin bt

26
1

s2 − b2

1

b
sinh bt

27
s

s2 + b2
cos bt

28
s

s2 − b2
cosh bt

29
s+ a0

s2 + b2

1

b
(a2

0 + b2)
1
2 sin(bt+ ψ)

ψ
4
= tan−1 b

a0

30
1

s(s2 + b2)

1

b2
(1− cos bt)

31
s+ a0

s(s2 + b2)

a0

b2
− (a2

0 + b2)
1
2

b2
cos(bt+ ψ)

ψ
4
= tan−1 b

a0

32
s2 + a1s+ a0

s(s2 + b2)

a0

b2
− [(a0 + b2)2 + a2

1b
2]

1
2

b2
cos(bt+ ψ)

ψ
4
= tan−1 a1b

a0 − b2

33
s+ a0

(s+ a)(s2 + b2)

a0 − a
a2 + b2

e−at +
1

b

[
a2

0 + b2

a2 + b2

] 1
2

sin(bt+ ψ)

ψ
4
= tan−1 b

a0

− tan−1 b

a
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

34
s2 + a1s+ a0

(s+ a)(s2 + b2)

a2 − a1a+ a0

a2 + b2
e−at +

1

b

[
(a0 − b2)2 + a2

1b
2

a2 + b2

] 1
2

sin(bt+ ψ)

ψ
4
= tan−1 a1b

a0 − b2
− tan−1 b

a

35
s+ a0

s(s+ a)(s2 + b2)

a0

ab2
+

a− a0

a(a2 + b2)
e−at − 1

b2

[
a2

0 + b2

a2 + b2

] 1
2

cos(bt+ ψ)

ψ
4
= tan−1 b

a0

− tan−1 b

a

36
a0

ab2
− a2 − a1a+ a0

a(a2 + b2)
e−at

s+ a1s+ a0

s(s+ a)(s2 + b2)
− 1

b2

[
(a0 − b2)2 + a2

1b
2

a2 + b2

] 1
2

cos(bt+ ψ)

ψ
4
= tan−1 a1b

a0 − b2
− tan−1 b

a

37
a2 − a1a+ a0

(c− a)(a2 + b2)
e−at +

c2 − a1c+ a0

(a− c)(c2 + b2)
e−ct

s2 + a1s+ a0

(s+ a)(s+ c)(s2 + b2)
+

1

b

[
(a0 − b2)2 + a2

1b
2

(a2 + b2)(c2 + b2)

] 1
2

sin(bt+ ψ)

ψ
4
= tan−1 a1b

a0 − b2
− tan−1 b

a
− tan−1 b

c

38
−a3 + a2a

2 − a1a+ a0

(c− a)(a2 + b2)
e−at +

−c3 + a2c
2 − a1c+ a0

(a− c)(c2 + b2)
e−ct

s2 + a2s
2 + a1s+ a0

(s+ a)(s+ c)(s2 + b2)
+

1

b

[
(a0 − a2b

2)2 + b2(a1 − b2)2

(a2 + b2)(c2 + b2)

] 1
2

sin(bt+ ψ)

ψ
4
= tan−1 b(a1 − b2

a0 − a2b2
− tan−1 b

a
− tan−1 b

c

39
s

(s2 + b2)(s2 + c2)

cos bt− cos ct

c2 − b2

40
s

[s2 + (b+ c)2][s2 + (b− c)2]

1

2cb
sin ct× sin bt

41
[(a0 − b2)2 + a2

1b
2]

1
2

b(c2 − b2)
sin(bt+ ψ1)

s2 + a1s+ a0

(s2 + b2)(s2 + c2)
+

[(a0 + c2)2 + a2
1c

2]
1
2

c(b2 − c2)
sin(ct+ ψ2)

ψ1
4
= tan−1 a1b

a0 − b2
;ψ2

4
= tan−1 a1c

a0 − c2
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

42
[(a0 − a2b

2)2 + b2(a1 − b2)2]
1
2

b(c2 − b2)
sin(bt+ ψ1)

s3 + a2s
2 + a1s+ a0

(s2 + b2)(s2 + c2)
+

[(a0 + a2c
2)2 + c2(a1 − c2)2]

1
2

c(b2 − c2)
sin(ct+ ψ2)

ψ1
4
= tan−1 b(a1 − b2)

a0 − a2b2
;ψ2

4
= tan−1 c(a1 − c2)

a0 − a2c2

43
1

(s+ a)2 + b2

1

b
e−at sin bt

44
s+ a0

(s+ a)2 + b2

1

b
[(a0 − a)2 + b2]

1
2 e−at sin(bt+ ψ)

ψ
4
= tan−1 b

a0 − a
45

s+ a

(s+ a)2 + b2
e−at cos bt

46
1

b2
0

+
1

b0b
e−at sin(bt− ψ)

1

s[(s+ a)2 + b2]
ψ
4
= tan−1 b

−a
b2

0

4
= a2 + b2

47
a0

b2
0

+
1

bb0

[(a0 − a)2 + b2]
1
2 e−at sin(bt+ ψ)

s+ a0

s[(s+ a)2 + b2]
ψ
4
= tan−1 b

a0 − a
− tan−1 b

−a
b2

0

4
= a2 + b2

48
a0

b2
0

+
1

bb0

[(a2 − b2 − a1a+ a0)2

s2 + a1s+ a0

s[(s+ a)2 + b2]
+b2(a1 − 2a)2]

1
2 e−at sin(bt+ ψ)

ψ
4
= tan−1 b(a1 − 2a)

a2 − b2 − a1a+ a0

− tan−1 b

−a
b2

0

4
= a2 + b2

49
1

(s+ c)[(s+ a)2 + b2]

e−ct

(c− a)2 + b2
+

1

b[(c− a)2 + b2]
1
2

e−at sin(bt− ψ)

ψ
4
= tan−1 b

c− a
50

a0 − c
(a− c)2 + b2

e−ct

s+ a0

(s+ c)[(s+ a)2 + b2]
+

1

b

[
(a0 − a)2 + b2

(c− a)2 + b2

] 1
2

e−at sin(bt+ ψ)

ψ
4
= tan−1 b

a0 − a
− tan−1 b

c− a
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

51
c2 − a1c+ a0

(a− c)2 + b2
e−ct

s2 + a1s+ a0

(s+ c)[(s+ a)2 + b2]
+

1

b

[
(a2 − b2 − a1a+ a0)2 + b2(a1 − 2a)2

(c− a)2 + b2

] 1
2

e−at sin(bt+ ψ)

ψ
4
= tan−1 b(a1 − 2a)

a2 − b2 − a1a+ a0

− tan−1 b

c− a
52

1

cb2
0

− 1

c[(a− c)2 + b2]
e−ct

1

s(s+ c)[(s+ a)2 + b2]
+

1

bb0[(c− a)2 + b2]
1
2

e−at sin(bt− ψ)

ψ
4
= tan−1 b

−a
− tan−1 b

c− a
b2

0

4
= a2 + b2

53
a0

cb2
0

+
c− a0

c[(a− c)2 + b2]
e−ct

s+ a0

s(s+ c)[(s+ a)2 + b2]
+

1

bb0

[
(a0 − a)2 + b2

(c− a)2 + b2

] 1
2

e−at sin(bt+ ψ)

ψ
4
= tan−1 b

a0 − a
− tan−1 b

c− a
− tan−1 b

−a
b2

0

4
= a2 + b2

54
c2 − a1c+ a0

(d− c)[(a− c)2 + b2]
e−ct +

d2 − a1d+ a0

(c− d)[(a− d)2 + b2]
e−dt

s2 + a1s+ a0

(s+ c)(s+ d)[(s+ a)2 + b2]
+

1

b

{
(a2 − b2 − a1a+ a0)2 + b2(a1 − 2a)2

[(d− a)2 + b2][(c− a)2 + b2]

} 1
2

e−at sin(bt+ ψ)

ψ
4
= tan−1 b(a1 − 2a)

a2 − b2 − a1a+ a0

− tan−1 b

c− a
− tan−1 b

d− a
55

1

(s2 + λ2)[(s+ a)2 + b2]

1

[(b2
0 − λ2)2 + 4a2λ2]

1
2

[
1

λ
sin(λt− ψ1) +

1

b
e−at sin(bt− ψ2)

]
ψ1
4
= tan−1 2aλ

b2
0 − λ2

;ψ2
4
=

−2ab

a2 − b2 + λ2
; b2

0

4
= a2 + b2

56
1

λ

[
a2

0 + λ2

(b2
0 − λ2)2 + 4a2λ2

] 1
2

sin(λt+ ψ1)

s+ a0

(s2 + λ2)[(s+ a)2 + b2]
+

1

b

[
(a0 − a)2 + b2

(b2
0 − λ2)2 + 4a2λ2

] 1
2

e−at sin(bt− ψ2)

ψ1
4
= tan−1 λ

a0

− tan−1 2aλ

b2
0 − λ2

ψ2
4
= tan−1 b

a0 − a
− tan−1 −2ab

a2 − b2 + λ2

b2
0

4
= a2 + b2



6.2. LAPLACE TRANSFORM TABLES 69



70 CHAPTER 6. THE LAPLACE AND Z TRANSFORMS

Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

57
1

λ

[
(a0 + λ2)2 + a2

1λ
2

(b2
0 − λ2)2 + 4a2λ2

] 1
2

sin(λt+ ψ1)

s2 + a1s+ a0

(s2 + λ2)[(s+ a)2 + b2]
+

1

b

[
(a2 − b2 − a1a+ a0)2 + b2(a1 − 2a)2

(b2
0 − λ2)2 + 4a2λ2

] 1
2

×

e−at sin(bt− ψ2)

ψ1
4
= tan−1 a1λ

a0 − λ2
− tan−1 2aλ

b2
0 − λ2

ψ2
4
= tan−1 b(a1 − 2a)

a2 − b2 − a1a+ a0

− tan−1 −2ab
a2−b2+λ2

b2
0

4
= a2 + b2

58
a0 − c

(λ2 + c2)[(a− c)2 + b2]
e−ct+

1

λ

{
a2

0 + λ2

(c2 + λ2)[(b2
0 − λ2)2 + 4a2λ2]

} 1
2

sin(λt+ ψ1)

s+ a0

(s+ c)(s2 + λ2)[(s+ a)2 + b2]
+

1

b

{
a0 − a)2 + b2

[(c− a)2 + b2][(b2
0 − λ2)2 + 4a2λ2]

} 1
2

×

e−at sin(bt+ ψ2)

ψ1
4
= tan−1 λ

a0

− tan−1 λ

c
− tan−1 2aλ

b2
0 − λ2

ψ2
4
= tan−1 b

a0 − a
− tan−1 b

c− a
− tan−1 −2ab

a2−b2+λ2

b2
0

4
= a2 + b2

59
1

s2
t

60
1

sn
1

(n− 1)!
tn−1 n > 0 integer

61
1

(s+ a)s2

e−at + at− 1

a2

62
s+ a0

(s+ a)s2

a0 − a
a2

e−at +
a0

a
t+

a− a0

a2

63
s2 + a1s+ a0

(s+ a)s2

a2 − a1a+ a0

a2
e−at +

a0

a
t+

a1a− a0

a2

64
1

(s+ a)2
te−at

65
s+ a0

(s+ a)2
[(a0 − a)t+ 1]e−at

66
1

(s+ a)n
1

(n− 1)!
tn−1e−at n > 0 integer

67
sn

(s+ a)n+1
e−at

n∑
k=0

n!(−a)k

(n− k)!(k!)2
tk n ≥ 0 integer
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

68
1

s(s+ a)2

1− (1 + at)e−at

a2

69
s+ a0

s(s+ a)2

a0

a2
+

(
a− a0

a
t− a0

a2

)
e−at

70
s2 + a1s+ a0

s(s+ a)2

a0

a2
+

(
a1a− a0 − a2

a
t+

a2 − a0

a2

)
e−at

71
1

(s+ c)(s+ a)2

1

(c− a)2
e−ct +

(c− a)t− 1

(c− a)2
e−at

72
s+ a0

(s+ c)(s+ a)2

a0 − c
(a− c)2

e−ct +

[
a0 − a
c− a

t+
c− a0

(c− a)2

]
e−at

73
s2 + a1s+ a0

(s+ c)(s+ a)2

c2 − a1c+ a0

(a− c)2
e−ct

+

[
a2 − a1a+ a0

c− a
t+

a2 − 2ac+ a1c− a0

(c− a)2

]
e−at

74
s+ a0

(s+ c)(s+ a)3

a0 − c
(a− c)3

e−ct +

[
a0 − a

2(c− a)
t2 +

c− a0

(c− a)2
t+

a0 − c
(c− a)3

]
e−at

75
s+ a0

s(s+ c)(s+ a)2

a0

ca2
+

c− a0

c(a− c)2
e−ct +

[
a0 − a
a(a− c)

t+
2a0a− a2 − a0c

a2(a− c)2

]
e−at

76
s2 + a1s+ a0

s(s+ c)(s+ a)2

a0

ca2
− c2 − a1c+ a0

c(a− c)2
e−ct

+

[
a2 − a1a+ a0

a(a− c)
t+

(c− a1)a2 + (2a− c)a0

a2(a− c)2

]
e−at

77
s+ a0

(s+ d)(s+ c)(s+ a)2

a0 − c
(d− c)(a− c)2

e−ct +
a0 − d

(c− d)(a− d)2
e−dt

+

[
a0 − a

(c− a)(d− a)
t+

2a0a− a2 − a0(c+ d) + cd

(c− a)2(d− a)2

]
e−at

78
s+ a0

(s+ a)(s+ c)s2

a0 − a
a2(c− a)

e−at +
a0 − c
c2(a− c)

e−ct +
a0

ac
t+

ac− a0(a+ c)

a2c2

79
s2 + a1s+ a0

(s+ a)(s+ c)s2

a2 − a1a+ a0

a2(c− a)
e−at +

c2 − a1c+ a0

c2(a− c)
e−ct

+
a0

ac
t+

a1ac− a0(a+ c)

a2c2

80
s2 + a1s+ a0

(s+ a)2s2

[
a2 − a1a+ a0

a2
t+

2a0 − a1a

a3

]
e−at +

a0

a2
t+

a1a− 2a0

a3

81
s+ a0

(s+ a)2(s+ c)2

[
a0 − a

(c− a)2
t+

a+ c− 2a0

(c− a)3

]
e−at

+

[
a0 − c

(a− c)2
t+

a+ c− 2a0

(a− c)3

]
e−ct
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

82
s2 + a1s+ a0

(s+ a)2(s+ c)2

[
a2 − a1a+ a0

(c− a)2
t+

a1(a+ c)− 2(ac+ a0)

(c− a)3

]
e−at

+

[
c2 − a1c+ a0

(c− a)2
t− a1(a+ c)− 2(ac+ a0)

(c− a)3

]
e−ct

83
s2 + a1s+ a0

(s+ a)3s2

(
a2 − a1a+ a0

2a2
t2 +

2a0 − a1a

a3
t+

3a0 − a1a

a4

)
e−at

+
a0

a3
t+

a1a− 3a0

a4

84
1

(s2 + b2)s2

1

b2
t− 1

b3
sin bt

85
1

(s2 − b2)s2

1

b3
sinh bt− 1

b2
t

86
s+ a0

(s2 + b2)s2

a0

b2
t+

1

b2
− 1

b3
(a0 + b2)

1
2 sin(bt+ ψ)

ψ
4
= tan−1 b

a0

87
s2 + a1s+ a0

(s2 + b2)s2

a0

b2
t+

a1

b2
− 1

b3
[(a2

0 + b2)2 + a2
1b

2]
1
2 sin(bt+ ψ)

ψ
4
= tan−1 a1b

a0 − b2

88
1

(s2 + b2)s3

1

b4
(cos bt− 1) +

1

2b2
t2

89
1

(s2 − b2)s3

1

b4
(cosh bt− 1)− 1

2b2
t2

90
1

(s2 + b2)(s+ a)2

1

b(a2 + b2)
sin(bt− ψ) +

[
1

a2 + b2
t+

2a

(a2 + b2)2

]
e−at

ψ
4
= 2 tan−1 b

a

91
s+ a0

(s2 + b2)(s+ a)2

(a2
0 + b2)

1
2

b(a2 + b2)
sin(bt+ ψ) +

[
a0 − a
a2 + b2

t+
2a0a+ b2 − a2

(a2 + b2)2

]
e−at

ψ
4
= tan−1 b

a0

− 2 tan−1 b

a

92
[(a0 − b2)2 + a2

1b
2]

1
2

b(a2 + b2)
sin(bt+ ψ)

s2 + a1s+ a0

(s2 + b2)(s+ a)2
+

[
a2 − a1a+ a0

a2 + b2
t+

a1(b2 − a2) + 2a(a0 − b2)

(a2 + b2)2

]
e−at

ψ
4
= tan−1 a1b

a0 − b2
− 2 tan−1 b

a
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

93
a0

b2a2
− (a2

0 + b2)
1
2

b2(a2 + b2)
cos(bt+ ψ)

s+ a0

s(s2 + b2)(s+ a)2
+

[
a− a0

a(a2 + b2)
t+

2a3 − 3a0a
2 − a0b

2

a2(a2 + b2)2

]
e−at

ψ
4
= tan−1 b

a0

− 2 tan−1 b

a

94
c2 − a1c+ a0

(c2 + b2)(a− c)2
e−ct +

[(a0 − b2)2 + a2
1b

2]
1
2

b(c2 + b2)
1
2 (a2 + b2)

sin(bt+ ψ)+

a2 − a1a+ a0

(c− a)(a2 + b2)
te−at

s2 + a1s+ a0

(s2 + b2)(s+ a)2
+

(c− a)(a2 + b2)(a1 − 2a)− (a2 − a1a+ a0)(3a2 + b2 − 2ac)

(c− a)2(a2 + b2)2
e−at

ψ
4
= tan−1 a1b

a0 − b2
− tan−1 b

c
− 2 tan−1 b

a

95
1

(s2 + b2)2

1

2b3
(sin bt− bt cos bt)

96
s

(s2 + b2)2

1

2b
t sin bt

97
s2

(s2 + b2)2

1

2b
(sin bt+ bt cos bt)

98
s2 − b2

(s2 + b2)2
t cos bt

99
1

s(s2 + b2)2

1

b4
(1− cos bt)− 1

2b3
t sin bt

100
a0

b4
− [(a0 − b2)2 + a2

1b
2]

1
2

2b3
t sin(bt+ ψ1)

s2 + a1s+ a0

s(s2 + b2)2
−(4a2

0 + a2
1b

2)
1
2

2b4
cos(bt+ ψ2)

ψ1
4
= tan−1 a1b

a0 − b2
; ψ2

4
= tan−1 a1b

2a0

101
1

[(s+ a)2 + b2]s2

1

b2
0

[
t− 2a

b2
0

+
1

b
e−at sin(bt− ψ)

]
ψ
4
= 2 tan−1 b

−a
; b2

0

4
= a2 + b2

102
1

(s+ c)2[(s+ a)2 + b2]

1

(a− c)2 + b2

[
te−ct +

2(c− a)

(a− c)2 + b2
e−at +

1

b
e−at sin(bt− ψ)

]
ψ
4
= 2 tan−1 b

c− a
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

103
c2 − a1c+ a0

(a− c)2 + b2
te−ct+

[(a− c)2 + b2](a1 − 2c)− 2(a− c)(c2 − a1c+ a0)

[(a− c)2 + b2)2
e−at+

s2 + a1s+ a0

(s+ c)2[(s+ a)2 + b2]
+

[(a2 − b2 − a1a+ a0)2 + b2(a1 − 2a)2]
1
2

b[(c− a)2 + b2]
e−at sin(bt+ ψ)

ψ
4
= tan−1 b(a1 − 2a)

a2 − b2 − a1a+ a0

− 2 tan−1 b

c− a
104

1

[(s+ a)2 + b2]2
1

2b3
e−at(sin bt− bt cos bt)

105
s+ a

[(s+ a)2 + b2]2
1

2b3
te−at sin bt

106
s2 + a0

[(s+ a)2 + b2]2
b2

0 + a0

2b3
e−at sin bt− [(a2 − b2 + a0)2 + 4a2b2]

1
2

2b2
te−at cos(bt+ ψ)

ψ
4
= tan−1 −2ab

a2 − b2 + a0

; b2
0

4
= a2 + b2

107
(s+ a)2 − b2

[(s+ a)2 + b2]2
te−at cos bt

108 tan−1 b

s

sin bt

t

109 ln
s+ b

s+ a

e−at − e−bt

t

110 e
s2

4a cerf s
2
√
a

2

√
a

π
e−at

2

cerf y 4= 1−erf y 4= 1− 2√
π

∫ y
0
e−x

2
dx

111
1√

s2 + a2
J0(at)

112
1√

s2 + a2(
√
s2 + a2 + s)

1

a
J1(at)

113
1√

s2 + a2(
√
s2 + a2 + s)n

1

an
Jn(at) n ≥ 0 integer

114
1√

s2 + a2(
√
s2 + a2 + s)n

1

an

∫ t

0

Jn(at)dt n ≥ 0 integer

115
1√

s2 + a2 + s

1

a

J1(at)

t

116
1

(
√
s2 + a2 + s)n

n

an
Jn(at)

t
n > 0 integer

117
1

s(
√
s2 + a2 + s)n

n

an

∫ t

0

Jn(at)

t
dt n > 0 integer
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Unilateral Laplace Transform Transform Table [Continued]
X(s) = L+{x(t)} x(t) = L−1

+ {X(s)}

118
1

s
e−as u(t− a)

119
1

s2
e−as (t− a)u(t− a)

120
(
a

s
+

1

s2

)
e−as tu(t− a)

121
(

2

s3
+

2a

s2
+
a2

s

)
e−as t2u(t− a)

122
1

s
(e−as − e−bs) u(t− a)− u(t− b)

a < b

123
(

1− e−s

s

)2


t 0 < t ≤ 1

2− t 1 < t ≤ 2

0 2 < t

124
(

1− e−s

s

)3


1
2
t2 0 < t ≤ 1

3
4
− (t− 3

2
)2 1 < t ≤ 2

1
2
(t− 3)2 2 < t ≤ 3

0 3 < t

125
1

s2
(1− e−s)

{
t 0 < t ≤ 1

1 1 < t

126
1

s3
(1− e−s)2


1
2
t2 0 < t ≤ 1

1− 1
2
(t− 2)2 1 < t ≤ 2

1 2 < t

127
1

s(1 + e−s)

∞∑
k=0

(−1)ku(t− k)

128
1

s sinh s
2
∞∑
k=0

u(t− 2k − 1)

129
1

s cosh s
2
∞∑
k=0

(−1)ku(t− 2k − 1)

130
1

s
tanh s u(t) + 2

∞∑
k=0

(−1)ku(t− 2k)

or
∞∑
k=0

(−1)ku(t− 2k)u(2k + 2− t)

131
es − s− 1

s2(es − 1)
t−

∞∑
k=0

u(t− k)

or
∞∑
k=0

(t− k)u(t− k)u(k + 1− t)
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6.3 The Discrete-Time (Starred) Laplace Transform
While the Z transform is more compact, a discrete-time version of the Laplace transform
known as the starred Laplace transform is occasionally used in control systems. The
discrete-time Laplace transform X̃(s) of a discrete signal x[n] = x(nT ) is defined as

X̃(s) = L∗{x[n]}
∞∑

n=−∞

x[n]e−snT

where T corresponds to the discrete-time step size. Note that the discrete-time Laplace
transform is periodic in the jω direction.

In general, the sum defining the forward discrete-time Laplace transform is convergent
only over a band of σ values which define its region of convergence.

The discrete-time Laplace transform is closely related to the discrete-time Fourier trans-
form. In fact, the discrete-time Laplace transform can be viewed as the discrete-time
Fourier transform of the signal x[n]e−σnT . The discrete-time Laplace transform is related
to the Z transform according to the mapping

z = esT = eσT ejωT .

This mapping results in the mapping of jω axis of the s plane to the unit circle in the z
plane. The left-half s plane is mapped to the interior of the unit circle while the right-half
s plane is mapped to the exterior of the unit circle.

The inverse discrete-time Laplace transform is defined as

x[n] = L−1
∗ {X̃(s)} =

T

2πj

∫ σ+jωs/2

σ−jωs/2

X(s)esnT

where ωs = 2π/T .
Because the discrete-time Laplace transform is not widely used, transform tables are

not provided. The single most important transform relationship is given by

eαnTu[nT ]←→ 1

1− eαT e−sT
, Re[s] > Re[α].
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6.4 The Z Transform
The Z transform is primarily used on discrete signals (sequences) and systems. It forms
the basis of modern digital signal processing.

6.4.1 One-Dimensional Case
In some sense the Z transform is a generalization of the Discrete Fourier Transform. It
provides a techinque to apply complex analysis to discrete systems. The bilateral or two-
sided Z transform, X(z) = Z{x[n]}, of a discrete-time sequence x[n] is defined as

X(z) =
∞∑

n=−∞

x[n]z−n

where z a complex variable with z = rejω where r ≥ 0 and ω are real numbers. This
infinite power series converges only when

∞∑
n=−∞

|x[n]r−n| <∞.

The region of convergence (if it exists) is an annular region Rx− < |z| < Rx+ where
0 ≤ Rx− < ∞ and 0 < Rx+ ≤ ∞. Within the region of convergence (ROC), X(z) is an
analytic function which implies thatX(z) and all of its derivatives are continuous functions
of z. The ROC with be either an open disk, an annulus (donut) or the complement of a
closed disk. Note there there may be several (disjoint) ROCs. Also, note that a finite length
sequence has a ROC which includes all of the z plan except (possibly) z = 0 or |z| =∞.

A tighter requirement on the existence of the Z transform is that the sequence be abso-
lutely summable, i.e.,

∞∑
n=−∞

|x[n]||z|−n <∞

for z in the ROC.
The inverse Z transform is given by the contour integral,

x[n] =
1

2πj

∮
C

X(z)zn−1dz (6.1)

where C represents a counterclockwise closed contour contained in the region of conver-
gence of X(z) and including the origin (z = 0). This integral is equivalent to the sum of
the residues of X(z)zn−1 evaluated at the poles of X(z) contained inside of C. Because of
possible pole/zero cancelation, the inverse Z transform is not unique.

To compute the residues,X(z)zn−1 (assuming it is a rational function of z), is expressed
as

X(z)zn−1 =
φ(z)

(z − z0)n
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where X(z)zn−1 has n poles at z = z0 and φ(z) has no poles at z = z0. Then the residue
is given by,

Res[X(z)zn−1 at z = z0] =
1

(n− 1)!

[
dn−1

dzn−1
φ(z)

]
z=z0

In computing the Z transform of x[n], it is often convenient to decompose x[n] into
left-side and right-side sequences, evaluate the regions of convergence and determine the
overlap (if any). The overlap in regions of convergence provides the region of convergence
of the full Z transform. A left-side sequence is zero for all n > C > −∞ for some
constant C while a right-side sequence is zero for all n < C <∞.

The region of convergence (ROC) of a left-side sequence is contained in a disk with a
radius equal to the smallest magnitue (but non-zero) pole of the Z transform and may or
may not include z = 0. The region of convergence of a right-side sequence extends from
a circle of radius begining at the largest magnitude (but finite) pole of the Z transform and
extending outward. The ROC may or may not include |z| = ∞. A two-sided sequence
(which can be expressed as the sum of a left-side and a right-side sequence) has a ROC
which is an annular ring (donut) and is the intersection of the ROCs of the left-side and
right-side sequences (if such an intersection exists). The ROC is an annular ring bounded
by the smallest non-zero and largest finite poles of the Z transform

6.4.2 Relationship of the Discrete Fourier and the Z Transforms
By letting z = ejω the discrete Fourier transform (DFT) becomes a special case of the
Z transform, i.e., the Z transform evaluated on the unit circle. However, note that if the
region of convergence of the Z transform does not include the unit circle, the DFT does
not exist. Examples can be developed for which the Z transform exists but the DFT does
not. Note that because of the common use of DFT as a limit, the DFT of a sequence may
“exist” while the Z transform does not exist! For example, the sequence x[n] = cos(an) is
considered to have a DFT but since x[n] is not absolutely summable, the Z transform does
not exist.

6.4.3 Relationship of the Laplace and Z Transforms
The Z transform can be derived from the bilateral (two-sided) Laplace transform by setting
z = es. The Z transform is also closely related to the discrete-time Laplace transform (see
the discussion in the previous section).

6.4.4 Key Properties of the 1-D Z Transform
Let X(z) and Y (z) be the Z transforms of x[n] and y[n], respectively, with corresponding
regions of convergence of Rx− < |z| < Rx+ and Ry− < |z| < Ry+ . Let a and b be
complex constants.

Linearity.
Z{ax[n] + by[n]} = aX(z) + bY (z), R− < |z| < R+
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where R− = max{Rx− , Ry−} and R− = min{Rx− , Ry−}.

Sample Shift.
Z{x[n+ n0]} = zn0X(z), Rx− < |z| < Rx+ .

Note, however, that time shifting introduces zeros at z = ∞ at poles z = 0. This may
prevent convergence at these points.

Exponential Multiplication.

Z{anx[n]} = X
(z
a

)
, |a|Rx− < |z| < |a|Rx+ .

Z{a−nx[n]} = X (a) , |a|−1Rx− < |z| < |a|−1Rx+ .

Differentiation.

Z{nx[n]} = −z d
dz
X(z), Rx− < |z| < Rx+ .

Z{−(n− 1)x[n− 1]} =
d

dz
X(z), Rx− < |z| < Rx+ .

Note, however, that differentiation introduce zeros at z = ∞ at poles z = 0. This may
prevent convergence at these points.

Conjugation.
Z{x∗[n]} = X∗(z∗), Rx− < |z| < Rx+ .

Convolution.

Z

{
∞∑

k=−∞

x(k)y(n− k)

}
= X(z)Y (z), Rx− < |z| < Rx+ , Ry− < |z| < Ry+ .

The region of convergence may be larger than the intersection of the individual regions of
convergence if there are pole zero cancelations.

Z{x[n]y[n]} =
1

2πj

∮
C1

X

(
z

p

)
Y (p)p−1dp, Rx−Ry− < |z| < Rx+Ry+

or
1

2πj

∮
C2

X(p)Y

(
z

p

)
p−1dp, Rx−Ry− < |z| < Rx+Ry+

whereC1 is a counterclockwise closed contour within the regions of convergence ofX(z/p)
and Y (p) and C2 is a counterclockwise closed contour within the regions of convergence
of X(p) and Y (z/p). The region of convergence for W (z) is Rx−Ry− < |z| < Rx+Ry+

though it may be larger.

Initial Value Theorem. If x[n] = 0 for n < 0, then

x(0) = lim
z→∞

X(z).
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6.4.5 Computing the Inverse Z Transform
While the Z transform is a unique function of a given sequence, the inverse Z transform is
not. This is the result of pole/zero cancelations.

Several strategies exists for determing the inverse Z transform. The primary methods
are: table lookup, partial-fraction expansion, and power series expansion. To apply the
table lookup method, decompose the Z transform into known components. The partial-
fraction expansion method is based on determing the partial fraction expansion of a rational
Z transform (i.e., writing the Z transform in simplier terms) to determine the inverse Z
transform. Because the Z transform is a power series, the inverse can often be determined
using a power series expansion. This approach is primarily applicable to a finite length
power series.

6.4.6 Two-Dimensional Z Transform
The two-dimensional Z transform, X(z1, z2) = Z{x[m,n]}, of a discrete-time sequence
x[m,n] is defined as

X(z1, z2) =
∞∑

m=−∞

∞∑
n=−∞

x[m,n]z−m1 z−n2

where z1 and z2 are complex variables with z1 = r1e
jω1 and z2 = r2e

jω2 . This infinite
power series converges only when

∞∑
m=−∞

∞∑
n=−∞

|x[m,n]r−m1 r−n2 | <∞.

Unlike the one-dimensional case, the region of convergence (if it exists) may by a com-
plicated volume. Within the region of convergence, X(z1, z2) is an analytic function. Note
that when r1 = r2 = 1 that the 2-D Z transform is equivalent to the 2-D Fourier transform.

The inverse two-dimensional Z transform is given by the contour integral,

x[m,n] =
1

(2πj)2

∮
C1

∮
C1

X(z1, z2)zm−1
1 zn−1

2 dz1dz2 (6.2)

where C1 are closed contours contained within the region of convergence of X(z1, z2)
and which include the origin (z1 = z2 = 0). Computing the multidimensional inverse
Z transform can be difficult since there is no equivalent multidimensional version of the
residue theorem.

6.4.7 Key Properties of the 2-D Z Transform
Let X(z1, z2) and Y (z1, z2) be the Z transforms of x[m,n] and y[m,n], respectively. Re-
gions of convergence are problem dependent.
Linearity.

Z{ax[m,n] + by[m,n]} = aX(z1, z2) + bY (z1, z2).
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Sample Shift.
Z{x[m+m0, n+ n0]} = zm0

1 zn0
2 X(z1, z2).

Exponential Multiplication.

Z{ambnx[m,n]} = X(
z1

a
,
z2

b
).

Differentiation.

Z{mnx[m,n]} =
d2

dz1dz2

X(z1z2).

Note that time shifting introduces zeros at infinity at poles at the origin.
Conjugation.

Z{x∗[m,n]} = X∗(z∗1 , z
∗
2).

Convolution.

Z{
∞∑

k=−∞

∞∑
l=−∞

x[k, l]y[m− k, n− l]} = X(z1, z2)Y (z1, z2).

Z{x[m,n]y[m,n]} =
1

4π2

∮
C1

∮
C2

X

(
z1

p1

,
z2

p2

)
Y (p1, p2)p−1

1 p−1
2 dp1dp2

where C1 and C2 are closed contour within the regions of convergence enclosing the origin.
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6.5 Z Transform Tables

6.5.1 One-Dimensional Z Transform
Definition and Key Properties

x[n] = Z−1{X(z)} X(z) = Z{x[n]} Region of Convergence

1 x[n]
∞∑

n=−∞

x[n]zn Rx− < |z| < Rx+

2 ax[n] + by[n] aX(z) + bY (z) max{Rx− , Ry−} < |z| <
min{Rx− , Ry−}

3 x[n+ n0] zn0X(z) Rx− < |z| < Rx+

4 anx[n] X
(z
a

)
|a|Rx− < |z| < |a|Rx+

5 nx[n] −z d
dz
X(z) Rx− < |z| < Rx+

6 x∗[n] X∗(z∗) Rx− < |z| < Rx+

7 x[−n] X(
1

z
) 1/Rx− < |z| < 1/Rx+

8 x[n)] ∗ y[n] X(z)Y (z) max{Rx− , Ry−} < |z| <
min{Rx− , Ry−}

9 x[n]y[n]
1

2πj

∮
C1

X

(
z

p

)
Y (p)p−1dp Rx−Ry− < |z| < Rx+Ry+

1

2πj

∮
C2

X(p)Y

(
z

p

)
p−1dp Rx−Ry− < |z| < Rx+Ry+

10 Re[x[n]]
1

2
[x(z) +X∗(z∗)] Rx− < |z| < Rx+

11 Im[x[n]]
1

2j
[x(z)−X∗(z∗)] Rx− < |z| < Rx+

12 x[n+ k]u[n] zkX(z)− zk
k−1∑
i=0

x(i)z−i depends on x[n]

13 x[n− k]u[n] z−kX(z) +
k∑
i=1

x(−i)z−k+i depends on x[n]

14 x[n− k]u[n− k] z−kX(z) depends on x[n]

15 nax[n] −z d
a

dza
X(z) Rx− < |z| < Rx+

1-D Z Transform Limits

lim
n←0

f [n] = lim
z←∞

F (z)

lim
n←∞

f [n] = lim
z←1

(1− z−1)F (z)
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1-D Z Transform Transform Table

1-D Z Transform Transform Table
x[n] = Z−1{X(z)} X(z) = Z{x[n]} Region of Convergence

1 δ[n] 1 0 ≤ |z| ≤ ∞
2 δ[n−m] z−m m > 0 : 0 < |z| ≤ ∞

m < 0 : 0 ≤ |z| <∞
3 u[n] 1/(1− z−1) = z/(z − 1) |z| > 1

4 u[−n− 1] −1/(1− z−1) = −z/(z − 1) |z| < 1

5 anu[n] 1/(1− az−1) = z/(z − a) |z| > |a|
6 nanu[n] az−1/(1− az−1)2 |z| > |a|
7 anu[−n− 1] −z/(z − a) |z| < a

8 nanu[−n− 1] −az−1/(1− az−1)2 |z| < |a|

9

{
an 0 ≤ n ≤ N − 1

0 else
(1− aNzN)/(1− az−1) 0 < |z| <∞

10

(
n

m

)
an−mu(−n− 1) +z/(z − a)m+1 |z| > a

−z/(z − a)m+1 |z| < a

11 ean
1

1− eaz−1

12 an
az−1

(1− z−1)2

13 (an)2 a2z−1(1− z−1

(1− z−1)3

14 (an)3 a3 3z−2(1− z−1

(1− z−1)4
+

a3 z
−1(1− 2z−1

(1− z−1)3

15 [sin an]u[n]
1− z−1 cos a

1− 2z−1 cos a+ z−2
|z| > 1

16 [cos an]u[n]
z−1 sin a

1− 2z−1 cos a+ z−2
|z| > 1

17 [rn sin an]u[n]
1− z−1r cos a

1− 2z−1r cos a+ r2z−2
|z| > r

18 [rn cos an]u[n]
z−1r sin a

1− 2z−1r cos a+ r2z−2
|z| > r

19 nan−1u[n] z/(z − a)2 |z| > a
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1-D Z Transform Transform Table [continued]
x[n] = Z−1{X(z)} X(z) = Z{x[n]} Region of Convergence

20 cosh an
1− z−1cosh a

1− z−12cosh a+ z−2

21 sinh an
z−1sinh a

1− z−12cosh a+ z−2

22 u(n)− u(n− 2) 1 + z−1

23
1

a− b
[an − bn]

z

(z − a)(z − b)
24

1

n!
e1/z

25
1

(2n)!
cosh z1/2

6.5.2 Two-Dimensional Z Transform

6.5.3 Definition and Key Properties

x[m,n] = Z−1{X(z1, z2)} X(z1, z2) = Z{x[m,n]}

1 x(m,n)
∞∑

m=−∞

∞∑
n=−∞

x[m,n]zm2 z
n
2

2 ax[m,n] + by[m,n] aX(z1, z2) + bY (z1, z2)

3 x[m+m0, n+ n0] zm0
1 zn0

2 X(z1, z2)

4 ambnx[m,n] X
(z1

a
,
z2

b

)
5 mnx[m,n]

d2

dz1dz2

X(z1z2)

6 x∗[m,n] X∗(z∗1 , z
∗
2)

7 x[−m,−n] X(z−1
1 , z−1

2 )

8 x[m,−n] X(z1, z
−1
2 )

9 x[−m,n] X(z−1
1 , z2)

10 x[m,n] ∗ y[m,n] X(z1, z2)Y (z1, z2)

11 x[m,n]y[m,n]
1

4π2

∮
C1

∮
C2

X

(
z1

p1

,
z2

p2

)
Y (p1, p2) p−1

1 p−2
2 dp1dp2

12 Re[x[m,n]] 1
2
[x(z1, z2) +X∗(z∗1 , z

∗
2)]

13 Im[x[m,n]] 1
2j

[x(z1, z2)−X∗(z∗1 , z∗2)]

14 x[m]y[n] X(z1)Y (z2)
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2-D Z Transform Transform Table

2-D Z Transform Transform Table
x[m,n] = Z−1{X(z1, z2)} X(z1, z2) = Z{x[m,n]}

1 δ[m,n] 1
2 δ[m−m0, n− n0] z−m0

1 z−n0
2

3 u[m]u[n]
1

(1− z−1
1 )(1− z−1

2 )

4 ambnu[m]u[n]
z1z2

(z1 − a)(z2 − b)
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6.6 Partial Fraction Expansion
Partial fraction expansion is a technique to convert a rational polynomial in standard form
to a sum of low-order polynomials. Let H(s) be a rational polynomial s of the form

H(s) =

m∑
k=0

bms
m

sn +
n−1∑
l=0

als
l

.

If m ≥ n synthetic division is performed to transform H(s) into the form

H(s) =
m−n∑
i=0

cis
i +H ′(s)

where H ′(s) is also a rational polynomial with the order of the numerator (m) is less than
the order of the denominator (n). Partial fraction expansion is then continued using H ′(s)
in place of the following.

Given H(s) with m < n, the denominator is factored into simple roots, i.e.,

sn +
n−1∑
l=0

als
l =

n∏
l=0

(s− ρl).

If all the roots are distinct, H(s) can be expanded as

H(s) =
n∑
i=0

Ai
(s− ρi)

where
Ai = [(s− ρi)H(s)]|s=ρi .

If there are multiple roots, i.e., ρi = ρj for some i and j, the denominator can be expressed
as

sn +
n−1∑
l=0

als
l =

M∏
j=0

(s− ρj)Nj

where M is the number of distinct roots and Nj is the order of each root. H(s) can then be
expanded as,

H(s) =
M∑
i=0

Nj∑
i=0

Aij
(s− ρi)j

where

Aij =
1

(Nj − j)!

{
d(Nj−j)

ds(Nj−j)

[
(s− ρi)jH(s)

]}∣∣∣∣
s=ρi

.
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Related Transforms

7.1 Cosine and Sine Transforms
There are a number of different definitions of the Cosine and Sine transforms. A common
definition for the cosine transform C{f(t)} = FC(ω) is

FC(ω) =

∫ ∞
0

f(t) cosωtdt.

The inverse cosine transform is

f(t) =
2

π

∫ ∞
0

FC(ω) cosωtdω.

The corresponding definition for the sine transform S{f(t)} = FS(ω) is

FS(ω) =

∫ ∞
0

f(t) sinωtdt.

The inverse cosine transform is

f(t) =
2

π

∫ ∞
0

FS(ω) sinωtdω.

The Cosine and Sine transforms are closely related to the Fourier Transform. Note that
the Fourier transform F (ω) of a signal f(t) where f(t) = 0 for t < 0 can be expressed in
terms of the Cosine and Sine transforms as

F (ω) = FC(ω) + jFS(ω).

7.1.1 Key Properties of the Cosine and Sine Transforms

7.1.2 Cosine Transform Table
In the following table the constant a is a positive number.
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f(t) for t ≥ 0 (f(t) = 0fort < 0) FC(ω) for ω ≥ 0

1 f(t) =

{
1 t ≤ a

0 t > a

sin aω

ω

2 e−at
a

a2 + ω2

3 e−at
2 1

2

√
π/ae−ω

2/4a

7.1.3 Sine Transform Table
In the following table the constant a is a positive number.

f(t) for t ≥ 0 (f(t) = 0fort < 0) FS(ω) for ω ≥ 0

1 f(t) =

{
1 t ≤ a

0 t > a

1− cos aω

ω

2 e−at
ω

a2 + ω2

3 te−at
2

√
π/a

ω

4a
e−ω

2/4a

7.2 Hankel Transform
The pth order Hankel transform Fp(s) = Hp{f(t)} of the one sided (t ≥ 0) signal f(t) is
defined as,

Fp(s) = Hp{f(t)} =

∫ ∞
0

tf(t)Jp(st) dt

where Jp(x) is a Bessal function of the first kind of order p,

Jp(x) =
(x

2

)p ∞∑
k=0

(
1
4
x2
)k

k! Γ(p+ k + 1)

where the gamma function (for integer arguments) is

Γ(m) = m!

For non-integers and for the real part of z greater than zero,

Γ(z) =

∫ ∞
0

xze−xdx

and Γ(z + 1) = zΓ(z + 1).
For p > −1/2, the inverse Hankel transform is

f(t) = H−1
p {Fp(s)} =

∫ ∞
0

sFp(s)Jp(st) ds.
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7.3 Hartley Transform
The Hartley transform is a reciporocal (the forward and inverse transforms are identical)
transform related to the Fourier transform. The Hartley transform Ha{f(t)} = FH(ω) of
f(t) is defined as,

Ha{f(t)} = FH(ω) =
1√
2π

∫ ∞
−∞

f(t)(cosωt+ sinωt)dt

where the integral exists. In this text f(t) is assumed to be real though this may be gener-
alized. Note that

H−1
a {FH(ω)} = f(t).

Given the Hartely transform FH(ω) of f(t) the Fourier transform F (ω) can be easily
generated using reflections and additions, i.e.,

F (ω) = Even[FH(ω)]− j Odd[FH(ω)]

and
FH(ω) = Re[F (ω)]− Im[F (ω)].

Using these relationships, the key properties of the Hartley transform can be derived from
the key properties of the Fourier transform.

7.4 Hilbert Transform
The Hilbert transformH{f(t)} of f(t) is defined as,

H{f(t)} =
1

π

∫ ∞
−∞

f(τ)

τ − t
dτ

where at τ = t, the Cauchy pinciple value of the integral is used, i.e.,

H{f(t)} =
1

π
lim
ε−→0

[∫ t−ε

−∞

f(τ)

τ − t
dτ +

∫ ∞
t+ε

f(τ)

τ − t
dτ

]
,

to avoid the problem at t = τ .
The Hilbert transform is its own inverse, i.e.,

H{H{f(t)}} = f(t).

The Hilbert transform of f(t) may be obtained by a linear filtering operation with the
function h(t) = −1/(πt), i.e.,

H{f(t)} =
−1

πt
∗ f(t).

Note that since −1/(πt)←→ jsgnω, the Hilbert transform may be defined in terms of
the Fourier transform as,

H{f(t)} = F−1{jsgnω F{f(t)}}.

The Hilbert transform is unique to within a constant since the Hilbert transform of a
constant is zero.
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7.4.1 Key Properties of the Hilbert Transform
A key property of a real function f(t) which is zero for t < 0 is that the real and imaginary
parts of its Fourier transform form a Hilbert transform pair, i.e.,

H{Re[F{f(t)}]} ←→ Im[F{f(t)}]

or,
F{f(t)} = Re[F{f(t)}] + jH{Re[F{f(t)}]}.

The Hilbert transform has the following properties:

f(t) H{f(t)}
real, even real, odd
real, odd real, even

imag, even imag, odd
imag, odd imag, even

Let f(t)
H←→ H{f(t)} = F (t) and g(t)

H←→ H{g(t)} = G(t) denote Hilbert trans-
form pairs. It can easily be shown that the Hilbert transform is linear, i.e.,

H{af(t) + bg(t)} = aF (t) + bG(t)

where a and b are any constants.
Similarity is exhibited by the Hilbert transform, i.e.,

g(at)
H←→ g(at).

The Shifting theorem for Hilbert transforms state that

g(t− τ)←→ G(t− τ).

Power is preserved by the Hilbert transform.∫ ∞
−∞

g(t)g∗(t)dt
H←→
∫ ∞
−∞

G(t)G∗(t)dt

as is the autocorrelation∫ ∞
−∞

g∗(t)g(t− τ)dt
H←→
∫ ∞
−∞

G∗(t)G(t− τ)dt.

For convolution, the following properties apply:

f(t) ∗ g(t)
H←→ −F (t) ∗G(t)

H{f(t) ∗ g(t)} = F (t) ∗ g(t) = f(t) ∗G(t).
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7.4.2 Hilbert Transform Tables
Definition and Key Properties

g(t) = H{G(t)} H{g(t)} = G(t)

1 g(t)
1

π

∫ ∞
−∞

f(τ)

τ − t
dτ

2 H{g(t)} g(t)
3 g(t) F−1{jsgnω F{g(t)}}
4 af(t) + bg(t) aF (t) + bG(t)
5 g(at) G(at)
6 g(t− τ) G(t− τ)

7
∫ ∞
−∞

g(t)g∗(t)dt

∫ ∞
−∞

G(t)G∗(t)dt

8
∫ ∞
−∞

g∗(t)g(t− τ)dt

∫ ∞
−∞

G∗(t)G(t− τ)dt

9 f(t) ∗ g(t) −F (t) ∗G(t)
10 f(t) ∗ g(t) F (t) ∗ g(t) or f(t) ∗G(t)
11 constant 0

7.4.3 Hilbert Transform Table
Hilbert Transform Table

g(t) = H{G(t)} H{g(t)} = G(t)

1 g(t)
1

π

∫ ∞
−∞

f(τ)

τ − t
dτ

2 cos at sin at
3 sin at − cos at

4
sin at

t

cos at− 1

t

5 Π(t)
1

π
ln 6

∣∣∣∣t− 1/2

t+ 1/2

∣∣∣∣
7 δ(t) −1/(πt)

8
1

1 + t2
− t

1 + t2

9
d

dt
sinc t −πsinc t− 1

2
πsinc2 1

2
t

10
1

1 + t2
t

1 + t2

11
1− cos at

πt
−sin at

πt
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Chapter 8

Applications

8.0.1 Windowing
Table 8.1 lists a number of common used discrete time data windows and their properties.
In this table, the window function w(n) is defined for 0 ≤ n ≤ N/ where N is the window
length and is zero elsewhere. An extensive treatment of various windows is given by Harris
[9].

Continuous windows are given in Table 8.2. The window length is L so that the window
is defined for 0 ≤ t ≤ L.

Table 8.1: Some Common Discrete Signal Processing Windows

Mainlobe First Rolloff
Window Formula Width Sidelobe Rate
Rectangular w(n) = 1

Hamming w(n) = 25
46

+
(
1− 25

46

)
cos(2πn/N)

Generalized w(n) = α + (1− α) cos(2πn/N)

Hamming 0 ≤ α < 1

Hann w(n) = 0.5 + 0.5 cos(2πn/N)

cosm cosm(2πn/N)
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Table 8.2: Some Common Continuous Signal Processing Windows

Mainlobe First Rolloff
Window Formula Width Sidelobe Rate
Rectangular w(t) = 1

Hamming w(t) = 25
46

+
(
1− 25

46

)
cos(2πt)

Generalized w(t) = α + (1− α) cos(2πt/L)

Hamming 0 ≤ α < 1

Hann w(t) = 0.5 + 0.5 cos(2πt/L)

cosm cosm(2πt/L)



Chapter 9

Useful Identities and Facts

9.1 Trigonometric Functions
tanα = sinα/ cosα
cotα = cosα/ sinα
cscα = 1/ sinα
secα = 1/ cosα
cos2 α + sin2 α = 1

sin(α± β) = sinα cos β ± cosα sin β
cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)]

cosα cos β = 1
2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)]

cosα sin β = 1
2
[sin(α + β)− sin(α− β)]

sin(α + β) sin(α− β) = sin2 α− sin2 β = cos2 β − cos2 α
cos(α + β) cos(α− β) = cos2 α− sin2 β = cos2 β − sin2 α
sinα± sin β = 2 sin 1

2
(α± β) cos 1

2
(α∓ β)

cosα + cos β = 2 cos 1
2
(α + β) cos 1

2
(α− β)

cosα− cos β = −2 sin 1
2
(α + β) sin 1

2
(α− β)

sin 2α = 2 sinα cosα
cos 2α = 2 cos2 α− 1 = 1− 2 sin2 α = cos2 α− sin2 α
sin 3α = 3 sinα− 4 sin3 α
cos 3α = 4 cos3 α− 3 cosα
sinnα = 2 sin(n− 1)α cosα− sin(n− 2)α
cosnα = 2 cos(n− 1)α cosα− cos(n− 2)α

sin2 α = 1
2
(1− cos 2α)

cos2 α = 1
2
(1 + cos 2α)

95
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sin3 α = 1
4
(3 sinα− sin 3α)

cos3 α = 1
4
(3 cosα + cos 3α)

tan(α + β) =
tanα± tan β

1± tanα tan β

9.2 Hyperbolic Functions
sinhx = 1

2
(ex − e−x)

coshx = 1
2
(ex + e−x)

tanhx = sinhx
coshx = 1− e−2x

1 + e−2x = ex − e−x
ex + e−x

sinh2x+ cosh2x = 1
jsinhx = sin jx jcoshx = cos jx
arcsinhx = ln(x+

√
1 + x2), −∞ < x <∞

arctanhx = 1
2

ln 1 + x
1− x, −1 < x < 1

sinh(α± β) = sinhα cosh β ± coshα sinh β
cosh(α± β) = coshα cosh β ± sinhα sinh β

tanh(α± β) =
tanhα±tanh β

1±tanhα tanh β

sinh 2α = 2sinhα coshα
cosh 2α = 1 + 2sinh2α = 2cosh2 α− 1
cosh2α− sinh2α = 1
tanh2α + sec2α = 1

sinhα± sinh β = 2sinh1
2
(α± β) cosh1

2
(α∓ β)

coshα + cosh β = 2cosh1
2
(α + β) cosh1

2
(α− β)

coshα− cosh β = −2sinh1
2
(α + β) sinh1

2
(α− β)

2coshα cosh β = cosh(α + β) + cosh(α + β)
2sinhα sinh β = cosh(α + β)− cosh(α + β)
2sinhα sinh β = cosh(α + β)− cosh(α + β)

9.3 Series
N∑
k=0

zk =
zN+1 − 1

z − 1
N∑
k=1

zk =
zN+1 − z
z − 1
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∞∑
k=0

zk =
1

1− z
, |z| < 1

∞∑
k=0

kzk =
z

(1− z)2
, |z| < 1

N∑
k=1

k =
N(N + 1)

2
N∑
k=1

k2 =
N(N + 1)(2N + 1)

6
∞∑
k=0

1

(k + 1)
(−1)k = π/4

∞∑
k=1

k−2 = π2/6

∞∑
k=0

(2k + 1)−2 = π2/8

∞∑
k=0

(2k + 1)−2 = π2/8

∞∑
k=1

(−k)−2 = π2/12

9.3.1 Binomial Series
n∑
k=0

(
n
k

)
zk1z

n−k
2 = (z1 + z2)n

n∑
k=0

(
n+ k
k

)
zk =

1

(1− z)n+1

9.3.2 Taylor Series

f(x+ ∆x) = f(x) + f ′(x)∆x/1! + f ′′(x)
(∆x)2

2!
+ · · ·+ f (n−1)(x)(∆x)n−1

(n− 1)!
+Rn(∆x)

where

Rn(∆x) = f (n)(x+ θ∆x)
(∆x)n

n!
, 0 < θ < 1.

9.3.3 Maclaurin Series

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · ·+ xn−1

(n− 1)!
f (n−1)(0) +Rn

where
Rn =

xn

n!
f (n)(θx), 0 < θ < 1.
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9.3.4 Exponential and Logarithmic Series

ex =
∞∑
k=0

xk

k!

ax =
∞∑
k=0

xkk ln a

k!
, a > 0

lnx =
∞∑
k=1

1

k

(
x− 1

x

)
, x > 1/2

ln
1

1− x
=
∞∑
k=1

xk

k
, −1 ≤ x ≤ 1

ln(1 + x) =
∞∑
k=1

(−1)k−1x
k

k
, −1 ≤ x ≤ 1

ln
1

2
=
∞∑
k=1

(−1)k

k

ex =
∞∑
k=0

zk

k!

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·

sinhx =
∞∑
k=0

x2k+1

(2k + 1)!

coshx =
∞∑
k=0

x2k

(2k)!

9.3.5 Trigonometric Series

cosx =
∞∑
k=0

(−1)k
x2k

(2k)!

sinx =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

tanx =
∞∑
k=0

x2k+1

(2k + 1)!

sin−1 x = x+
1

2 · 3
x3 +

1 · 3
2 · 4 · 5

x5 +
1 · 3 · 5

2 · 4 · 6 · 7
x7 + · · ·

cos−1 x = π/2− sin−1 x

tan−1 =


∞∑
i=0

(−1)ix2i+1

2i+ 1
|x| < 1

π

2
−
∞∑
i=0

(−1)i

(2i+ 1)x2i+1
x > 1
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√
x = 1− (x− 1)

2
+

(x− 1)2

2 · 4
− · · ·

9.3.6 Riemann’s Zeta Function

ζ(p) =
∞∑
n=1

1

np

Note that ζ(2) = π2/2.

9.4 Probability Densities
The characteristic function Ψx(ω) of a probability density px(x) is defined as,

Ψx(ω) = E[ejωx] =

∫ ∞
−∞

ejωxpx(x)dx

where E[·] denotes expectation. Note that the characteristic function is the inverse Fourier
transform of the probability density px(x). The mth moment E[xm], if it exists, is given by,

E[xm] = (−j)m dm

dωm
Ψx(ω)

∣∣∣∣
ω=0

m > 0

Table 9.1 lists the properties and characteristic functions of a number of common probabil-
ity functions. Continuous densities are denoted by lower case p(x) while discrete distribu-
tions use capital P (n).
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Table 9.1: Common probability densities and characteristic functions

Probability Characteristic
Name Distribution Mean Variance Function

Gaussian p(x) = 1√
2πσ

e−(x− µ)2/2σ2
µ σ2 ejωµ− σ

2ω2/2

−∞ < x <∞ σ > 0 ∞ < µ <∞

Uniform p(x) = 1

b− a a < x < b (a+ b)/2 (b− a)2/12 j ejω(a− b)
ω(b− a)

−∞ < a < b <∞

Bernouli P (x) =

{
1− p x = 0

p x = 1
p p(1− p) 1− p+ pejω

0 < p < 1

Binomial P (x) =

(
n
x

)
pxqn−x p p(1− p) (1− p+ pejω)n

0 < p < 1, x = 0, 1, . . . , n
n = 1, 2, 3, . . .

Hypergeometric P (x) =

 R
x

 N −R
n− x


 R
x

 nR/N R
N (1− R

N ) Polynomial in

N = 1, 2, 3, . . . R = 0, 1, . . . , N , ejω

n = 0, 1, . . . , N x = 1, . . . , n ×nN−nN−1

Poisson P (n) = λn

n! e
−λ λ λ eλe

jω−λ

λ > 0, n = 0, 1, 2, . . .

Exponential p(x) = λe−λx λ > 0, x > 0 λ−1 λ−2 λ
λ−jω

Gamma p(x) = λνxν−1

4Γ(ν)
e−λx ν/λ ν/λ2

(
λ

λ−jω

)
λ > 0, ν > 0, x > 0

Rayleigh x
σ2 e
−x2/2σ2

σ
√
π/2 σ2(2− π/2) (1 + jσω

√
π/2)(1+

σ > 0, x > 0 erf(jσω))e−σ
2ω2/2

Inverse p(x) = a√
2π
x−3/2e−a

2/2x N/A N/A e−a
√

2ωe−jπ/4

Gaussian a > 0, x > 0

Bilateral p(x) = λ
2 e
−λ|x| λ > 0 0 2λ−2 λ2

λ2+ω2

Exponential −∞ < x <∞

Beta p(x) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α

α+ β
αβ

(α+ β)2(α+ β + 1)
Γ(α+β)

Γ(α)

α > 0, β > 0, 0 < x < 1

∞∑
n=0

Γ(α+ β)

Γ(α+ β + n)

(jω)n

k!

Cauchy p(x) = α
π(x2+α2) xα > 0 N/A N/A e−α|ω|

−∞ < x <∞
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9.5 Greek Alphabet
A, α alpha I, ι iota Σ, σ sigma
B, β beta K, κ kappa T, τ tau
Γ, γ gamma Λ, λ lambda Υ, υ upsilon
∆, δ delta M, µ mu Φ, φ phi
E, ε, epsilon V, ν nu C, χ chi
Z, ζ zeta Ξ, ξ xi Ψ, ψ psi
N, η eta Π, π pi Ω, ω omega
Θ, θ theta P, ρ rho

9.6 Fundamental Physical Constants
The following table lists a few useful constants and their units.

Constant Symbol Value Units
pi π 3.141592653589793238
natural number e 2.718281828459045235
Euler’s constant γ 0.5772157
golden ratio φ 1.618034
speed of light* c 2.99792458×108 m/s
atomic mass unit u 1.6605655×10−27 kg
Avogadro’s constant NA 6.0231×1023 mol−1

electric field constant* ε0 8.854187818×10−23 JK−1

electron volt eV 1.602176634×10−19 J (exact)
permeability constant* µ0 4π × 10−7 H/m (exactly)
Impedence of free space Z 376.7304 = µ0c Ω
gravitational constant g 6.6732×10−11 Nm2/kg2

Boltzmann’s constant k 1.30622×10−23 J K−1

Faraday constant F 96485.33212 C mol−1

electron charge e 1.60219×10−19 C
Plank’s constant h 6.62620×10−34 Js
reduced Plank’s constant ~ h/2π
molar gass constant R 8.314462618 J mole−1 K−1

Ideal gas constant R0 8.31434×10−3 J kmole−1/K
Earth gravity acceleration g 9.80665 m/s2

Standard atmosphere atm 101325 N/m2 (exactly)
Electron rest mass Me 9.109558×10−31 kg
Proton rest mass Mp 1.672614×10−27 kg
Neutron rest mass Mn 1.67492×10−27 kg

* in a vacuum
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9.7 SI and MKS Units
Name Symbol Units Use
ampere A basic unit electrical current
candela cd basic unit luminous intensity
coulomb C A s electric charge
electron volt* eV fundamental electric charge
farad F A s/V capacitance
gauss* G magnetic field strength
henry H V s/A inductance
hertz hz s−1 frequency
joule J N m energy
kelvin K basic unit temperature
kilogram kg basic unit mass
lumin lm cd sr amount of light
lux lx lm/m2 illumination density
meter m basic unit length, distance
mole mol basic unit atomic count
newton N kg m/s force
ohm Ω V/A electrical resistence
pascal P N/m2 pressure
radian rad basic unit angle
second s basic unit time, period
steradian sr basic unit solid angle
telsa T Wb/m2 magnetic flux density
volt V W/A electic potential,

voltage, electromotive force
watts W J/s power
wave number k m−2 spatial frequency
weber Wb V s magnetic flux

* Not an MKS unit

9.8 Miscellaneous

9.8.1 Other Geophysical Constants
Constant Symbol Value Units
Astronomical Unit AU 1.496× 108 km
Lightyear ly 9.4605× 1012 km
Parsec pc 3.0856× 1013 km
Equitorial radius of the Earth 6.37816× 103 km
Polar radius of the Earth 6.35677× 103 km
Average radius of the Earth RE 6.37102× 103 km
Mass of the Earth ME 5.9758× 1024 kg
Oblatness of the Earth f 0.003393 (none)
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9.8.2 Standard Unit Multiples
The following table presents standard names and abreviations for unit multiples.

Name Symbol Factor
atto a 10−18

femto f 10−15

pico p 10−12

nano n 10−9

micro µ 10−6

milli m 10−3

centi c 10−2

deci d 10−1

kilo k 103

mega M 106

giga G 109

tera T 1015

peta P 1018

9.8.3 Roots of Polynomial Equations
Quadratic: ax2 + bx+ c = 0

x =
1

2a

(
−b±

√
b2 − 4ac

)
When a, b, and c are real the following cases occur:
1. b2 − 4ac > 0: two real roots.
2. b2 − 4ac = 0: one real root.
2. b2 − 4ac < 0: two complex roots.

Cubic: y3 + py2 + qy + r = 0

Substitute y = x− p/3 to obtain x3 + ax+ b = 0 where

a = (3q − p2)/3

b = (2p3 − 9pq + 27r)/27

Solutions for x are then given by,

x = a+ b, ±
√
−3

a− b
2

+
a+ b

2
.

When p, q, and r are real the following cases occur:
1. 27b2 + 4a3 > 0: one real root, two conjugate imaginary roots.
2. 27b2 + 4a3 = 0: three real roots, at least two will be equal.
3. 27b2 + 4a3 < 0: three real, unequal roots.
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9.8.4 Combinations and Permutations
The number of combinations of m distinct things taken n at a time is:(

m
n

)
=

m!

n!(m− n)!

where, by definition, (
m
0

)
= 1.

The number of permutations of m distinct things taken n at a time is m!/(m − n)!.
A useful approximation for the factorial function is n! ≈ e−nnn

√
2πn. Note that n! =

Γ(n+ 1) and xΓ(x) = Γ(x+ 1) with

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Note that Γ(1/2) =
√
π.

9.8.5 Spheres and Circles
Let r be the radius, then:

Parameter Formula
perimeter of a circle 2πr

area of a circle πr2

surface area of a sphere 4πr2

volume of a sphere 4
3
πr3

9.8.6 Ellipse
Let a and b be the semi-major and semi-minor radii, respectively The area of an ellipse is
πab. Eccentricity E of ellipse is defined as

E =

√
a2 − b2

a

The perimeter p of an ellipse is given by

p = 4a

∫ π/2

0

√
1− e2 sin2 θ dθ

p = 2aπ

[
1−

(
1

2

)2

E2 −
(

1 · 3
2 · 4

)2
E4

3
−
(

1 · 3 · 5
2 · 4 · 6

)2
E6

5
· · ·

]
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9.8.7 Matrix Inversion
The inverse of 2×2 and 3×3 matrices are[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
 a11 a12 a13

a21 a22 a23

a31 a32 a33

−1

=
1

a12a23a31 − a13a22a31 + a13a21a32 − a12a21a33 + a11a22a33

·

 a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22

a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23

a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21


More generally, let the matrix A be partitioned into submatrices B, C, D, and D,

A =

[
B C
D E

]
.

Then A−1 can be expressed as (assuming inverses exist),

A−1 =

[
W X
Y Z

]
where

W = (B − CE−1D)−1

Z = (E −DB−1C)−1

X = −B−1CZ

Y = −E−1DW.

9.8.8 Matrix Pseudoinverse
For a m× n matrix A, the Moore-Penrose pseudoinverse A† is defined as

A† =
(
ATA

)−1
AT

which provides a least-square solution to

Ax = b x̂ = A†b

where T denotes transpose and x̂ is an estimate of x. The rank of A† is the minimum of m
and n.
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9.8.9 Vector Arithmetic
Let a and b be scalars and A, B, and C be vectors of compatible dimensions with elements
Ai, Bi, and Ci, respectively. Then,

A ·B = A1B1 + A2B2 + A3B3

A×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
∇2A = ∇(∇ · A)−∇× (∇× A)

A×B = −B × A
A× (B × C) = (A · C)B − (A ·B)C

A · (B × C) = B · (C × A) = C · (A×B)

A ·B = B · A
∇(ab) = a∇b+ b∇a

∇ · (aA) = a∇ · A+ A · ∇a
∇× (aA) = a(∇× A)− A×∇a
∇ · (A+B) = ∇ · A+∇ ·B
∇× (A+B) = ∇× A+∇×B
∇× (A×B) = A(∇ ·B) + (B · ∇)A−B(∇ · A)− (A · ∇)B

∇ · (A×B) = B · (∇× A)− A · (∇×B)

∇ · (∇× A) = 0

∇×∇a = 0

The angle θ between the vectors A and B is

θ = cos−1

(
A ·B
|A| |B|

)
.

The projection of the vector B onto A is

A ·B
|A|

A.
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9.8.10 Coordinate Systems and Transformations
Coordinate System Transformations

From:
To: Cartesian Spherical Cylindrical
Cartesian x = r sin θ cosφ x = ρ cosφ

(x, y, z) y = r sin θ sinφ y = ρ sinφ
z = r cos θ z = z

Spherical r =
√
x2 + y2 + z2 r =

√
ρ2 + z2

θ = cos−1(z/r) (r, φ, θ) θ = cos−1(z/r)
φ = tan−1(y/x) φ = φ

Cylindrical ρ =
√
x2 + y2 ρ = r sin θ

φ = tan−1(y/x) φ = φ (ρ, φ, z)
z = z z = r cos θ

Note for polar coordinates, use cylindrical with z = 0 or spherical with θ = π/2.

9.8.11 Partial Derivatives in Various Coordinate Systems
In the following, symbols with hats are unit vectors in the direction of the indicated coor-
dinate.

Divergence (∇ · F)

Given a vector function F the divergence ∇ · F is:
Cartesian: F = (Fx(x, y, z), Fy(x, y, z), Fz(z, y, z))

∇ · F =
∂

∂x
Fx +

∂

∂y
Fy +

∂

∂z
Fz

Cylindrical: F = (Fρ(ρ, φ, z), Fρ(ρ, φ, z), Fz(ρ, φ, z))

∇ · F =
1

ρ

∂

∂ρ
(ρFρ) +

1

ρ

∂

∂φ
Fφ +

∂

∂z
Fz

Spherical: F = (Fr(r, θ, φ), Fθ(r, θ, φ), Fφ(r, θ, φ))

∇ · F =
1

r2

∂

∂r
(r2Fr) +

1

r sin θ

∂

∂θ
(Fφ sin θ) +

1

r sin θ

∂

∂φ
Fφ

Gradient (∇ · S)

Given a scalar function S the gradient ∇S is:
Cartesian: S(x, y, z)

∇S =
∂

∂x
Sx̂+

∂

∂y
Sŷ +

∂

∂z
Sẑ
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Cylindrical: S(ρ, φ, z)

∇S =
1

ρ

∂

∂ρ
Sρ̂) +

1

ρ

∂

∂φ
Sφ̂+

∂

∂z
Sẑ

Spherical: S(r, θ, φ)

∇S =
∂

∂r
Sr̂ +

1

r

∂

∂θ
Sθ̂ +

1

r sin θ

∂

∂φ
Sθ̂

Curl (∇× F)

Given a vector function F the curl∇× F is:
Cartesian: F = (Fx(x, y, z), Fy(x, y, z), Fz(z, y, z))

∇× F =

(
∂

∂y
Fz −

∂

∂z
Fy

)
x̂+

(
∂

∂z
Fx −

∂

∂x
Fz

)
ŷ +

(
∂

∂x
Fy −

∂

∂y
Fx

)
ẑ

Cylindrical: F = (Fρ(ρ, φ, z), Fρ(ρ, φ, z), Fz(ρ, φ, z))

∇× F =

(
1

ρ

∂

∂φ
Fz −

∂

∂z
Fφ

)
ρ̂+

(
∂

∂z
Fρ −

∂

∂ρ
Fz

)
φ̂+

1

ρ

(
∂

∂φ
(ρFφ)− ∂

∂φ
Fρ

)
ẑ

Spherical: F = (Fr(r, θ, φ), Fθ(r, θ, φ), Fφ(r, θ, φ))

∇× F =
1

r sin θ

(
∂

∂θ
(Fφ sin θ)− ∂

∂φ
Fθ

)
r̂ +

1

r

(
1

sin θ

∂

∂φ
Fr −

∂

∂φ
(rFφ)

)
θ̂

+
1

r

(
∂

∂r
(rFθ)−

∂

∂θ
Fr

)
φ̂

Laplacian (∇2 · S)

Given a scalar function S the Laplacian ∇2S is:
Cartesian: S(x, y, z)

∇2S =
∂2

∂x2
S +

∂2

∂y2
S +

∂2

∂z2
S

Cylindrical: S(ρ, φ, z)

∇2S =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
S

)
+

1

ρ2

∂2

∂φ2
S +

∂2

∂z2
S

Spherical: S(r, θ, φ)

∇2S =
1

r2

∂

∂r

(
r2 ∂

∂r
S

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ
S

)
+

1

r2 sin2 θ

∂2

∂φ2
S
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Differential Elements

The differential length dl, differential area ds and differential volume dv are,

dl ds dv
Cartesian x̂dx+ ŷdy + ẑdz x̂dydz + ŷdxdz + ẑdxdy dxdydz

Cylindrical ρ̂dρ+ φ̂ρdφ+ ẑdz ρ̂ρdφdz + φ̂dρdz + ẑρdρdφ ρdρdφdθ

Spherical r̂dr + θ̂rdθ + φ̂r sin θdφ r̂r2 sin θdθdφ+ θ̂r sin θdrdφ+ φ̂rdrdθ r2 sin θdrdθdφ

Vector Integration

Let dl be the differential length, ds be the differential area, and dv be the differential volume
with scalar and vector functions, a and A, respectively. Then,∫

volume
∇ · Adv =

∮
surface

A · ds∫
volume

∇Adv = −
∮

surface
A× ds∫

volume
∇adv =

∮
surface

ads∫
surface

(∇× A)ds =

∮
line

A · dl∫
surface

An ×∇ads =

∮
line

adl

9.8.12 Some Useful Integrals∫
xeaxdx =

1

a2
eax(ax− 1)∫

xe−x
2

dx = −1

2
e−x

2∫
eax

b+ ceax
dx =

1

ac
log(b+ ceax)∫

eax sin(bx)dx =
eax[a sin bx− b cos bx]

a2 + b2∫
eax cos(bx)dx =

eax[a cos bx+ b sin bx]

a2 + b2∫
xeax sin(bx)dx =

xeax[a sin bx− b cos bx]

a2 + b2∫
xeax cos(bx)dx =

xeax[a sin bx+ b cos bx]

a2 + b2
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cos, 7, 95
csc, 95
δ function, 7, 31
ω, 57
ω form, 9
π, 96
sec, 95
σ, 57
sin, 7, 95
tan, 95
f form, 9
Z transform, 77
Z transform definition, 82, 84
Z transform limits, 82
Z transform properties, 82, 84
2-d Z transform, 80

absolutely summable, 2, 77
ampere, 102
angle, 106
anti-causal, 2
anti-Hermitian, 2
arctanh, 96
area, 104
atomic mass unit, 101
atto, 103
autocorrelation, 61
Avogadro’s constant, 101

backward transform, 9
Bernouli, 100
Bessal function, 88
Beta, 100
bilateral Z transform, 77
Bilateral Exponential, 100
bilateral Laplace transform, 57
Binomial, 100
binomial series, 97

Boltzmann’s constant, 101
bounded, 2, 5

candela, 102
Cartesian, 107–109
cartesian, 107
Cauchy, 100
causal, 2
causality, 58
centi, 103
characteristic function, 99
Chebychev, 52
Chebychev Polynomials, 52
Chebychev polynomials, 52
circle, 104
circumference, 104
combinations, 104
commutative, 3
complex exponentials, 7
complex signals, 1
composite function, 16
computing the Fourier transform, 15
conjugation, 79, 81
constants, 101
continuous convolution, 3
continuous gate, 4
continuous signal, 1
contour integral, 77, 80
convergence, 77, 80
convolution, 3, 13, 15, 47, 61, 79, 81
coordinate system transformation, 107
correlation, 3
correlation function, 3
cosecant, 95
cosh, 96
cosine, 95
cosine transform, 87
cotangent, 95

113



114 INDEX

coulomb, 102
cross product, 106
cubic, 103
curl, 108
Cylindrical, 107–109
cylindrical, 107

deci, 103
delta function, 7
derivative, 107
DFS, 16, 37, 39, 42
DFT, 16, 37, 39, 43
differential area, 109
differential length, 109
differential volume, 109
differentiation, 13, 14, 60, 79, 81
direct method, 15
Dirichlet conditions, 11
discete Laplace transform, 57
discrete convolution, 3
discrete Fourier series, 16, 37, 39, 42
discrete Fourier transform, 16, 37, 39, 43, 78
discrete functions, 5
discrete gate, 6
discrete signals, 1, 3, 5, 39
discrete signum, 6
discrete time Fourier transform, 16, 37, 38,

41
discrete unit step, 5
discrete-time Laplace transform, 76
discrete-time signal, 1
distribution, 99
divergence, 107
divide and conquer, 16
dot product, 106
doublet, 32
DTFT, 16, 37, 38, 41
duality, 12, 14

earth, 102
Earth gravity acceleration, 101
eccentricity, 104
electric field constan, 101
electrical current, 102
electron charge, 101

Electron rest mass, 101
electron vol, 101
electron volt, 102
ellipse, 104
energy theorem, 14
Euler functions, 6, 45, 46
Euler’s constant, 101
even, 2, 47
existence, 10, 58, 77
expectation, 99
expected value, 3
Exponential, 100
exponential Fourier series, 46
exponential series, 98

factorial, 104
farad, 102
Faraday constan, 101
Fast Fourier Transform, 40
fast Fourier transform, 16, 40
femto, 103
FFT, 16, 40
FFT), 40
final value, 61
finite difference, 61
first kind, 52
forward transform, 9
Fourier series, 16, 33, 34, 45, 46
Fourier series definition, 48
Fourier series properties, 47, 48
Fourier Transform, 22, 34
Fourier transform, 59
Fourier transform definition, 22, 24, 27, 29
Fourier transform properties, 22, 24, 27, 29
Fourier transform table, 23, 25, 29, 30
frequency, 10
FS, 16
fundamental period, 47

Gamma, 100
gamma function, 88, 104
gauss, 102
Gaussian, 100
Gaussian pulse, 5
generalized functions, 5, 7, 31, 32
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Geophysical Constants, 102
Gibb’s phenomenon, 35, 47
giga, 103
Glossary, ix
golden ratio, 101
gradient, 106, 107
gravitational constant, 101
Greek, 101

Hankel transform, 88
Hartley transform, 89
Heavyside, 5, 7
Heavyside function, 4
henry, 102
Hermit polynomials, 52
Hermitian, 2
hertz, 102
Hilbert transform, 89
Hilbert transform definition, 91
Hilbert transform properties, 91
Hilbert transform table, 91
hyperbolic functions, 96
Hypergeometric, 100

i (imaginary number), 1
Ideal gas constant, 101
identities, 95
imaginary number, 1
Impedence of free space, 101
impulse, 5, 31
initial value, 61, 79
initial-value problems, 57
integrals, 109
integration, 13, 14, 61
inverse, 105
inverse Z transform, 80
inverse 2-d Z transform, 80
inverse DTFT, 38
inverse Fourier transform, 16
Inverse Gaussian, 100
inverse Laplace transform, 59

j (imaginary number), 1
joule, 102

kelvin, 102

kernal, 35
kilo, 103
kilogram, 102

Laguere polynomials, 52
Laplace transform, 57, 76, 78
Laplace transform definition, 62
Laplace transform limits, 62
Laplace transform properties, 62
LaPlace transform table, 63
Laplacian, 108
left-side sequence, 78
Legendre polynomials, 52, 55
limit, 31, 32
limit functions, 7, 8
linear, 12, 14
linearity, 59, 78, 80
logarithic series, 98
lumin, 102
lux, 102

Macluarin series, 97
mass, 102
matrix, 105
Matrix Inversion, 105
Matrix Pseudoinverse, 105
mega, 103
meter, 102
micro, 103
milli, 103
minimax, 54
MKS units, 102
molar gass constant, 101
mole, 102
Moore-Penrose, 105
multiple dimensions, 4, 14

nano, 103
natural number, 101
necessary conditions, 10
Neutron rest mass, 101
newton, 102
Nyquist frequency, 1

oblatness, 102
odd, 2, 47
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ohm, 102
one-sided Laplace transform, 57
orthogonal polynomials, 52
orthogonal transform, 45, 52
Orthogonal Transforms, 51
overlap, 78

Parseval’s formula, 13, 15, 47
pascal, 102
perimeter, 104
period, 6, 39
periodic, 32, 38, 39
periodic functions, 6
permeability constant, 101
permuations, 104
peta, 103
physical constants, 101
pi, 96, 101
picket fence function, 8
pico, 103
Pictitorial Fourier Transforms, 19
Plank’s constant, 101
Poisson, 100
pole, 78, 80
poles, 58
polynomial equations, 103
power, 102
probability density, 99
projection, 106
Proton rest mass, 101
pseudoinverse, 105
pyramid, 4

quadratic, 103

Rademaker polynomials, 52
radian, 102
radian frequency, 10
radius, 102, 104
radix, 40
random processes, 3
rank, 105
rational function, 77
rational polynomial, 58
Rayleigh, 100
real signals, 1

reciporocal, 89
rect function, 4
recursion relation, 53, 55
reduced Plank’s constant, 101
region of convergence, 58, 77, 78
residues, 77
right-side sequence, 78
ROC, 77
root form, 9
roots, 103

sample period, 1
sample shift, 79, 81
sampling, 1
sampling function, 8
sampling property, 32
scalar, 106, 107
scalar functions, 109
scaling, 2, 12, 14
secant, 95
second, 102
second kind, 53
semi-major, 104
semi-mino, 104
sequence, 39
sequences, 1
series, 96
shah function, 8
SI units, 102
sifting property, 16, 32
sign function, 4
signum, 4
similarity, 60
sinc, 5
sine, 95
sine transform, 87
sinh, 96
spatial frequency, 10
speed of light, 101
sperical, 107
sphere, 104
Spherical, 107–109
stability, 58, 59
stable, 2
Standard atmosphere, 101
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starred Laplace transform, 76
step function, 3
steradian, 102
sufficient conditions, 10
surface area, 104
surface integration, 109
symmetry, 12, 14, 54, 56

tangent, 95
tanh, 96
Taylor series, 97
Tchebycheff, 52
telsa, 102
tera, 103
time, 10
time autocorelation, 3
time reversal, 60
time shift, 2, 60
time shifting, 13, 14
transform method, 16
triangle, 4
trignometric series, 98
Trigonometric Functions, 95
trigonometric functions, 7
twiddle factor, 39
two-sided, 77
two-sided Laplace transform, 57

Uniform, 100
unilateral Laplace transform, 57
unit cube, 4
unit gate function, 4
unit multiples, 103
unit square, 4
unit step function, 32
units, 102

vector, 106, 107
Vector Arithmetic, 106
vector functions, 109
Vector Integration, 109
vector projection, 106
volt, 102
volume, 104
volume integration, 109

Walsh polynomials, 52
watts, 102
wave, 102
wavenumber, 10
weber, 102
weight, 7
wide sense stationary, 3

zero, 80
zeros, 58
zeta function, 99
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