
Linear Momentum Examples

Examples utilizing the linear momentum principle to illustrate the use of:
1. Stationary control volumes

2. Control volumes translating at constant speed
3. Accelerating control volumes

4. Accelerating control volumes with changing mass.

Recall that the linear momentum principle in integral form is expressed as
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where Vf represents the velocity of the fluid inside of the control volume with respect to an inertial
coordinate system, Vs represents the velocity of the fluid at the control surfaces with respect to an intertial

coordinate system, and Vr represents the velocity of the fluid at the control surfaces with respect to the

control surface.

For the system shown below the velocity of the jet, Vj, is steady with respect to an inertial coordinate

system.  Determine the reaction force exerted on the control volume if

1. Vc=0.

The only force acting on the control volume is the reaction force and since there are no changes with time

the unsteady term drops from Eq. (1).  Writing the x component and assuming 1-D flow we get.
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2. Now allow the plate to move at constant speed, Vc.

Again there are no changes with time and the unsteady term drops.  In a earth fixed reference frame the

fluid velocity in x at 1 is Vj and at 2 the fluid velocity in x is the speed of the plate, Vc.  Also with respect to
the control surface at 1 the magnitude of the fluid velocity is Vj-Vc and at 2 it is this same amount.  After

substitution of these values Eq. 1 becomes
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Note that this is the exact result that results if we transform the control volume to a stationary control

volume and use relative velocities.  Doing so the velocity in x at 1 is Vj-Vc and so also is the velocity term

in the dot product.  At 2 the velocity in x is now 0. The result will always be the same regardless if you
transform and use the c.v. as the coordinate system or not since the c.v. is an inertial coordinate system.

3. Now allow the plate to accelerate and move at Vc(t).

For an accelerating c.v. the unsteady term does not drop out.  The velocities in x at 1 and 2 are exactly as

above and the only difference is the addition of an unsteady term.
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The unsteady term represents the acceleration of the plate and the fluid inside of the control volume.  The

plate is moving at speed Vc however the x component of velocity of the fluid inside of the c.v. varies with
location, from Vj at 1 to Vc at 2.  For most engineering applications to total mass of fluid in a c.v. is much

much smaller than the mass of the moving object and is generally neglected.  Thus the result is

F m
dV

dt
V V ARx plate

c
j c j= − −( )ρ

2
(5)

If there is no reaction force the acceleration of the block is simply
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Note that in trying to solve the above problem incorrectly by using a coordinate system attached to the c.v.

we would never end up with an acceleration term.  Thus herein lies the importance of using the appropriate
frame of reference.    For stationary or steadily moving control volumes the mathematics will be simpler by

using a reference frame on the c.v.  However, if the c.v. is accelerating use a coordinate system fixed on
earth.

4. Ascending Rocket Problem

Let us now consider the problem of an accelerating rocket with a changing mass (see the figure on the

figure on the following page).  The rocket is moving at Vc(t) and the burned fuel exits the rocket at Ve/r

relative to the rocket.



Conservation of mass for the rocket says:
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Since the rocket is accelerating, the velocity of the fluid at the exit with respect

to earth is Vc(t)-Ve/r.  Also the velocity of the fluid inside of the rocket is the
same as the rocket, Vc(t).  The forces that act on the rocket are gravity, Mcvg, and

aerodynamic drag, D.  Making the above substitutions into (1) gives
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Expanding we get
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Note however that the terms in brackets on the right hand side of Eq. (9) is the
conservation of mass and is thus equal to zero.  Making this simplification we

get the rocket equation
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The ρVe/r
2Ae term is generally referred to as the rockets thrust and can be increased by one of two

means, either increasing the mass flux out of the nozzle or increasing the velocity of the gas, and

preferably both.  Eq. 10 is valid for low trajectory rockets, for rockets that travel high into or out
of the atmosphere however, the earth can no longer be assumed an inertial coordinate system.  In

this case we can write a different equation that is with respect to the sun and it will include one
additional acceleration term, the coriolis acceleration.
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