CHAPTER 4
FLUID KINEMATICS

PROPRIETARY AND CONFIDENTIAL

This Manual is the proprietary property of The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and protected by copyright and other state and federal laws. By opening and using this Manual the user agrees to the following restrictions, and if the recipient does not agree to these restrictions, the Manual should be promptly returned unopened to McGraw-Hill: This Manual is being provided only to authorized professors and instructors for use in preparing for the classes using the affiliated textbook. No other use or distribution of this Manual is permitted. This Manual may not be sold and may not be distributed to or used by any student or other third party. No part of this Manual may be reproduced, displayed or distributed in any form or by any means, electronic or otherwise, without the prior written permission of McGraw-Hill.
Chapter 4 Fluid Kinematics

Introductory Problems

4-1C Solution We are to define and explain kinematics and fluid kinematics.

Analysis Kinematics means the study of motion. Fluid kinematics is the study of how fluids flow and how to describe fluid motion. Fluid kinematics deals with describing the motion of fluids without considering (or even understanding) the forces and moments that cause the motion.

Discussion Fluid kinematics deals with such things as describing how a fluid particle translates, distorts, and rotates, and how to visualize flow fields.

4-2C Solution We are to discuss the difference between derivative operators d and ∂.

Analysis Derivative operator d is a total derivative, and implies that the dependent variable is a function of only one independent variable. On the other hand, derivative operator ∂ is a partial derivative, and implies that the dependent variable is a function of more than one independent variable. When $\partial u/\partial x$ appears in an equation, we immediately know that u is a function of x and at least one other independent variable.

Discussion In our study of fluid mechanics, velocity is usually a function of more than one variable, although for some simple problems, we approximate it as a function of only one variable so that the problem can be solved analytically.

4-3 Solution We are to write an equation for centerline speed through a nozzle, given that the flow speed increases parabolically.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 3 The water is incompressible.

Analysis A general equation for a parabola in the x direction is

General parabolic equation:

$$u = a + b(x - c)^2$$ \hspace{1cm} (1)

We have two boundary conditions, namely at $x = 0$, $u = u_{\text{entrance}}$ and at $x = L$, $u = u_{\text{exit}}$. By inspection, Eq. 1 is satisfied by setting $c = 0$, $a = u_{\text{entrance}}$ and $b = (u_{\text{exit}} - u_{\text{entrance}})/L^2$. Thus, Eq. 1 becomes

Parabolic speed:

$$u = u_{\text{entrance}} + \frac{(u_{\text{exit}} - u_{\text{entrance}})}{L^2} x^2$$ \hspace{1cm} (2)

Discussion You can verify Eq. 2 by plugging in $x = 0$ and $x = L$.

PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.
Solution
For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its location.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis
The velocity field is
\[\vec{V} = (u, v) = \left(a^2 - (b - cx)^2 \right) \hat{i} + (-2cbx + 2c^2 xy) \hat{j} \] (1)

At a stagnation point, both \(u \) and \(v \) must equal zero. At any point \((x, y)\) in the flow field, the velocity components \(u \) and \(v \) are obtained from Eq. 1,

Velocity components:
\[u = a^2 - (b - cx)^2 \quad v = -2cbx + 2c^2 xy \] (2)

Setting these to zero yields

Stagnation point:
\[0 = a^2 - (b - cx)^2 \quad x = \frac{b-a}{c} \]
\[v = -2cbx + 2c^2 xy \quad y = 0 \] (3)

So, yes there is a stagnation point; its location is \(x = (b-a)/c, y = 0 \).

Discussion
If the flow were three-dimensional, we would have to set \(w = 0 \) as well to determine the location of the stagnation point. In some flow fields there is more than one stagnation point.

Solution
For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its location.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis
The velocity field is
\[\vec{V} = (u, v) = (-0.781 - 4.67x) \hat{i} + (-3.54 + 4.67y) \hat{j} \] (1)

At a stagnation point, both \(u \) and \(v \) must equal zero. At any point \((x, y)\) in the flow field, the velocity components \(u \) and \(v \) are obtained from Eq. 1,

Velocity components:
\[u = -0.781 - 4.67x \quad v = -3.54 + 4.67y \] (2)

Setting these to zero yields

Stagnation point:
\[0 = -0.781 - 4.67x \quad x = -0.16724 \]
\[0 = -3.54 + 4.67y \quad y = 0.75803 \] (3)

So, yes there is a stagnation point; its location is \(x = -0.167, y = 0.758 \) (to 3 digits).

Discussion
If the flow were three-dimensional, we would have to set \(w = 0 \) as well to determine the location of the stagnation point. In some flow fields there is more than one stagnation point.
4-6
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its location.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

\[\vec{V} = (u,v) = (0.66 + 2.1x)\vec{i} + (-2.7 - 2.1y)\vec{j} \]

At a stagnation point, both \(u \) and \(v \) must equal zero. At any point \((x,y)\) in the flow field, the velocity components \(u \) and \(v \) are obtained from Eq. 1,

\[\text{Velocity components: } u = 0.66 + 2.1x \quad v = -2.7 - 2.1y \]

\[\text{Stagnation point: } 0 = 0.66 + 2.1x \quad x = -0.314 \]

\[0 = -2.7 - 2.1y \quad y = -1.29 \]

So, yes there is a stagnation point; its location is \(x = -0.314, \ y = -1.29 \) (to 3 digits).

Discussion If the flow were three-dimensional, we would have to set \(w \) = 0 as well to determine the location of the stagnation point. In some flow fields there is more than one stagnation point.

Lagrangian and Eulerian Descriptions

4-7C
Solution We are to define the Eulerian description of fluid motion, and explain how it differs from the Lagrangian description.

Analysis In the Eulerian description of fluid motion, we are concerned with field variables, such as velocity, pressure, temperature, etc., as functions of space and time within a flow domain or control volume. In contrast to the Lagrangian method, fluid flows into and out of the Eulerian flow domain, and we do not keep track of the motion of particular identifiable fluid particles.

Discussion The Eulerian method of studying fluid motion is not as “natural” as the Lagrangian method since the fundamental conservation laws apply to moving particles, not to fields.

4-8C
Solution We are to compare the Lagrangian method to the study of systems and control volumes and determine to which of these it is most similar.

Analysis The Lagrangian method is more similar to system analysis (i.e., closed system analysis). In both cases, we follow a mass of fixed identity as it moves in a flow. In a control volume analysis, on the other hand, mass moves into and out of the control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid happens to be inside the control volume at the time.

Discussion In fact, the Lagrangian analysis is the same as a system analysis in the limit as the size of the system shrinks to a point.
4-9C Solution We are to define the Lagrangian description of fluid motion.

Analysis In the *Lagrangian description* of fluid motion, **individual fluid particles** (fluid elements composed of a fixed, identifiable mass of fluid) are followed.

Discussion The Lagrangian method of studying fluid motion is similar to that of studying billiard balls and other solid objects in physics.

4-10C Solution We are to determine whether a measurement is Lagrangian or Eulerian.

Analysis Since the probe is fixed in space and the fluid flows around it, we are *not* following individual fluid particles as they move. Instead, we are measuring a field variable at a particular location in space. Thus this is an **Eulerian measurement**.

Discussion If a neutrally buoyant probe were to move with the flow, its results would be Lagrangian measurements – following fluid particles.

4-11C Solution We are to determine whether a measurement is Lagrangian or Eulerian.

Analysis Since the probe moves with the flow and is neutrally buoyant, we are following individual fluid particles as they move through the pump. Thus this is a **Lagrangian measurement**.

Discussion If the probe were instead fixed at one location in the flow, its results would be Eulerian measurements.

4-12C Solution We are to define a steady flow field in the Eulerian description, and discuss particle acceleration in such a flow.

Analysis A flow field is defined as *steady* in the Eulerian frame of reference when **properties at any point in the flow field do not change with respect to time**. In such a flow field, individual fluid particles may still experience non-zero acceleration – the answer to the question is **yes**.

Discussion Although velocity is not a function of time in a steady flow field, its total derivative with respect to time \(\ddot{a} = d\ddot{V} / dt \) is not necessarily zero since the acceleration is composed of a local (unsteady) part which is zero and an advective part which is not necessarily zero.
Chapter 4 Fluid Kinematics

4-13C Solution We are to list three alternate names for material derivative.

Analysis The material derivative is also called total derivative, particle derivative, Eulerian derivative, Lagrangian derivative, and substantial derivative. “Total” is appropriate because the material derivative includes both local (unsteady) and convective parts. “Particle” is appropriate because it stresses that the material derivative is one following fluid particles as they move about in the flow field. “Eulerian” is appropriate since the material derivative is used to transform from Lagrangian to Eulerian reference frames. “Lagrangian” is appropriate since the material derivative is used to transform from Lagrangian to Eulerian reference frames. Finally, “substantial” is not as clear of a term for the material derivative, and we are not sure of its origin.

Discussion All of these names emphasize that we are following a fluid particle as it moves through a flow field.

4-14C Solution We are to determine whether a measurement is Lagrangian or Eulerian.

Analysis Since the weather balloon moves with the air and is neutrally buoyant, we are following individual “fluid particles” as they move through the atmosphere. Thus this is a Lagrangian measurement. Note that in this case the “fluid particle” is huge, and can follow gross features of the flow – the balloon obviously cannot follow small scale turbulent fluctuations in the atmosphere.

Discussion When weather monitoring instruments are mounted on the roof of a building, the results are Eulerian measurements.

4-15C Solution We are to determine whether a measurement is Lagrangian or Eulerian.

Analysis Relative to the airplane, the probe is fixed and the air flows around it. We are not following individual fluid particles as they move. Instead, we are measuring a field variable at a particular location in space relative to the moving airplane. Thus this is an Eulerian measurement.

Discussion The airplane is moving, but it is not moving with the flow.

4-16C Solution We are to compare the Eulerian method to the study of systems and control volumes and determine to which of these it is most similar.

Analysis The Eulerian method is more similar to control volume analysis. In both cases, mass moves into and out of the flow domain or control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid happens to be inside the control volume at the time.

Discussion In fact, the Eulerian analysis is the same as a control volume analysis except that Eulerian analysis is usually applied to infinitesimal volumes and differential equations of fluid flow, whereas control volume analysis usually refers to finite volumes and integral equations of fluid flow.
4-17 Solution We are to calculate the material acceleration for a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

$$\vec{V} = (u, v) = (U_0 + bx)\hat{i} - by\hat{j} \quad (1)$$

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

$$a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = 0 + (U_0 + bx)b + (-by)0 + 0 \quad (2)$$

$$a_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = 0 + (U_0 + bx)0 + (-by)(-b) + 0$$

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-dimensional. Eq. 2 simplifies to

Material acceleration components:

$$a_x = b(U_0 + bx) \quad a_y = b^2$$

In terms of a vector,

Material acceleration vector:

$$\vec{a} = b(U_0 + bx)\hat{i} + b^2\hat{j} \quad (4)$$

Discussion For positive x and b, fluid particles accelerate in the positive x direction. Even though this flow is steady, there is still a non-zero acceleration field.

4-18 Solution For a given pressure and velocity field, we are to calculate the rate of change of pressure following a fluid particle.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The pressure field is

Pressure field:

$$P = P_0 - \rho \left[2U_0bx + b^2 \left(x^2 + y^2\right) \right] \quad (1)$$

By definition, the material derivative, when applied to pressure, produces the rate of change of pressure following a fluid particle. Using Eq. 1 and the velocity components from the previous problem,

$$\frac{DP}{Dt} = \frac{\partial P}{\partial t} + u \frac{\partial P}{\partial x} + v \frac{\partial P}{\partial y} + w \frac{\partial P}{\partial z} \quad (2)$$

where the unsteady term is zero since this is a steady flow, and the term with w is zero since the flow is two-dimensional. Eq. 2 simplifies to the following rate of change of pressure following a fluid particle:

$$\frac{DP}{Dt} = \rho \left[-U_0^2b^2 - 2U_0b^2x + b^3 \left(y^2 - x^2\right) \right] \quad (3)$$

Discussion The material derivative can be applied to any flow property, scalar or vector. Here we apply it to the pressure, a scalar quantity.
Solution For a given velocity field we are to calculate the acceleration.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the \(x-y \) plane.

Analysis The velocity components are

Velocity components: \[u = 1.85 + 2.33x + 0.656y \quad v = 0.754 - 2.18x - 2.33y \] (1)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

\[
\begin{align*}
\alpha_x &= \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = 0 + (1.85 + 2.33x + 0.656y)(2.33) + (0.754 - 2.18x - 2.33y)(0.656) + 0 \\
\alpha_y &= \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = 0 + (1.85 + 2.33x + 0.656y)(-2.18) + (0.754 - 2.18x - 2.33y)(-2.33) + 0 \\
\end{align*}
\] (2)

where the unsteady terms are zero since this is a steady flow, and the terms with \(w \) are zero since the flow is two-dimensional. Eq. 2 simplifies to

Acceleration components: \[\alpha_x = 4.8051 + 3.9988x \quad \alpha_y = -5.7898 + 3.9988y \] (3)

At the point \((x,y) = (-1,2)\), the acceleration components of Eq. 3 are

Acceleration components at (-1,2): \[\alpha_x = 0.80628 \ \approx \ 0.806 \quad \alpha_y = 2.2078 \ \approx \ 2.21 \]

Discussion The final answers are given to three significant digits. No units are given in either the problem statement or the answers. We assume that the coefficients have appropriate units.
Solution For a given velocity field we are to calculate the acceleration.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity components are

Velocity components: \[u = 0.205 + 0.97x + 0.851y \quad v = -0.509 + 0.953x - 0.97y \]

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

\[
\begin{align*}
 a_x &= \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \\
 a_y &= \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}
\end{align*}
\]

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-dimensional. Eq. 2 simplifies to

\[
\begin{align*}
 a_x &= \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = 0 + (0.205 + 0.97x + 0.851y)(0.97) + (-0.509 + 0.953x - 0.97y)(0.851) + 0 \\
 a_y &= \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} = 0 + (0.205 + 0.97x + 0.851y)(0.953) + (-0.509 + 0.953x - 0.97y)(-0.97) + 0
\end{align*}
\]

Discussion The final answers are given to three significant digits. No units are given in either the problem statement or the answers. We assume that the coefficients have appropriate units.
4-21

Solution For a given velocity field we are to calculate the streamline that will pass through a given point.

Assumptions 1 The flow is steady. 2 The flow is three-dimensional in the x-y-z plane.

Analysis

\[
\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}
\]

\[
\frac{dx}{3x} = \frac{dy}{-2y} = \frac{dz}{2z}
\]

For the first two pairs we have

\[
\frac{dx}{3x} = \frac{dy}{-2y} \quad \text{or} \quad \ln x = \ln y + \ln c_1
\]

\[
\frac{1}{x^3} \frac{1}{y^2} = c_1 \quad \text{or},
\]

For the point given \(x = 1, y = 1, z = 0\)

\[
\frac{1}{1} \frac{-1}{1} = c_1 \Rightarrow c_1 = 1 \quad \text{or} \quad \frac{3}{x} = \sqrt{y}, \quad y = x^{2/3}
\]

on the other hand,

\[
\frac{dx}{2z} = \frac{dx}{3x} \quad \text{or} \quad \ln z = \ln x + \ln c
\]

\[
\frac{\sqrt{z}}{x^{1/3}} = c \quad \text{or} \quad \frac{z}{x^{2/3}} = c \Rightarrow z = c \cdot x^{2/3}
\]

\(A(1,1,0),\)

\(0 = c \cdot 1^{2/3}, \quad c = 0 \text{ or } z = 0\)

Therefore the streamline is given by,

\(y = x^{2/3}, \quad z = 0\)

4-22

Solution We are to write an equation for centerline speed through a diffuser, given that the flow speed decreases parabolically.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric.

Analysis A general equation for a parabola in \(x\) is

General parabolic equation:

\[
\quad u = a + b(x - c)^2 \tag{1}
\]

We have two boundary conditions, namely at \(x = 0, \ u = u_{\text{entrance}}\) and at \(x = L, \ u = u_{\text{exit}}\). By inspection, Eq. 1 is satisfied by setting \(c = 0, a = u_{\text{entrance}}\) and \(b = (u_{\text{exit}} - u_{\text{entrance}})/L^2\). Thus, Eq. 1 becomes

Parabolic speed:

\[
\quad u = u_{\text{entrance}} + \frac{u_{\text{exit}} - u_{\text{entrance}}}{L^2} x^2 \tag{2}
\]

Discussion You can verify Eq. 2 by plugging in \(x = 0\) and \(x = L\).
Solution We are to generate an expression for the fluid acceleration for a given velocity, and then calculate its value at two \(x \) locations.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric.

Analysis In the previous problem, we found that along the centerline,

\[
\text{Speed along centerline of diffuser: } u = u_{\text{entrance}} + \frac{(u_{\text{exit}} - u_{\text{entrance}})}{L^2} x^2 \tag{1}
\]

To find the acceleration in the \(x \)-direction, we use the material acceleration,

\[
\text{Acceleration along centerline of diffuser: } a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \tag{2}
\]

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric, which means that along the centerline there can be no \(v \) or \(w \) velocity component. We substitute Eq. 1 for \(u \) to obtain

\[
\text{Acceleration along centerline of diffuser: } a_x = u \frac{\partial u}{\partial x} = \left(u_{\text{entrance}} + \frac{(u_{\text{exit}} - u_{\text{entrance}})}{L^2} x^2 \right) \left(2 \frac{(u_{\text{exit}} - u_{\text{entrance}})}{L^2} x \right) \tag{2'}
\]

or

\[
a_x = 2u_{\text{entrance}} \frac{(u_{\text{exit}} - u_{\text{entrance}})}{L^2} x + 2 \frac{(u_{\text{exit}} - u_{\text{entrance}})^2}{L^4} x^3 \tag{3}
\]

At the given locations, we substitute the given values. At \(x = 0 \),

\[
\text{Acceleration along centerline of diffuser at } x = 0: \quad a_x (x = 0) = 0 \tag{4}
\]

At \(x = 1.0 \) m,

\[
\text{Acceleration along centerline of diffuser at } x = 1.0 \text{ m: } \\
\quad a_x (x = 1.0 \text{ m}) = 2(24.3 \text{ m/s}) \frac{(-7.5 \text{ m/s})}{(1.56 \text{ m})}(1.0 \text{ m}) + 2 \frac{(-7.5 \text{ m/s})^2}{(1.56 \text{ m})^3}(1.0 \text{ m})^3 \tag{5}
\]

\[
= -130.782 \text{ m/s}^2 \approx -131 \text{ m/s}^2
\]

Discussion \(a_x \) is negative implying that fluid particles are decelerated along the centerline of the diffuser, even though the flow is steady. Because of the parabolic nature of the velocity field, the acceleration is zero at the entrance of the diffuser, but its magnitude increases rapidly downstream.
Solution

For a given velocity field we are to calculate the acceleration.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis

The velocity components are

$$
u = 0.523 - 1.88x + 3.94y$$

$$v = -2.44 + 1.26x + 1.88y$$

(1)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

$$a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = 0 + (0.523 - 1.88x + 3.94y)(-1.88) + (-2.44 + 1.26x + 1.88y)(3.94) + 0$$

$$a_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = 0 + (0.523 - 1.88x + 3.94y)(1.26) + (-2.44 + 1.26x + 1.88y)(1.88) + 0$$

(2)

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-dimensional. Eq. 2 simplifies to

Acceleration components:

$$a_x = -10.59684 + 8.4988x$$

$$a_y = -3.92822 + 8.4988y$$

(3)

At the point $(x,y) = (-1.55, 2.07)$, the acceleration components of Eq. 3 are

$$a_x = -23.76998 \approx -23.8$$

$$a_y = 13.6643 \approx 13.7$$

Discussion

The final answers are given to three significant digits. No units are given in either the problem statement or the answers. We assume that the coefficients have appropriate units.

Solution

We are to generate an expression for the fluid acceleration for a given velocity.

Assumptions
1. The flow is steady.
2. The flow is axisymmetric.
3. The water is incompressible.

Analysis

In Problem 4-2 we found that along the centerline, the speed is

$$u = u_{\text{exit}} + \frac{u_{\text{exit}} - u_{\text{entrance}}}{L^2} x^2$$

(1)

To find the acceleration in the x-direction, we use the material acceleration,

$$a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$

(2)

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric, which means that along the centerline there can be no v or w velocity component. We substitute Eq. 1 for u to obtain

$$a_x = u \frac{\partial u}{\partial x} = \left(u_{\text{entrance}} + \frac{u_{\text{exit}} - u_{\text{entrance}}}{L^2} x^2\right) \left(2 \frac{u_{\text{exit}} - u_{\text{entrance}}}{L^2}\right) x$$

(3)

or

$$a_x = 2u_{\text{entrance}} \frac{u_{\text{exit}} - u_{\text{entrance}}}{L^2} x + 2 \frac{u_{\text{exit}} - u_{\text{entrance}}}{L^2} x^3$$

(4)

Discussion

Fluid particles are accelerated along the centerline of the nozzle, even though the flow is steady.
Flow Patterns and Flow Visualization

4-26C
Solution We are to define pathline and discuss what pathlines indicate.

Analysis A pathline is the actual path traveled by an individual fluid particle over some time period. It indicates the exact route along which a fluid particle travels from its starting point to its ending point. Unlike streamlines, pathlines are not instantaneous, but involve a finite time period.

Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical.

4-27C
Solution We are to determine what kind of flow visualization is seen in a photograph.

Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be steady, these streaklines are the same as pathlines and streamlines.

Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water, this is a reasonable assumption.

4-28C
Solution We are to define streamline and discuss what streamlines indicate.

Analysis A streamline is a curve that is everywhere tangent to the instantaneous local velocity vector. It indicates the instantaneous direction of fluid motion throughout the flow field.

Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical.

4-29C
Solution We are to define streakline and discuss the difference between streaklines and streamlines.

Analysis A streakline is the locus of fluid particles that have passed sequentially through a prescribed point in the flow. Streaklines are very different than streamlines. Streamlines are instantaneous curves, everywhere tangent to the local velocity, while streaklines are produced over a finite time period. In an unsteady flow, streaklines distort and then retain features of that distorted shape even as the flow field changes, whereas streamlines change instantaneously with the flow field.

Discussion If a flow field is steady, streamlines and streaklines are identical.

4-30C
Solution We are to determine what kind of flow visualization is seen in a photograph.

Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be unsteady, these streaklines are not the same as pathlines or streamlines.

Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water, this is a reasonable assumption.
4-31C
Solution We are to determine what kind of flow visualization is seen in a photograph.

Analysis Since the picture is a snapshot of smoke streaks in air, each streak shows the time history of smoke that was introduced earlier from the smoke wire. Thus these are streaklines. Since the flow appears to be unsteady, these streaklines are not the same as pathlines or streamlines.

Discussion It is assumed that the smoke follows the flow of the air. If the smoke is neutrally buoyant, this is a reasonable assumption. In actuality, the smoke rises a bit since it is hot; however, the air speeds are high enough that this effect is negligible.

4-32C
Solution We are to determine what kind of flow visualization is seen in a photograph.

Analysis Since the picture is a time exposure of air bubbles in water, each white streak shows the path of an individual air bubble. Thus these are pathlines. Since the outer flow (top and bottom portions of the photograph) appears to be steady, these pathlines are the same as streaklines and streamlines.

Discussion It is assumed that the air bubbles follow the flow of the water. If the bubbles are small enough, this is a reasonable assumption.

4-33C
Solution We are to define timeline and discuss how timelines can be produced in a water channel. We are also to describe an application where timelines are more useful than streaklines.

Analysis A timeline is a set of adjacent fluid particles that were marked at the same instant of time. Timelines can be produced in a water flow by using a hydrogen bubble wire. There are also techniques in which a chemical reaction is initiated by applying current to the wire, changing the fluid color along the wire. Timelines are more useful than streaklines when the uniformity of a flow is to be visualized. Another application is to visualize the velocity profile of a boundary layer or a channel flow.

Discussion Timelines differ from streamlines, streaklines, and pathlines even if the flow is steady.

4-34C
Solution For each case we are to decide whether a vector plot or contour plot is most appropriate, and we are to explain our choice.

Analysis In general, contour plots are most appropriate for scalars, while vector plots are necessary when vectors are to be visualized.

(a) A contour plot of speed is most appropriate since fluid speed is a scalar.
(b) A vector plot of velocity vectors would clearly show where the flow separates. Alternatively, a vorticity contour plot of vorticity normal to the plane would also show the separation region clearly.
(c) A contour plot of temperature is most appropriate since temperature is a scalar.
(d) A contour plot of this component of vorticity is most appropriate since one component of a vector is a scalar.

Discussion There are other options for case (b) – temperature contours can also sometimes be used to identify a separation zone.
Solution For a given velocity field we are to generate an equation for the streamlines.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The steady, two-dimensional velocity field of Problem 4-17 is

\[\vec{V} = (u,v) = (U_0 + bx)\hat{i} - by\hat{j} \] \hspace{1cm} (1)

For two-dimensional flow in the x-y plane, streamlines are given by

Streamlines in the x-y plane:

\[\frac{dy}{dx} \bigg|_{\text{along a streamline}} = \frac{v}{u} \] \hspace{1cm} (2)

We substitute the \(u \) and \(v \) components of Eq. 1 into Eq. 2 and rearrange to get

\[\frac{dy}{dx} = \frac{-by}{U_0 + bx} \]

We solve the above differential equation by separation of variables:

\[-\int \frac{dy}{by} = \int \frac{dx}{U_0 + bx} \]

Integration yields

\[-\frac{1}{b} \ln(by) = \frac{1}{b} \ln(U_0 + bx) + \frac{1}{b} \ln C_1 \] \hspace{1cm} (3)

where we have set the constant of integration as the natural logarithm of some constant \(C_1 \), with a constant in front in order to simplify the algebra (notice that the factor of \(1/b \) can be removed from each term in Eq. 3). When we recall that \(\ln(ab) = \ln(a) + \ln(b) \), and that \(-\ln a = \ln(1/a)\), Eq. 3 simplifies to

\[\text{Equation for streamlines:} \]

\[y = \frac{C}{(U_0 + bx)} \] \hspace{1cm} (4)

The new constant \(C \) is related to \(C_1 \), and is introduced for simplicity.

Discussion Each value of constant \(C \) yields a unique streamline of the flow.
Solution

For a given velocity field we are to calculate the pathline of a particle at a given location.

Analysis

\[u = 4x \]
\[v = 5y+3 \] are the velocity components.
\[w = 3t^2 \]

From the definition,
\[u = \frac{dx}{dt} = 4x \]
\[v = \frac{dy}{dt} = 5y + 3 \]
\[w = \frac{dz}{dt} = 3t^2 \]

For \(t=1 \) sec, the location of the particle is \((x,y,z)=(1,2,4)\) that is, \(x=1m, y=2m, z=4m\). Integrating given functions,

\[\frac{dx}{x} = 4dt \Rightarrow \ln x|_1^t = 4t|_1^t \Rightarrow \ln x - \ln 1 = 4(t-1) \]
\[\ln x = 4t - 4 \](1)

\[\ln \left(\frac{5y+3}{13}\right) = 5t - 5 \](2)

\[z = t^3 + 3 \](3)

Adding (1) and (2) would yield,
\[\ln x + \ln \left(\frac{5y+3}{13}\right) = 9t - 9, \]

Solve for \(t \)
\[\ln \left(\frac{5xy+3x}{13}\right) + 9 = 9t \]

or
\[t = 1 + \ln \left(\frac{5xy+3x}{13}\right), \]

Substituting this \(t \) into Eq. 3 leads to
\[z = f(x,y) = \left[1 + \ln \left(\frac{5xy+3x}{13}\right)\right]^3 + 3 \]
Solution For a given velocity field we are to generate an equation for the streamlines and sketch several streamlines in the first quadrant.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is given by

$$\vec{V} = (u,v) = (4.35 + 0.656x)\hat{i} + (-1.22 - 0.656y)\hat{j}$$

(1)

For two-dimensional flow in the x-y plane, streamlines are given by

$$\text{Streamlines in the } x-y \text{ plane: } \frac{dy}{dx}_{\text{along a streamline}} = \frac{v}{u}$$ (2)

We substitute the u and v components of Eq. 1 into Eq. 2 and rearrange to get

$$\frac{dy}{dx} = \frac{-1.22 - 0.656y}{4.35 + 0.656x}$$

We solve the above differential equation by separation of variables:

$$\frac{dy}{-1.22 - 0.656y} = \frac{dx}{4.35 + 0.656x} \Rightarrow \int \frac{dy}{-1.22 - 0.656y} = \int \frac{dx}{4.35 + 0.656x}$$

Integration yields

$$-\frac{1}{0.656} \ln(-1.22 - 0.656y) = \frac{1}{0.656} \ln(4.35 + 0.656x) - \frac{1}{0.656} \ln C_1$$ (3)

where we have set the constant of integration as the natural logarithm of some constant C_1, with a constant in front in order to simplify the algebra. When we recall that $\ln(ab) = \ln a + \ln b$, and that $-\ln a = \ln(1/a)$, Eq. 3 simplifies to

$$\text{Equation for streamlines: } y = \frac{C}{0.656(4.35 + 0.656x)} - 1.85976$$

The new constant C is related to C_1, and is introduced for simplicity. C can be set to various values in order to plot the streamlines. Several streamlines in the upper right quadrant of the given flow field are shown in Fig. 1.

The direction of the flow is found by calculating u and v at some point in the flow field. We choose $x = 3$, $y = 3$. At this point u is positive and v is negative. The direction of the velocity at this point is obviously to the lower right. This sets the direction of all the streamlines. The arrows in Fig. 1 indicate the direction of flow.

Discussion The flow appears to be a counterclockwise turning flow in the upper right quadrant.
4-38
Solution For a given velocity field we are to generate a velocity vector plot in the first quadrant.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is given by

\[\vec{V} = (u, v) = (4.35 + 0.656x) \hat{i} + (-1.22 - 0.656y) \hat{j} \]

(1)

At any point \((x,y)\) in the flow field, the velocity components \(u\) and \(v\) are obtained from Eq. 1,

Velocity components: \(u = 4.35 + 0.656x\) \hspace{1cm} \(v = -1.22 - 0.656y\)

(2)

To plot velocity vectors, we simply pick an \((x,y)\) point, calculate \(u\) and \(v\) from Eq. 2, and plot an arrow with its tail at \((x,y)\), and its tip at \((x+Su, y+Sv)\) where \(S\) is some scale factor for the vector plot. For the vector plot shown in Fig. 1, we chose \(S = 0.13\), and plot velocity vectors at several locations in the first quadrant.

Discussion The flow agrees with the previous problem – a counterclockwise turning flow in the upper right quadrant.

4-39
Solution For a given velocity field we are to generate an acceleration vector plot in the first quadrant.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is given by

\[\vec{V} = (u, v) = (4.35 + 0.656x) \hat{i} + (-1.22 - 0.656y) \hat{j} \]

(1)

At any point \((x,y)\) in the flow field, the velocity components \(u\) and \(v\) are obtained from Eq. 1,

Velocity components: \(u = 4.35 + 0.656x\) \hspace{1cm} \(v = -1.22 - 0.656y\)

(2)

The acceleration field is obtained from its definition (the material acceleration),

\[\begin{align*}
 a_x &= \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = 0 + (4.35 + 0.656x)(0.656) + 0 + 0 \\
 a_y &= \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = 0 + 0 + (-1.22 - 0.656y)(-0.656) + 0
\end{align*} \]

(3)

where the unsteady terms are zero since this is a steady flow, and the terms with \(w\) are zero since the flow is two-dimensional. Eq. 3 simplifies to

Acceleration components:

\[\begin{align*}
 a_x &= 2.8536 + 0.43034x \\
 a_y &= 0.80032 + 0.43034y
\end{align*} \]

(4)

To plot the acceleration vectors, we simply pick an \((x,y)\) point, calculate \(a_x\) and \(a_y\) from Eq. 4, and plot an arrow with its tail at \((x,y)\), and its tip at \((x+Sa_x, y+Sa_y)\) where \(S\) is some scale factor for the vector plot. For the vector plot shown in Fig. 1, we chose \(S = 0.20\), and plot acceleration vectors at several locations in the first quadrant.

Discussion Since the flow is a counterclockwise turning flow in the upper right quadrant, the acceleration vectors point to the upper right (centripetal acceleration).
Solution For the given velocity field, the location(s) of stagnation point(s) are to be determined. Several velocity vectors are to be sketched and the velocity field is to be described.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional, implying no z-component of velocity and no variation of u or v with z.

Analysis (a) The velocity field is

$$\vec{V} = (u, v) = (1 + 2.5x + y)i + (-0.5 - 3x - 2.5y)j$$

(1)

Since \vec{V} is a vector, all its components must equal zero in order for \vec{V} itself to be zero. Setting each component of Eq. 1 to zero,

Simultaneous equations:

$$u = 1 + 2.5x + y = 0$$

$$v = -0.5 - 3x - 2.5y = 0$$

We can easily solve this set of two equations and two unknowns simultaneously. Yes, there is one stagnation point, and it is located at

Stagnation point:

$$x = -0.615 \text{ m} \quad y = 0.538 \text{ m}$$

(b) The x and y components of velocity are calculated from Eq. 1 for several (x, y) locations in the specified range. For example, at the point $(x = 2 \text{ m}, y = 3 \text{ m})$, $u = 9.00 \text{ m/s}$ and $v = -14.0 \text{ m/s}$. The magnitude of velocity (the speed) at that point is 16.64 m/s. At this and at an array of other locations, the velocity vector is constructed from its two components, the results of which are shown in Fig. 1. The flow can be described as a turning slightly counterclockwise, accelerating flow from the upper left to the lower right. The stagnation point of Part (a) does not lie in the upper right quadrant, and therefore does not appear on the sketch.

Discussion The stagnation point location is given to three significant digits. It will be verified in Chap. 9 that this flow field is physically valid because it satisfies the differential equation for conservation of mass.
For the given velocity field, the material acceleration is to be calculated at a particular point and plotted at several locations in the upper right quadrant.

Assumptions
1. The flow is steady and incompressible.
2. The flow is two-dimensional, implying no z-component of velocity and no variation of u or v with z.

Analysis

(a) The velocity field is

\[
\vec{V} = (u, v) = (1 + 2.5x + y) \hat{i} + (-0.5 - 3x - 2.5y) \hat{j}
\]

(1)

Using the velocity field of Eq. 1 and the equation for material acceleration in Cartesian coordinates, we write expressions for the two non-zero components of the acceleration vector:

\[
a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}
\]

\[
= 0 + (1 + 2.5x + y)(2.5) + (-0.5 - 3x - 2.5y)(1) + 0
\]

\[
a_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}
\]

\[
= 0 + (1 + 2.5x + y)(-3) + (-0.5 - 3x - 2.5y)(-2.5) + 0
\]

At $(x = 2 \text{ m}, y = 3 \text{ m})$, $a_x = 8.50 \text{ m/s}^2$ and $a_y = 8.00 \text{ m/s}^2$.

(b) The above equations are applied to an array of x and y values in the upper right quadrant, and the acceleration vectors are plotted in Fig. 1.

Discussion

The acceleration vectors plotted in Fig. 1 point to the upper right, increasing in magnitude away from the origin. This agrees qualitatively with the velocity vectors of Fig. 1 of the previous problem; namely, fluid particles are accelerated to the right and are turned in the counterclockwise direction due to centripetal acceleration towards the upper right. Note that the acceleration field is non-zero, even though the flow is steady.
Solution

For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the r-θ plane.

Analysis

Since $u_r = 0$, and since ω is positive, the speed is equal to the magnitude of the θ-component of velocity,

\[V = \sqrt{u_r^2 + u_\theta^2} = |u_\theta| = \omega r \]

Thus, contour lines of constant speed are simply circles of constant radius given by

\[r = \frac{V}{\omega} \]

For example, at $V = 2.0$ m/s, the corresponding contour line is a circle of radius $1.3333...$ m,

\[\text{Contour line at constant speed } V = 2.0 \text{ m/s: } r = \frac{2.0 \text{ m/s}}{1.5 \text{ 1/s}} = 1.3333... \text{ m} \]

We plot a circle at this radius and repeat this simple calculation for the four other values of V. We plot the contours in **Fig. 1**. The speed increases linearly from the center of rotation (the origin).

Discussion

The contours are equidistant apart because of the linear nature of the velocity field.

Solution

For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the r-θ plane.

Analysis

Since $u_r = 0$, and since K is positive, the speed is equal to the magnitude of the θ-component of velocity,

\[V = \sqrt{u_r^2 + u_\theta^2} = |u_\theta| = \frac{K}{r} \]

Thus, contour lines of constant speed are simply circles of constant radius given by

\[r = \frac{K}{V} \]

For example, at $V = 2.0$ m/s, the corresponding contour line is a circle of radius 0.75 m,

\[\text{Contour line at constant speed } V = 2.0 \text{ m/s: } r = \frac{1.5 \text{ m}^2/\text{s}}{2.0 \text{ m/s}} = 0.75 \text{ m} \]

We plot a circle at this radius and repeat this simple calculation for the four other values of V. We plot the contours in **Fig. 1**. The speed near the center is faster than that further away from the center.

Discussion

The contours are not equidistant apart because of the nonlinear nature of the velocity field.
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the \(r-\theta \) plane.

Analysis The velocity field is

Line source:

\[
 u_r = \frac{m}{2\pi r} \quad u_\theta = 0
\]

(1)

Since \(u_\theta = 0 \), and since \(m \) is positive, the speed is equal to the magnitude of the \(r \)-component of velocity,

\[
 V = \sqrt{u_r^2 + u_\theta^2} = |u_r| = \frac{m}{2\pi r}
\]

(2)

Thus, contour lines of constant speed are simply circles of constant radius given by

\[
 Contour line of constant speed: \quad r = \frac{m}{2\pi V} = \left(\frac{m}{2}\right) \left(\frac{1}{V}\right)
\]

(3)

For example, at \(V = 2.0 \) m/s, the corresponding contour line is a circle of radius 0.75 m,

\[
 Contour line at speed \; V = 2.0 \; m/s: \quad r = \frac{1.5 \; m^2/s}{2.0 \; m/s} = 0.75 \; m
\]

(4)

We plot a circle at this radius and repeat this simple calculation for the four other values of \(V \). We plot the contours in Fig. 1. The flow slows down as it travels further from the origin.

Discussion The contours are not equidistant apart because of the nonlinear nature of the velocity field.

Solution We are to generate an expression for the tangential velocity of a liquid confined between two concentric cylinders, and we are to estimate the torque exerted by the fluid on the cylinders.

Assumptions 1 The flow is incompressible and two-dimensional, and thus the end effects (front and back of the cylinder) are negligible. 2 The flow has been running for a long time so that it is steady.

Analysis Since both cylinders are rotating at the same rate, after a long enough time, the fluid will also rotate at the same rate. The entire system will behave as solid body rotation. So, the tangential velocity will be \(u_\theta = r\omega \), where \(\omega = \omega_c = \omega_b = \) constant. Thus,

\[
 u_\theta = \omega r
\]

and \(u_\theta \) is not a function of any of the other variables.

There is no shear stress on the walls since everything is rotating like a solid body. Thus, we expect that the torque on either cylinder wall is zero.

Discussion The equation for \(u_\theta \) applies to both the solid cylinders and the fluid, since everything in the system is rotating as solid body rotation.
Solution
We are to discuss the type of flow that is approximated by two concentric cylinders with the inner cylinder spinning very fast while its radius goes towards zero, while the outer cylinder is large (far away) and stationary.

Assumptions
1. The flow is incompressible and two-dimensional, and thus the end effects (front and back of the cylinder) are negligible.
2. The flow has been running for a long time so that it is steady.

Analysis
Since the inner cylinder is rotating but the outer cylinder is not, after a long enough time, the fluid behaves like a line vortex, but with a missing core region. [This is good, actually, since the tangential velocity of a line vortex at the origin is infinite!] Thus, we expect $u_\theta = \frac{\text{constant}}{r}$. Note that u_θ is not a function of any of the fluid properties. We calculate the constant by specifying u_θ at the inner cylinder surface, where $u_\theta = \omega Ri$ and $r = Ri$. The constant becomes ωR_i^2, and therefore

$$u_\theta = \frac{\omega R_i^2}{r}$$

There is no shear stress on the walls since everything is rotating like a solid body. Thus, we expect that the torque on either cylinder wall is zero.

Discussion
The equation for u_θ is valid in the fluid only, and we expect some error in our approximate analysis as the radius approaches the outer cylinder radius, which is not infinitely far away in a real-life situation.

4-47E
Solution
For a given velocity field we are to plot several streamlines for a given range of x and y values.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis
From the solution to the previous problem, an equation for the streamlines is

Streamlines in the x-y plane:

$$y = \frac{C}{(U_0 + bx)}$$

(1)

Constant C is set to various values in order to plot the streamlines. Several streamlines in the given range of x and y are plotted in Fig. 1.

The direction of the flow is found by calculating u and v at some point in the flow field. We choose $x = 1$ ft, $y = 1$ ft. At this point u is positive and v is negative. The direction of the velocity at this point is obviously to the lower right. This sets the direction of all the streamlines. The arrows in Fig. 1 indicate the direction of flow.

Discussion
The flow is type of converging channel flow.

![FIGURE 1](image)
Streamlines (solid blue curves) for the given velocity field; x and y are in units of ft.
Motion and Deformation of Fluid Elements; Vorticity and Rotationality

4-48C
Solution
We are to explain the relationship between vorticity and rotationality.

Analysis
Vorticity is a measure of the rotationality of a fluid particle. If a particle rotates, its vorticity is non-zero. Mathematically, the vorticity vector is twice the angular velocity vector.

Discussion
If the vorticity is zero, the flow is called irrotational.

4-49C
Solution
We are to name and describe the four fundamental types of motion or deformation of fluid particles.

Analysis
1. Translation – a fluid particle moves from one location to another.
2. Rotation – a fluid particle rotates about an axis drawn through the particle.
3. Linear strain or extensional strain – a fluid particle stretches in a direction such that a line segment in that direction is elongated at some later time.
4. Shear strain – a fluid particle distorts in such a way that two lines through the fluid particle that are initially perpendicular are not perpendicular at some later time.

Discussion
In a complex fluid flow, all four of these occur simultaneously.

4-50
Solution
For a given velocity field, we are to determine whether the flow is rotational or irrotational.

Assumptions
1. The flow is steady. 2. The flow is incompressible. 3. The flow is two-dimensional in the x-y plane.

Analysis
The velocity field is

\[\vec{V} = (u, v) = (U_0 + bx)i - byj \]

(1)

By definition, the flow is rotational if the vorticity is non-zero. So, we calculate the vorticity. In a 2-D flow in the x-y plane, the only non-zero component of vorticity is in the z direction, i.e. \(\zeta_z \).

Vorticity component in the z direction:

\[\zeta_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0 - 0 = 0 \]

(1)

Since the vorticity is zero, this flow is irrotational.

Discussion
We shall see in Chap. 10 that the fluid very close to the walls is rotational due to important viscous effects near the wall (a boundary layer). However, in the majority of the flow field, the irrotational approximation is reasonable.
Solution

For a given velocity field we are to generate an equation for the x location of a fluid particle along the x-axis as a function of time.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis

The velocity field is

$$\vec{V} = (u, v) = (U_0 + bx)\hat{i} - by\hat{j}$$

Velocity field: (1)

We start with the definition of u following a fluid particle,

$$\frac{dx_{\text{particle}}}{dt} = u = U_0 + bx_{\text{particle}}$$

x-component of velocity of a fluid particle: (2)

where we have substituted u from Eq. 1. We rearrange and separate variables, dropping the “particle” subscript for convenience,

$$\frac{dx}{U_0 + bx} = dt$$

Integration yields

$$\frac{1}{b} \ln(U_0 + bx) = t - \frac{1}{b} \ln C_1$$

(4)

where we have set the constant of integration as the natural logarithm of some constant C_1, with a constant in front in order to simplify the algebra. When we recall that $\ln(ab) = \ln a + \ln b$, Eq. 4 simplifies to

$$\ln \left(C_1 (U_0 + bx) \right) = t$$

from which

$$U_0 + bx = C_2 e^t$$

(5)

where C_2 is a new constant defined for convenience. We now plug in the known initial condition that at $t = 0$, $x = x_A$ to find constant C_2 in Eq. 5. After some algebra,

Fluid particle’s x location at time t:

$$x = x_A = \frac{1}{b} \left((U_0 + bx_A) e^t - U_0 \right)$$

(6)

Discussion

We verify that at $t = 0$, $x = x_A$ in Eq. 6.
Solution For a given velocity field we are to generate an equation for the change in length of a line segment moving with the flow along the x-axis.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis Using the results of the previous problem,

Location of particle A at time t:

$$x_A' = \frac{1}{b} \left[(U_0 + bx_A) e^{bt} - U_0 \right]$$ \hspace{1cm} (1)

and

Location of particle B at time t:

$$x_B' = \frac{1}{b} \left[(U_0 + bx_B) e^{bt} - U_0 \right]$$ \hspace{1cm} (2)

Since length $\xi = x_B - x_A$ and length $\xi + \Delta \xi = x_B' - x_A'$, we write an expression for $\Delta \xi$,

Change in length of the line segment:

$$\Delta \xi = (x_B' - x_A') - (x_B - x_A)$$

$$= \frac{1}{b} \left[(U_0 + bx_B) e^{bt} - U_0 \right] - \frac{1}{b} \left[(U_0 + bx_A) e^{bt} - U_0 \right] - (x_B - x_A)$$ \hspace{1cm} (3)

$$= x_B e^{bt} - x_A e^{bt} - x_B + x_A$$

Eq. 3 simplifies to

Change in length of the line segment:

$$\Delta \xi = (x_B - x_A) \left(e^{bt} - 1 \right)$$ \hspace{1cm} (4)

Discussion We verify from Eq. 4 that when $t = 0$, $\Delta \xi = 0$.
Solution By examining the increase in length of a line segment along the axis of a converging duct, we are to generate an equation for linear strain rate in the x direction and compare to the exact equation given in this chapter.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis From the previous problem, we have an expression for the change in length of the line segment AB,

Change in length of the line segment:

$$\Delta \xi = (x_b - x_a)(e^{bt} - 1)$$ (1)

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line segment. For the case at hand,

Linear strain rate in x direction:

$$\varepsilon_{xx} = \frac{d}{dt} \left(\frac{\xi + \Delta \xi}{\xi} \right) - \frac{\xi}{\xi} = \frac{d}{dt} \frac{\Delta \xi}{x_b - x_a}$$ (2)

We substitute Eq. 1 into Eq. 2 to obtain

Linear strain rate in x direction:

$$\varepsilon_{xx} = \frac{d}{dt} \left(\frac{x_b - x_a}{x_b - x_a} \right) \left(e^{bt} - 1 \right) = \frac{d}{dt} \left(e^{bt} - 1 \right)$$ (3)

In the limit as $t \to 0$, we apply the first two terms of the series expansion for e^{bt},

Series expansion for e^{bt}:

$$e^{bt} = 1 + bt + \frac{(bt)^2}{2!} + ... \approx 1 + bt$$ (4)

Finally, for small t we approximate the time derivative as $1/t$, yielding

Linear strain rate in x direction:

$$\varepsilon_{xx} \to \frac{1}{t} (1 + bt - 1) = b$$ (5)

Comparing to the equation for ε_{xx},

Linear strain rate in x direction:

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} = b$$ (6)

Equations 5 and 6 agree, verifying our algebra.

Discussion Although we considered a line segment on the x-axis, it turns out that $\varepsilon_{xx} = b$ everywhere in the flow, as seen from Eq. 6. We could also have taken the analytical time derivative of Eq. 3, yielding $\varepsilon_{xx} = be^{bt}$. Then, as $t \to 0$, $\varepsilon_{xx} \to b$.

PROPRIETARY MATERIAL © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.
Solution

For a given velocity field we are to generate an equation for the y location of a fluid particle as a function of time.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis

The velocity field is

\[\vec{V} = (u, v) = (U_o + bx) \hat{i} - by \hat{j} \]

(1)

We start with the definition of v following a fluid particle,

\[\frac{dy_{\text{particle}}}{dt} = v = -by_{\text{particle}} \]

(2)

where we have substituted v from Eq. 1. We rearrange and separate variables, dropping the “particle” subscript for convenience,

\[\frac{dy}{y} = -bdt \]

(3)

Integration yields

\[\ln(y) = -bt - \ln C_1 \]

(4)

where we have set the constant of integration as the natural logarithm of some constant \(C_1 \), with a constant in front in order to simplify the algebra. When we recall that \(\ln(ab) = \ln a + \ln b \), Eq. 4 simplifies to

\[\ln(C_1 y) = -t \]

from which

\[y = C_2 e^{-bt} \]

(5)

where \(C_2 \) is a new constant defined for convenience. We now plug in the known initial condition that at \(t = 0, y = y_A \) to find constant \(C_2 \) in Eq. 5. After some algebra,

\[\text{Fluid particle’s y location at time t:} \]

\[y = y_A e^{-bt} \]

(6)

Discussion

The fluid particle approaches the x-axis exponentially with time. The fluid particle also moves downstream in the x direction during this time period. However, in this particular problem \(v \) is not a function of \(x \), so the streamwise movement is irrelevant (\(u \) and \(v \) act independently of each other).
Solution

For a given velocity field we are to generate an equation for the change in length of a line segment in the y direction.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis

Using the results of the previous problem,

Location of particle A at time t:

$$y_A^t = y_A e^{-bt}$$ \hfill (1)

and

Location of particle B at time t:

$$y_B^t = y_B e^{-bt}$$ \hfill (2)

Since length $\eta = y_B - y_A$ and length $\Delta \eta = y_B^t - y_A^t$, we write an expression for $\Delta \eta$.

Change in length of the line segment:

$$\Delta \eta = (y_B^t - y_A^t) - (y_B - y_A) = y_B e^{-bt} - y_A e^{-bt} - (y_B - y_A) = y_B e^{-bt} - y_A e^{-bt} - y_B + y_A$$

which simplifies to

Change in length of the line segment:

$$\Delta \eta = (y_B - y_A)(e^{-bt} - 1)$$ \hfill (3)

Discussion

We verify from Eq. 3 that when $t = 0$, $\Delta \eta = 0$.

4-29
Solution

By examining the increase in length of a line segment as it moves down a converging duct, we are to generate an equation for linear strain rate in the y direction and compare to the exact equation given in this chapter.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis

From the previous problem we have an expression for the change in length of the line segment AB,

Change in length of the line segment:

$$\Delta \eta = \left(y_B - y_A \right) \left(e^{-bt} - 1 \right)$$ \quad (1)

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line segment. For the case at hand,

Linear strain rate in y direction:

$$\varepsilon_{yy} = \frac{d}{dt} \left(\frac{\eta + \Delta \eta}{\eta} \right) - \eta = \frac{d}{dt} \left(\frac{\Delta \eta}{y_B - y_A} \right) = \frac{d}{dt} \left(\frac{\Delta \eta}{y_B - y_A} \right)$$ \quad (2)

We substitute Eq. 1 into Eq. 2 to obtain

Linear strain rate in y direction:

$$\varepsilon_{yy} = \frac{d}{dt} \left(\frac{y_B - y_A}{y_B - y_A} \right) \left(e^{-bt} - 1 \right) = \frac{d}{dt} \left(e^{-bt} - 1 \right)$$ \quad (3)

In the limit as $t \to 0$, we apply the first two terms of the series expansion for e^{-bt},

Series expansion for e^{-bt}:

$$e^{-bt} = 1 + (-bt) + \frac{(-bt)^2}{2!} + \ldots \approx 1 - bt$$ \quad (4)

Finally, for small t we approximate the time derivative as $1/t$, yielding

Linear strain rate in y direction:

$$\varepsilon_{yy} \to \frac{1}{t} \left(1 - bt - 1 \right) = -b$$ \quad (5)

Comparing to the equation for ε,

Linear strain rate in y direction:

$$\varepsilon_{yy} = \frac{\partial v}{\partial y} = -b$$ \quad (6)

Equations 5 and 6 agree, verifying our algebra.

Discussion

Since v does not depend on x location in this particular problem, the algebra is simple. In a more general case, both u and v depend on both x and y, and a numerical integration scheme is required. We could also have taken the analytical time derivative of Eq. 3, yielding $\varepsilon_{yy} = -be^{-bt}$. Then, as $t \to 0$, $\varepsilon_{xx} \to -b$.

Solution For a given velocity field we are to use volumetric strain rate to verify that the flow field is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

\[\vec{V} = (u, v) = (U_0 + bx)i - byj \]

We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eq. 1,

\[\frac{1}{V} \frac{DV}{Dt} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = b + (-b) + 0 = 0 \]

Where $\varepsilon_{zz} = 0$ since the flow is two-dimensional. Since the volumetric strain rate is zero everywhere, the flow is incompressible.

Discussion The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net volume of the fluid particle does not change.

Solution For a given steady two-dimensional velocity field, we are to calculate the x and y components of the acceleration field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

\[\vec{V} = (u, v) = (U + a_1 x + b_1 y)i + (V + a_2 x + b_2 y)j \]

The acceleration field is obtained from its definition (the material acceleration). The x-component is

\[a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = (U + a_1 x + b_1 y) a_x + (V + a_2 x + b_2 y) b_1 \]

The y-component is

\[a_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = (U + a_1 x + b_1 y) a_y + (V + a_2 x + b_2 y) b_2 \]

Discussion If there were a z-component, it would be treated in the same fashion.
4-59

Solution

We are to find a relationship among the coefficients that causes the flow field to be incompressible.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the \(x-y\) plane.

Analysis

We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eq. 1 of the previous problem,

\[
\text{Volumetric strain rate: } \frac{1}{V} \frac{DV}{Dt} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = a_1 + b_2
\] (1)

We recognize that when the volumetric strain rate is zero everywhere, the flow is incompressible. Thus, the desired relationship is

Relationship to ensure incompressibility:

\[a_1 + b_2 = 0\] (2)

Discussion

If Eq. 2 is satisfied, the flow is incompressible, regardless of the values of the other coefficients.

4-60

Solution

For a given velocity field we are to calculate the linear strain rates in the \(x\) and \(y\) directions.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the \(x-y\) plane.

Analysis

We use the equations for linear strain rates in Cartesian coordinates, and apply Eq. 1 of Problem 4-58,

Linear strain rates:

\[
\varepsilon_{xx} = \frac{\partial u}{\partial x} = a_1 \quad \varepsilon_{yy} = \frac{\partial v}{\partial y} = b_2
\] (1)

Discussion

In general, since coefficients \(a_1\) and \(b_2\) are non-zero, fluid particles stretch (or shrink) in the \(x\) and \(y\) directions.

4-61

Solution

For a given velocity field we are to calculate the shear strain rate in the \(x-y\) plane.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the \(x-y\) plane.

Analysis

We use the equation for shear strain rate \(\varepsilon_{xy}\) in Cartesian coordinates, and apply Eq. 1 of Problem 4-58,

Shear strain rate in \(x-y\) plane:

\[
\varepsilon_{xy} = \varepsilon_{yx} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \frac{1}{2} (b_1 + a_2)
\] (1)

Note that by symmetry \(\varepsilon_{yx} = \varepsilon_{xy}\).

Discussion

In general, since coefficients \(b_1\) and \(a_2\) are non-zero, fluid particles distort via shear strain in the \(x\) and \(y\) directions.
Solution For a given velocity field we are to form the 2-D strain rate tensor and determine the conditions necessary for the x and y axes to be principal axes.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis
The two-dimensional form of the strain rate tensor is

\[
\varepsilon_{ij} = \begin{pmatrix}
\varepsilon_{xx} & \varepsilon_{xy} \\
\varepsilon_{yx} & \varepsilon_{yy}
\end{pmatrix}
\]

(1)

We use the linear strain rates and the shear strain rate from the previous two problems to generate the tensor,

\[
\varepsilon_{ij} = \begin{pmatrix}
\varepsilon_{xx} & \varepsilon_{xy} \\
\varepsilon_{yx} & \varepsilon_{yy}
\end{pmatrix} = \begin{pmatrix}
a_1 & \frac{1}{2}(b_1 + a_2) \\
\frac{1}{2}(b_1 + a_2) & b_2
\end{pmatrix}
\]

(2)

If the x and y axes were principal axes, the diagonals of ε_{ij} would be non-zero, and the off-diagonals would be zero. Here the off-diagonals go to zero when

Condition for x and y axes to be principal axes:
\[b_1 + a_2 = 0\]
(3)

Discussion
For the more general case in which Eq. 3 is not satisfied, the principal axes can be calculated using tensor algebra.

Solution For a given velocity field we are to calculate the vorticity vector and discuss its orientation.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis
We use the equation for vorticity vector $\vec{\zeta}$ in Cartesian coordinates, and apply Eq. 1 of Problem 4-52,

Vorticity vector:

\[
\vec{\zeta} = \left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial z} \right) \hat{i} + \left(\frac{\partial u}{\partial z} - \frac{\partial v}{\partial x} \right) \hat{j} + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \hat{k} = \left(a_2 - b_1 \right) \hat{k}
\]

(1)

The only non-zero component of vorticity is in the z (or $-z$) direction.

Discussion
For any two-dimensional flow in the x-y plane, the vorticity vector must point in the z (or $-z$) direction. The sign of the z-component of vorticity in Eq. 1 obviously depends on the sign of $a_2 - b_1$.

PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.
Solution For the given velocity field we are to calculate the two-dimensional linear strain rates from fundamental principles and compare with the given equation.

Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional.

Analysis First, for convenience, we number the equations in the problem statement:

Velocity field:
\[\vec{V} = (u, v) = (a + by)\hat{i} + 0\hat{j} \] (1)

Lower left corner at \(t + dt \):
\[(x + (a + by) dt, y) \] (2)

Linear strain rate in Cartesian coordinates:
\[\varepsilon_{xx} = \frac{\partial u}{\partial x}, \quad \varepsilon_{yy} = \frac{\partial v}{\partial y} \] (3)

(a) The lower right corner of the fluid particle moves the same amount as the lower left corner since \(u \) does not depend on \(y \) position. Thus,

Lower right corner at \(t + dt \):
\[(x + dx + (a + by) dt, y) \] (4)

Similarly, the top two corners of the fluid particle move to the right at speed \(a + b(y + dy)dt \). Thus,

Upper left corner at \(t + dt \):
\[(x + (a + b(y + dy)) dt, y + dy) \] (5)

and

Upper right corner at \(t + dt \):
\[(x + dx + (a + b(y + dy)) dt, y + dy) \] (6)

(b) From the fundamental definition of linear strain rate in the \(x \)-direction, we consider the lower edge of the fluid particle. Its rate of increase in length divided by its original length is found by using Eqs. 2 and 4,

\[\varepsilon_{xx}: \quad \varepsilon_{xx} = \frac{1}{dt} \left[\frac{\text{Length of lower edge at } t + \text{dt}}{\text{Length of lower edge at } t} - \frac{dx}{dx} \right] - \frac{\text{Length of lower edge at } t + \text{dt}}{\text{Length of lower edge at } t} = 0 \] (6)

We get the same result by considering the upper edge of the fluid particle. Similarly, using the left edge of the fluid particle and Eqs. 2 and 5 we get

\[\varepsilon_{yy}: \quad \varepsilon_{yy} = \frac{1}{dt} \left[\frac{\text{Length of left edge at } t + \text{dt}}{\text{Length of left edge at } t} - \frac{dy}{dy} \right] = 0 \] (7)

We get the same result by considering the right edge of the fluid particle. Thus both the \(x \) - and \(y \) -components of linear strain rate are zero for this flow field.

(c) From Eq. 3 we calculate

Linear strain rates:
\[\varepsilon_{xx} = \frac{\partial u}{\partial x} = 0, \quad \varepsilon_{yy} = \frac{\partial v}{\partial y} = 0 \] (8)

Discussion Although the algebra in this problem is rather straight-forward, it is good practice for the more general case (a later problem).
Solution We are to verify that the given flow field is incompressible using two different methods.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional.

Analysis
(a) The volume of the fluid particle at time t is.

$$V(t) = dx dy dz$$ \hspace{1cm} (1)$$

where dz is the length of the fluid particle in the z direction. At time $t + dt$, we assume that the fluid particle’s dimension dz remains fixed since the flow is two-dimensional. Thus its volume is dz times the area of the rhombus shown in Fig. P4-58, as illustrated in Fig. 1,

$$V(t + dt) = dx dy dz$$ \hspace{1cm} (2)$$

Since Eqs. 1 and 2 are equal, the volume of the fluid particle has not changed, and the flow is therefore incompressible.

(b) We use the equation for volumetric strain rate in Cartesian coordinates, and apply the results of the previous problem,

$$\frac{1}{V} \frac{DV}{Dt} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = 0 + 0 + 0 = 0$$ \hspace{1cm} (3)$$

Where $\varepsilon_{zz} = 0$ since the flow is two-dimensional. Since the volumetric strain rate is zero everywhere, the flow is incompressible.

Discussion Although the fluid particle deforms with time, its height, its depth, and the length of its horizontal edges remain constant.
Solution For the given velocity field we are to calculate the two-dimensional shear strain rate in the x-y plane from fundamental principles and compare with the given equation.

Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional.

Analysis

(a) The shear strain rate is

Shear strain rate in Cartesian coordinates:

$$\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$ \hspace{1cm} (1)

From the fundamental definition of shear strain rate in the x-y plane, we consider the bottom edge and the left edge of the fluid particle, which intersect at 90° at the lower left corner at time t. We define angle α between the lower edge and the left edge of the fluid particle, and angle β, the complement of α (Fig. 1). The rate of decrease of angle α over time interval dt is obtained from application of trigonometry. First, we calculate angle β,

Angle β at time $t + dt$: \[\beta = \arctan \left(\frac{bdy}{dt} \right) = \arctan (bdt) \approx bdt \] \hspace{1cm} (2)

The approximation is valid for very small angles. As the time interval $dt \to 0$, Eq. 2 is correct. At time $t + dt$, angle α is

Angle α at time $t + dt$: \[\alpha = \frac{\pi}{2} - \beta \approx \frac{\pi}{2} - bdt \] \hspace{1cm} (3)

During this time interval, α changes from 90° ($\pi/2$ radians) to the expression given by Eq. 2. Thus the rate of change of α is

Rate of change of angle α: \[\frac{d\alpha}{dt} = \frac{1}{dt} \left[\frac{\pi}{2} - bdt \right] = -b \] \hspace{1cm} (4)

Finally, since shear strain rate is defined as half of the rate of decrease of angle α,

Shear strain rate: \[\varepsilon_{xy} = \frac{1}{2} \frac{d\alpha}{dt} = b \] \hspace{1cm} (5)

(b) From Eq. 1 we calculate

Shear strain rate: \[\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \frac{1}{2} (b + 0) = b \] \hspace{1cm} (6)

Both methods for obtaining the shear strain rate agree (Eq. 5 and Eq. 6).

Discussion Although the algebra in this problem is rather straight-forward, it is good practice for the more general case (a later problem).
Solution

For the given velocity field we are to calculate the two-dimensional rate of rotation in the x-y plane from fundamental principles and compare with the given equation.

Assumptions
1. The flow is incompressible.
2. The flow is steady.
3. The flow is two-dimensional.

Analysis

(a) The rate of rotation in Cartesian coordinates is

\[
\Omega_x = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)
\]

(1)

From the fundamental definition of rate of rotation in the x-y plane, we consider the bottom edge and the left edge of the fluid particle, which intersect at 90° at the lower left corner at time \(t \). We define angle \(\beta \) in Fig. 1, where \(\beta \) is the negative of the angle of rotation of the left edge of the fluid particle (negative because rotation is mathematically positive in the counterclockwise direction). We calculate angle \(\beta \) using trigonometry,

\[
\beta = \arctan \left(\frac{bdy}{dx} \right) = \arctan(bdt) \approx bdt
\]

(2)

The approximation is valid for very small angles. As the time interval \(dt \rightarrow 0 \), Eq. 2 is correct. Meanwhile, the bottom edge of the fluid particle has not rotated at all. Thus, the average angle of rotation of the two line segments (lower and left edges) at time \(t + dt \) is

\[
AVG = \frac{1}{2} \left(0 - \beta \right) \approx -\frac{b}{2} dt
\]

(3)

Thus the average rotation rate during time interval \(dt \) is

\[
\Omega_x = \frac{d(AVG)}{dt} = \frac{1}{dt} \left(-\frac{b}{2} dt \right) = \frac{b}{2}
\]

(4)

(b) From Eq. 1 we calculate

\[
\Omega_x = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = \frac{1}{2} (0 - b) = \frac{-b}{2}
\]

(5)

Both methods for obtaining the rate of rotation agree (Eq. 4 and Eq. 5).

Discussion

The rotation rate is negative, indicating clockwise rotation about the z-axis. This agrees with our intuition as we follow the fluid particle.

Solution

We are to determine whether the shear flow of Problem 4-22 is rotational or irrotational, and we are to calculate the vorticity in the z direction.

Analysis

(a) Since the rate of rotation is non-zero, it means that the flow is rotational.

(b) Vorticity is defined as twice the rate of rotation, or twice the angular velocity. In the \(z \) direction,

\[
\zeta_z = 2\Omega_z = 2 \left(-\frac{b}{2} dt \right) = -b
\]

(1)

Discussion

Vorticity is negative, indicating clockwise rotation about the z-axis.
Solution

We are to prove the given expression for flow in the xy-plane.

Assumptions

1. The flow is incompressible and two-dimensional.

Analysis

For flow in the xy-plane, we are to show that:

\[\omega = \omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \]

(1)

By definition, the rate of rotation (angular velocity) at a point is the average rotation rate of two initially perpendicular lines that intersect at the point. In this particular problem, Line a (PA) and Line b (PB) are initially perpendicular, and intersect at point P. Line a rotates by angle \(\alpha_a \), and Line b rotates by angle \(\alpha_b \). Thus, the average angle of rotation is

\[\text{Average angle of rotation:} \quad \frac{\alpha_a + \alpha_b}{2} \]

(2)

During time increment \(dt \), point P moves a distance \(u dt \) to the right and \(v dt \) up (to first order, assuming \(dt \) is very small).

Similarly, point A moves a distance \(\left(u + \frac{\partial u}{\partial x} \right) dt \) to the right and \(\left(v + \frac{\partial v}{\partial x} \right) dt \) up, and point B moves a distance \(\left(u + \frac{\partial u}{\partial y} \right) dt \) to the right and \(\left(v + \frac{\partial v}{\partial y} \right) dt \) up. Since point A is initially at distance \(dx \) to the right of point P, the horizontal distance from point P' to point A' at the later time \(t_2 \) is

\[dx + \frac{\partial u}{\partial x} dx dt \]

On the other hand, point A is at the same vertical level as point P at time \(t_1 \). Thus, the vertical distance from point P' to point A' at time \(t_2 \) is

\[\frac{\partial v}{\partial x} dx dt \]

(3)

Similarly, point B is located at distance \(dy \) vertically above point P at time \(t_1 \), and thus the horizontal distance from point P' to point B' at time \(t_2 \) is

\[-\frac{\partial u}{\partial y} dy dt \]

(4)

and

\[\text{Vertical distance from point P’ to point B’ at time } t_2: \quad dy + \frac{\partial v}{\partial y} dy dt \]

(5)

We mark the horizontal and vertical distances between point A' and point P' and between point B' and point P' at time \(t_2 \) in Fig. 1. From the figure we see that

\[\text{Angle } \alpha_a \text{ in terms of velocity components:} \quad \alpha_a = \tan^{-1} \left(\frac{\frac{\partial v}{\partial x} dx dt}{dx + \frac{\partial u}{\partial x} dx dt} \right) \approx \tan^{-1} \left(\frac{\frac{\partial v}{\partial x} dx dt}{\frac{\partial v}{\partial x} dx dt} \right) = \tan^{-1} \left(\frac{\partial v}{\partial x} dt \right) \approx \frac{\partial v}{\partial x} dt \]

(6)

The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, \(dx \to 0 \), and at the same time \(dt \to 0 \). Thus, the second term in the denominator is second-order compared to the first-order term \(dx \) and can be neglected. The second approximation in Eq. 6 is because as \(dt \to 0 \) angle \(\alpha_a \) is very small, and \(\tan \alpha_a \to \alpha_a \). Similarly, angle \(\alpha_b \) is written in terms of velocity components as

\[\frac{\partial v}{\partial x} dt \]
\[\alpha_b = \tan^{-1}\left(\frac{\frac{\partial u}{\partial y} dy dt}{dy + \frac{\partial v}{\partial y} dy dt} \right) \approx \tan^{-1}\left(\frac{\frac{\partial u}{\partial y} dy dt}{dy} \right) = \tan^{-1}\left(\frac{\frac{\partial u}{\partial y} dt}{\frac{\partial v}{\partial y}} \right) = -\frac{\partial u}{\partial y} dt \]

Finally then, the average rotation angle (Eq. 2) becomes

\[\text{Average angle of rotation:} \quad \frac{\alpha_s + \alpha_b}{2} = \frac{1}{2} \left(\frac{\partial v}{\partial x} dt - \frac{\partial u}{\partial y} dt \right) = \frac{dt}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \]

and the average rate of rotation (angular velocity) of the fluid element about point P in the x-y plane becomes

\[\omega = \omega_z = \frac{d}{dt} \left(\frac{\alpha_s + \alpha_b}{2} \right) = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \]

Discussion
Eq. 9 can be extended to three dimensions by performing a similar analysis in the x-z and y-z planes.
Solution We are to prove the given expression.

Assumptions 1 The flow is incompressible and two-dimensional.

Analysis We are to prove the following:

Linear strain rate in x-direction:

\[
\varepsilon_{xx} = \frac{\partial u}{\partial x}
\]

(1)

By definition, the rate of linear strain is the rate of increase in length of a line segment in a given direction divided by the original length of the line segment in that direction. During time increment \(dt\), point \(P\) moves a distance \(u dt\) to the right and \(v dt\) up (to first order, assuming \(dt\) is very small). Similarly, point \(A\) moves a distance \((u + \frac{\partial u}{\partial x} dx) dt\) to the right and \((v + \frac{\partial v}{\partial x} dx) dt\) up. Since point \(A\) is initially at distance \(dx\) to the right of point \(P\), its position to the right of point \(P'\) at the later time \(t_2\) is

\[
dx + \frac{\partial u}{\partial x} dx dt
\]

(2)

On the other hand, point \(A\) is at the same vertical level as point \(P\) at time \(t_1\). Thus, the vertical distance from point \(P'\) to point \(A'\) at time \(t_2\) is

Vertical distance from point \(P'\) to point \(A'\) at time \(t_2\):

\[
\frac{\partial v}{\partial x} dx dt
\]

(3)

We mark the horizontal and vertical distances between point \(A'\) and point \(P'\) at time \(t_2\) in Fig. 1. From the figure we see that

Linear strain rate in the x direction as line \(PA\) changes to \(PA'\):

\[
\varepsilon_{xx} = \frac{d}{dt}\left(\frac{\text{Length of } PA' \text{ in } x \text{ direction}}{\text{Length of } PA \text{ in } x \text{ direction}}\right) = \frac{d}{dt}\left(\frac{dx + \frac{\partial u}{\partial x} dx dt}{dx}\right)
\]

\[
= \frac{d}{dt}\left(\frac{\frac{\partial u}{\partial x} dx dt}{dx}\right) = \frac{\partial u}{\partial x}
\]

(4)

Thus Eq. 1 is verified.

Discussion The distortion of the fluid element is exaggerated in Fig. 1. As time increment \(dt\) and fluid element length \(dx\) approach zero, the first-order approximations become exact.
Solution

We are to prove the given expression.

Assumptions

1. The flow is incompressible and two-dimensional.

Analysis

We are to prove the following:

Shear strain rate in xy-plane:

\[\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \]

By definition, the shear strain rate at a point is half of the rate of decrease of the angle between two initially perpendicular lines that intersect at the point. In Fig. P4-63, Line a (PA) and Line b (PB) are initially perpendicular, and intersect at point P. Line a rotates by angle \(\alpha_a \), and Line b rotates by angle \(\alpha_b \). The angle between these two lines changes from \(\pi/2 \) at time \(t_1 \) to \(\alpha_a - \alpha_b \) at time \(t_2 \) as sketched in Fig. 1. The shear strain rate at point P for initially perpendicular lines in the x and y directions is thus

\[\varepsilon_{xy} = -\frac{1}{2} \frac{d}{dt} (\alpha_a - \alpha_b) \]

During time increment \(dt \), point P moves a distance \(u dt \) to the right and \(v dt \) up (to first order, assuming \(dt \) is very small). Similarly, point A moves a distance \((u + \frac{\partial u}{\partial x} dx) dt \) to the right and \((v + \frac{\partial v}{\partial x} dx) dt \) up, and point B moves a distance \((u + \frac{\partial u}{\partial y} dy) dt \) to the right and \((v + \frac{\partial v}{\partial y} dy) dt \) up. Since point A is initially at distance \(dx \) to the right of point P, its position to the right of point P’ at the later time \(t_2 \) is

Horizontal distance from point P’ to point A’ at time \(t_2 \):

\[dx + \frac{\partial u}{\partial x} dx dt \]

On the other hand, point A is at the same vertical level as point P at time \(t_1 \). Thus, the vertical distance from point P’ to point A’ at time \(t_2 \) is

Vertical distance from point P’ to point A’ at time \(t_2 \):

\[\frac{\partial v}{\partial x} dx dt \]

Similarly, point B is located at distance \(dy \) vertically above point P at time \(t_1 \), and thus we write

Horizontal distance from point P’ to point B’ at time \(t_2 \):

\[-\frac{\partial u}{\partial y} dy dt \]

and

Vertical distance from point P’ to point B’ at time \(t_2 \):

\[dy + \frac{\partial v}{\partial y} dy dt \]

We mark the horizontal and vertical distances between point A’ and point P’ and between point B’ and point P’ at time \(t_2 \) in Fig. 1. From the figure we see that

Angle \(\alpha_a \) in terms of velocity components:

\[\alpha_a = \tan^{-1} \left(\frac{\frac{\partial v}{\partial x} dx dt}{dx + \frac{\partial u}{\partial x} dx dt} \right) \approx \tan^{-1} \left(\frac{\frac{\partial v}{\partial x} dx dt}{dx} \right) = \tan^{-1} \left(\frac{\frac{\partial v}{\partial x} dt}{\frac{\partial x}{\partial t}} \right) \approx \frac{\partial v}{\partial x} dt \]

FIGURE 1

A close-up view of the distorted fluid element at time \(t_2 \).
Chapter 4 Fluid Kinematics

The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, $dx \to 0$, and at the same time $dt \to 0$. Thus, the second term in the denominator is second-order compared to the first-order term dx and can be neglected. The second approximation in Eq. 6 is because as $dt \to 0$ angle α_a is very small, and $\tan \alpha_a \to \alpha_a$. Similarly,

Angle α_b in terms of velocity components:

$$
\alpha_b = \tan^{-1} \left(\frac{-\frac{\partial u}{\partial y} dy dt}{dy + \frac{\partial v}{\partial y} dy dt} \right) \approx \tan^{-1} \left(\frac{-\frac{\partial u}{\partial y} dy dt}{dy} \right) = \tan^{-1} \left(-\frac{\partial u}{\partial y} dt \right) = -\frac{\partial u}{\partial y} dt
$$

(7)

Angle $\alpha_{a,b}$ at time t_2 is calculated from Fig. 1 as

Angle $\alpha_{a,b}$ at time t_2 in terms of velocity components:

$$
\alpha_{a,b} = \frac{\pi}{2} + \alpha_b - \alpha_a = \frac{\pi}{2} - \frac{\partial u}{\partial y} dt - \frac{\partial v}{\partial x} dt
$$

(8)

where we have used Eqs. 6 and 7. Finally then, the shear strain rate (Eq. 2) becomes

Shear strain rate, initially perpendicular lines in the x and y directions:

$$
\varepsilon_{xy} = -\frac{1}{2} \frac{d}{dt} \alpha_{a,b} \approx -\frac{1}{2} \frac{d}{dt} \left(\frac{\alpha_{a,b} \mu t_1}{2} - \frac{\partial u}{\partial y} dt - \frac{\partial v}{\partial x} dt - \frac{\pi}{2} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
$$

(9)

which agrees with Eq. 1. Thus, Eq. 1 is proven.

Discussion

Eq. 9 can be easily extended to three dimensions by performing a similar analysis in the x-z plane and in the y-z plane.
4-72
Solution
For a given linear strain rate in the x-direction, we are to calculate the linear strain rate in the y-direction.

Analysis
Since the flow is incompressible, the volumetric strain rate must be zero. In two dimensions,

\[\frac{1}{V} \frac{DV}{Dt} = \varepsilon_{xx} + \varepsilon_{yy} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \]

(1)

Thus, the linear strain rate in the y-direction is the negative of that in the x-direction,

\[\varepsilon_{yy} = -\frac{\partial u}{\partial y} = -\frac{\partial u}{\partial x} = -2.5 \text{1/s} \]

(2)

Discussion
The fluid element stretches in the x-direction since \(\varepsilon_{xx} \) is positive. Because the flow is incompressible, the fluid element must shrink in the y-direction, yielding a value of \(\varepsilon_{yy} \) that is negative.

4-73
Solution
We are to calculate the vorticity of fluid particles in a tank rotating in solid body rotation about its vertical axis.

Assumptions
1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis
Vorticity \(\zeta \) is twice the angular velocity \(\tilde{\omega} \). Here,

\[\tilde{\omega} = 175 \text{rot/min} \left(\frac{1 \text{min}}{60 \text{s}} \right) \left(\frac{2\pi \text{ rad}}{\text{rot}} \right) \tilde{k} = 18.326 \tilde{k} \text{ rad/s} \]

(1)

where \(\tilde{k} \) is the unit vector in the vertical (z) direction. The vorticity is thus

\[\zeta = 2\tilde{\omega} = 2 \times 18.326 \tilde{k} \text{ rad/s} = 36.652 \tilde{k} \text{ rad/s} \approx 36.7 \tilde{k} \text{ rad/s} \]

(2)

Discussion
Because the water rotates as a solid body, the vorticity is constant throughout the tank, and points vertically upward.

4-74
Solution
We are to calculate the angular speed of a tank rotating about its vertical axis.

Assumptions
1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis
Vorticity \(\zeta \) is twice the angular velocity \(\tilde{\omega} \). Thus,

\[\tilde{\omega} = \frac{\zeta}{2} = \frac{45.4 \tilde{k} \text{ rad/s}}{2} = -22.7 \tilde{k} \text{ rad/s} \]

(1)

where \(\tilde{k} \) is the unit vector in the vertical (z) direction. The angular velocity is negative, which by definition is in the clockwise direction about the vertical axis. We express the rate of rotation in units of rpm,

\[\dot{n} = -22.7 \frac{\text{rad}}{s} \left(\frac{60 \text{ s}}{1 \text{ min}} \right) \left(\frac{\text{rot}}{2\pi \text{ rad}} \right) \approx -217 \text{ rpm} \]

(2)

Discussion
Because the vorticity is constant throughout the tank, the water rotates as a solid body.
4-75
Solution For a tank of given rim radius and speed, we are to calculate the magnitude of the component of vorticity in the vertical direction.

Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis The linear speed at the rim is equal to \(r_{\text{rim}} \omega_z \). Thus,

\[
\omega_z = \frac{V_{\text{rim}}}{r_{\text{rim}}} = \frac{3.61 \text{ m/s}}{0.354 \text{ m}} = 10.19774 \text{ rad/s}
\] (1)

Vorticity \(\zeta \) is twice the angular velocity \(\omega_z \). Thus,

\[
\zeta_z = 2 \omega_z = 2(10.19774 \text{ rad/s}) = 20.39548 \text{ rad/s} \approx 20.4 \text{ rad/s}
\] (2)

Discussion Radian is a non-dimensional unit, so we can insert it into Eq. 1. The final answer is given to three significant digits for consistency with the given information.

4-76
Solution For a given deformation of a fluid particle in one direction, we are to calculate its deformation in the other direction.

Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional in the x-y plane.

Analysis Since the flow is incompressible and two-dimensional, the area of the fluid element must remain constant (volumetric strain rate must be zero in an incompressible flow). The area of the original fluid particle is \(a^2 \). Hence, the vertical dimension of the fluid particle at the later time must be \(a^2/2a = a/2 \).

Discussion Since the particle stretches by a factor of two in the x-direction, it shrinks by a factor of two in the y-direction.

4-77
Solution We are to calculate the percentage change in fluid density for a fluid particle undergoing two-dimensional deformation.

Assumptions 1 The flow is two-dimensional in the x-y plane.

Analysis The area of the original fluid particle is \(a^2 \). Assuming that the mass of the fluid particle is \(m \) and its dimension in the z-direction is also \(a \), the initial density is \(\rho = m/V = m/a^3 \). As the particle moves and deforms, its mass must remain constant. If its dimension in the z-direction remains equal to \(a \), the density at the later time is

\[
\rho = \frac{m}{V} = \frac{m}{(1.08a)(0.903a)a} = 1.025 \frac{m}{a^3}
\] (1)

Compared to the original density, the density has increased by about 2.5%.

Discussion The fluid particle has stretched in the x-direction and shrunk in the y-direction, but there is nevertheless a net decrease in volume, corresponding to a net increase in density.
Solution

For a given velocity field we are to calculate the vorticity.

Analysis

The velocity field is

\[\vec{V} = (u, v, w) = (3.0 + 2.0x - y)i + (2.0x - 2.0y)j + (0.5xy)k \]

(1)

In Cartesian coordinates, the vorticity vector is

\[\vec{\zeta} = \left(\frac{\partial v}{\partial y} - \frac{\partial w}{\partial z} \right)i + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)j + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)k \]

(2)

We substitute the velocity components \(u = 3.0 + 2.0x - y \), \(v = 2.0x - 2.0y \), and \(w = 0.5xy \) from Eq. 1 into Eq. 2 to obtain

\[\vec{\zeta} = (0.5x - 0)i + (0 - 0.5y)j + (2.0 - (-1))k = (0.5x)i - (0.5y)j + (3.0)k \]

(3)

Discussion

The vorticity is non-zero implying that this flow field is rotational.

Solution

We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.

Assumptions

1. The flow is steady.
2. The flow is incompressible.
3. The flow is two-dimensional in the \(x-y \) plane.

Analysis

The velocity field is given by

\[\vec{V} = (u, v) = \left(\frac{V_y}{h} \right)i + 0j \]

(1)

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity,

\[\zeta_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0 - \frac{V}{h} = -\frac{V}{h} \]

(2)

Since vorticity is non-zero, yes this flow is rotational. Furthermore, the vorticity is negative, implying that particles rotate in the clockwise direction.

Discussion

The vorticity is constant at every location in this flow.
Solution For the given velocity field for Couette flow, we are to calculate the two-dimensional linear strain rates and the shear strain rate.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The linear strain rates in the x direction and in the y direction are

Linear strain rates: \[\varepsilon_{xx} = \frac{\partial u}{\partial x} = 0 \quad \varepsilon_{yy} = \frac{\partial v}{\partial y} = 0 \] (1)

The shear strain rate in the x-y plane is

Shear strain rate: \[\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \frac{1}{2} \left(\frac{V}{h} + 0 \right) = \frac{V}{2h} \] (2)

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal or vertical directions.

Solution For the Couette flow velocity field we are to form the 2-D strain rate tensor and determine if the x and y axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The two-dimensional strain rate tensor, \(\varepsilon_{ij} \), is

2-D strain rate tensor: \[\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{pmatrix} \] (1)

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,

2-D strain rate tensor: \[\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{pmatrix} = \begin{pmatrix} 0 & \frac{V}{2h} \\ \frac{V}{2h} & 0 \end{pmatrix} \] (2)

Note that by symmetry \(\varepsilon_{xy} = \varepsilon_{yx} \). If the x and y axes were principal axes, the diagonals of \(\varepsilon_{ij} \) would be non-zero, and the off-diagonals would be zero. Here we have the opposite case, so the x and y axes are not principal axes.

Discussion The principal axes can be calculated using tensor algebra.
4-82
Solution For a given velocity field we are to calculate the vorticity.

Analysis The velocity field is

\[
\vec{V} = (u,v,w) = (2.49 + 1.36x - 0.867y)i + (1.95x - 1.36y)j + (-0.458xy)\hat{k}
\] (1)

In Cartesian coordinates, the vorticity vector is

\[
\vec{\xi} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)i + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)j + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)\hat{k}
\] (2)

We substitute velocity components \(u = 2.49 + 1.36x - 0.867y \), \(v = 1.95x - 1.36y \), and \(w = -0.458xy \) to obtain

\[
\vec{\xi} = (-0.458x - 0)i + (0 - (-0.458y))j + (1.95 - (-0.867))\hat{k} = (-0.458x)i + (0.458y)j + (2.817)\hat{k}
\] (3)

Discussion The vorticity is non-zero implying that this flow field is rotational.

4-83
Solution For a given velocity field we are to calculate the constant \(c \) such that the flow field is irrotational.

Analysis The velocity field is

\[
\vec{V} = (u,v) = (2.85 + 1.26x - 0.896y)i + (3.45 + cx - 1.26y)j
\] (1)

In Cartesian coordinates, the vorticity vector is

\[
\vec{\xi} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)i + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)j + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)\hat{k}
\] (2)

We substitute velocity components \(u = 2.85 + 1.26x - 0.896y \), \(v = 3.45 + cx - 1.26y \), and \(w = 0 \) to obtain

\[
\vec{\xi} = (0)i + (0)j + (c - (-0.896))\hat{k} = (c + 0.896)\hat{k}
\]

For irrotational flow, the vorticity is set to zero, yielding \(c = -0.896 \).

Discussion For any other value of \(c \) the vorticity would be non-zero implying that the flow field would be rotational.

4-84
Solution For a given velocity field we are to calculate the constants \(b \) and \(c \) such that the flow field is irrotational.

Analysis The velocity field is

\[
\vec{V} = (1.35 + 2.78x + 0.754y + 4.21z)i + (3.45 + cx - 2.78y + bz)j + (-4.21x - 1.89y)\hat{k}
\] (1)

In Cartesian coordinates, the vorticity vector is

\[
\vec{\xi} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)i + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)j + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)\hat{k}
\] (2)

We substitute velocity components \(u = 1.35 + 2.78x + 0.754y + 4.21z \), \(v = 3.45 + cx - 2.78y + bz \), and \(w = -4.21x - 1.89y \) from Eq. 1 into Eq. 2 to obtain

\[
\vec{\xi} = (-1.89 - b)i + (4.21 - (-4.21))j + (c - 0.754)\hat{k} = (-1.89 - b)i + (4.21)j + (c - 0.754)\hat{k}
\]

For irrotational flow, each component of vorticity must be zero, yielding \(b = -1.89 \) and \(c = 0.754 \).

Discussion Any other values of \(b \) and/or \(c \) would make the vorticity non-zero implying a rotational flow field.
Chapter 4 Fluid Kinematics

4-85

Solution For a given velocity field we are to calculate the constants \(a, \ b,\) and \(c\) such that the flow field is irrotational.

Analysis The velocity field is

\[
\vec{V} = (0.657 + 1.73x + 0.948y + az)\hat{i} + (2.61 + cx + 1.91y + bz)\hat{j} + (-2.73x - 3.66y - 3.64z)\hat{k} \tag{1}
\]

In Cartesian coordinates, the vorticity vector is

\[
\vec{\zeta} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)\hat{i} + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)\hat{j} + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)\hat{k} \tag{2}
\]

We substitute components \(u = 0.657 + 1.73x + 0.948y + az, \ v = 2.61 + cx + 1.91y + bz,\) and \(w = -2.73x - 3.66y - 3.64z\) from Eq. 1 into Eq. 2 to obtain

\[
\vec{\zeta} = (-3.66 - b)\hat{i} + \left(a - (-2.73)\right)\hat{j} + \left(c - 0.948\right)\hat{k}
\]

For irrotational flow, each component of vorticity must be zero, yielding \(a = -2.73, \ b = -3.66\) and \(c = 0.948.\)

Discussion Any other values of \(b\) and/or \(c\) would make the vorticity non-zero implying a rotational flow field.

4-86E

Solution For a given velocity field and an initially square fluid particle, we are to calculate and plot its location and shape after a given time period.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the \(x-y\) plane.

Analysis Using the results of Problems 4-51 and 4-54, we can calculate the location of any point on the fluid particle after the elapsed time. We pick 6 points along each edge of the fluid particle, and plot their \(x\) and \(y\) locations at \(t = 0\) and at \(t = 0.2\) s. For example, the point at the lower left corner of the particle is initially at \(x = 0.25\) ft and \(y = 0.75\) ft at \(t = 0.\) At \(t = 0.2\) s,

\[
x = \frac{1}{4.6 \text{ ft/s}} \left[(5.0 \text{ ft/s})(0.25 \text{ ft}) \right] e^{4.6 \left(\frac{1}{3} \right)(0.2 \text{ s})} - 5.0 \text{ ft/s} = 2.268 \text{ ft}
\]

and

\[
y = (0.75 \text{ ft}) e^{-4.6 \left(\frac{1}{3} \right)(0.2 \text{ s})} = 0.2989 \text{ ft}
\]

We repeat the above calculations at all the points along the edges of the fluid particle, and plot both their initial and final positions in Fig. 1 as dots. Finally, we connect the dots to draw the fluid particle shape. It is clear from the results that the fluid particle shrinks in the \(y\) direction and stretches in the \(x\) direction. However, it does not shear or rotate.

Discussion The flow is irrotational since fluid particles do not rotate.
Solution

By analyzing the shape of a fluid particle, we are to verify that the given flow field is incompressible.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis

Since the flow is two-dimensional, we assume unit depth (1 ft) in the z direction (into the page in the figure). In the previous problem, we calculated the initial and final locations of several points on the perimeter of an initially square fluid particle. At $t = 0$, the particle volume is

$$V_{\text{initial}} = (0.50 \text{ ft})(0.50 \text{ ft})(1.0 \text{ ft}) = 0.25 \text{ ft}^3 \quad (1)$$

At $t = 0.2$ s, the lower left corner of the fluid particle has moved to $x = 2.2679$ ft, $y = 0.29889$ ft, and the upper right corner has moved to $x = 3.5225$ ft, $y = 0.49815$ ft. Since the fluid particle remains rectangular, we can calculate the fluid particle volume from these two corner locations,

$$V_{\text{final}} = (3.5225 \text{ ft} - 2.2679 \text{ ft})(0.49815 \text{ ft} - 0.29889 \text{ ft})(1.0 \text{ ft}) = 0.2500 \text{ ft}^3 \quad (2)$$

Thus, to at least four significant digits, the fluid particle volume has not changed, and the flow is therefore incompressible.

Discussion

The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net volume of the fluid particle does not change.
Reynolds Transport Theorem

4-88C Solution We are to explain the similarities and differences between the material derivative and the RTT.

Analysis The main similarity is that both of them transform from a Lagrangian or system viewpoint to an Eulerian or control volume viewpoint. Other similarities include that both the material derivative and the RTT contain two terms on the right side—an unsteady term that is nonzero only when the flow is changing in time, and an advective part, which accounts for the fluid particle or system moving to a new part of the flow field. The main difference between the two is that the material derivative applies to infinitesimal fluid particles, while the RTT applies to finite systems and control volumes.

Discussion It turns out that if we let the system shrink to a point, the RTT reduces directly to the material derivative.

4-89C Solution We are to explain the purpose of the Reynolds transport theorem, and write the RTT for intensive property b as a “word equation.”

Analysis The purpose of the RTT is to convert conservation equations from their fundamental form for a system (closed system) to a form that can be applied to a control volume (open system). In other words, the RTT provides a link between the system approach and the control volume approach to a fluid flow problem. We can also explain the RTT as a transformation from the Lagrangian to the Eulerian frame of reference. The RTT (Eq. 4-41) is

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{CV} \rho b dV + \int_{CS} \rho b \vec{V} \cdot \vec{n} \, dA \quad (1)$$

In word form, Eq. 1 may be stated something like this: The time rate of change of property B of the system is equal to the time rate of change of B of the control volume due to unsteadiness plus the net flux of B across the control surface due to fluid flow.

Discussion Students should write the RTT in their own words.

4-90C Solution
(a) False: The statement is backwards, since the conservation laws are naturally occurring in the system form.
(b) False: The RTT can be applied to any control volume, fixed, moving, or deforming.
(c) True: The RTT has an unsteady term and can be applied to unsteady problems.
(d) True: The extensive property B (or its intensive form b) in the RTT can be any property of the fluid—scalar, vector, or even tensor.
We are to solve an integral two ways – straightforward and using the Leibniz theorem.

Analysis

(a) We integrate first and then take the time derivative,

\[
\frac{d}{dt} \int_0^{2t} x^2 \, dx = \frac{d}{dt} \left[-\frac{1}{2} x^{-1} \right] = \frac{d}{dt} \left[-\frac{1}{2t} \right] = -\frac{1}{2t^2} \tag{1}
\]

(b) We use the 1-D Leibniz theorem,

\[
\frac{d}{dt} \int_{x=at}^{x=bt} G(x,t) \, dx = \int_a^b \frac{\partial G}{\partial t} \, dx + \frac{db}{dt} G(b,t) - \frac{da}{dt} G(a,t) \tag{2}
\]

Here, \(G = x^2 \), \(a = t \), \(b = 2t \), \(\partial G/\partial t = 0 \), \(db/dt = 2 \), and \(da/dt = 1 \). Thus, Eq. 2 becomes

\[
\frac{d}{dt} \int_0^{2t} x^2 \, dx = 0 + 2(2t)^2 - 1t^2 = -\frac{1}{2t^2} \tag{3}
\]

Thus, the integral reduces to \(-2t^2\), and we get the same answer using either technique.

Discussion

In this problem, we could integrate before taking the time derivative, but the real usefulness of Leibniz theorem is in situations where this cannot be done.

We are to solve an integral.

Analysis

There does not appear to be a simple straightforward solution, so we use the 1-D Leibniz theorem,

\[
\frac{d}{dt} \int_{x=at}^{x=bt} G(x,t) \, dx = \int_a^b \frac{\partial G}{\partial t} \, dx + \frac{db}{dt} G(b,t) - \frac{da}{dt} G(a,t) \tag{1}
\]

Here, \(G = x^2 \), \(a = t \), \(b = 2t \), \(\partial G/\partial t = 0 \), \(db/dt = 2 \), and \(da/dt = 1 \). Thus, the integral becomes

\[
\frac{d}{dt} \int_0^{2t} x^2 \, dx = 0 + 2(2t)^2 - 1t^2 = \frac{1}{2t^2} \tag{3}
\]

Thus, the integral reduces to \(2(2t)^2 - t^2\).

Discussion

The present author does not know how to solve this integral without using Leibniz theorem.

For the case in which \(B_{sys} \) is the mass \(m \) of a system, we are to use the RTT to derive the equation of conservation of mass for a control volume.

Analysis

The general form of the Reynolds transport theorem is given by

\[
\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{CV} \rho b dV + \int_{CS} \rho b \vec{V}_s \cdot \vec{n} dA \tag{1}
\]

Setting \(B_{sys} = m \) means that \(b = m/m = 1 \). Plugging these and \(dm/dt = 0 \) into Eq. 1 yields

Conservation of mass for a CV:

\[
0 = \frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho \vec{V}_s \cdot \vec{n} dA \tag{2}
\]

Discussion

Eq. 2 is general and applies to any control volume – fixed, moving, or even deforming.
Solution For the case in which B_{sys} is the linear momentum $m\vec{V}$ of a system, we are to use the RTT to derive the equation of conservation of linear momentum for a control volume.

Analysis Newton’s second law is

Newton’s second law for a system:

$$\sum \vec{F} = m\frac{d\vec{V}}{dt} = \frac{d}{dt}(m\vec{V})_{sys} \quad (1)$$

Setting $B_{sys} = m\vec{V}$ means that $b = m\vec{V}/m = \vec{V}$. Plugging these and Eq. 1 into the equation of the previous problem yields

$$\sum \vec{F} = \frac{d}{dt}(m\vec{V})_{sys} = \frac{d}{dt} \int_{CV} \rho \vec{V} dV + \int_{CS} \rho \vec{V} (\vec{V}_i \cdot \vec{n}) dA$$

or simply

Conservation of linear momentum for a CV:

$$\sum \vec{F} = \frac{d}{dt} \int_{CV} \rho \vec{V} dV + \int_{CS} \rho \vec{V} (\vec{V}_i \cdot \vec{n}) dA \quad (2)$$

Discussion Eq. 2 is general and applies to any control volume – fixed, moving, or even deforming.

Solution For the case in which B_{sys} is the angular momentum \vec{H} of a system, we are to use the RTT to derive the equation of conservation of angular momentum for a control volume.

Analysis The conservation of angular momentum is expressed as

Conservation of angular momentum for a system:

$$\sum \vec{M} = \frac{d}{dt} \vec{H}_{sys} \quad (1)$$

Setting $B_{sys} = \vec{H}$ means that $b = (\vec{r} \times m\vec{V})/m = \vec{r} \times \vec{V}$, noting that $m = $ constant for a system. Plugging these and Eq. 1 into the equation of Problem 4-78 yields

$$\sum \vec{M} = \frac{d}{dt} \vec{H}_{sys} = \frac{d}{dt} \int_{CV} \rho (\vec{r} \times \vec{V}) dV + \int_{CS} \rho (\vec{r} \times \vec{V}) (\vec{V}_i \cdot \vec{n}) dA$$

or simply

Conservation of angular momentum for a CV:

$$\sum \vec{M} = \frac{d}{dt} \int_{CV} \rho (\vec{r} \times \vec{V}) dV + \int_{CS} \rho (\vec{r} \times \vec{V}) (\vec{V}_i \cdot \vec{n}) dA \quad (2)$$

Discussion Eq. 2 is general and applies to any control volume – fixed, moving, or even deforming.
Solution
\[F(t) \] is to be evaluated from the given expression.

Analysis
The integral is
\[
F(t) = \frac{d}{dt} \int_{x=A(t)}^{x=B(t)} e^{-2x^2} \, dx
\]
(1)

We could try integrating first, and then differentiating, but we can instead use the 1-D Leibnitz theorem. Here,
\[G(x,t) = e^{-2x^2} \]
(G is not a function of time in this simple example). The limits of integration are \(a(t) = A(t) \) and \(b(t) = B(t) \). Thus,
\[
F(t) = \int_{a(t)}^{b(t)} \frac{\partial G}{\partial t} \, dx + \frac{db}{dt} G(b(t), t) - \frac{da}{dt} G(a(t), t)
\]
(2)

or
\[
F(t) = Be^{-2B^2} - Ae^{-2A^2}
\]
(3)

Discussion
You are welcome to try to obtain the same solution without using the Leibnitz theorem.
Review Problems

4-97

Solution
For a given expression for u, we are to find an expression for v such that the flow field is incompressible.

Assumptions
1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis
The x-component of velocity is given as

$$u = a + b(x - c)^2 \quad (1)$$

In order for the flow field to be incompressible, the volumetric strain rate must be zero,

$$\varepsilon = \frac{1}{V} \frac{DV}{Dt} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \quad (2)$$

This gives us a necessary condition for v,

$$\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x} \quad (3)$$

We substitute Eq. 1 into Eq. 3 and integrate to solve for v,

$$\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x} = -2b(x - c)$$

Expression for v:

$$v = \int \frac{\partial v}{\partial y} dy = \int (-2b(x - c)) dy + f(x)$$

Note that we must add an arbitrary function of x rather than a simple constant of integration since this is a partial integration with respect to y. v is a function of both x and y. The result of the integration is

Expression for v:

$$v = -2b(x - c)y + f(x) \quad (4)$$

Discussion
We verify by plugging Eqs. 1 and 4 into Eq. 2,

$$\frac{1}{V} \frac{DV}{Dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 2b(x - c) - 2b(x - c) = 0 \quad (5)$$

Since the volumetric strain rate is zero for any function $f(x)$, Eqs. 1 and 4 represent an incompressible flow field.
Solution
For a given expression for u, we are to find an expression for v such that the flow field is incompressible.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis
The x-component of velocity is given as

$$u = ax + by + cx^2 \quad (1)$$

In order for the flow field to be incompressible, the volumetric strain rate must be zero,

$$Volumetric\ strain\ rate:\ \frac{1}{V} \frac{DV}{Dt} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial w}{\partial z} = 0 \quad (2)$$

This gives us a necessary condition for v,

$$Necessary\ condition\ for\ v:\ \frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x} \quad (3)$$

We substitute Eq. 1 into Eq. 3 and integrate to solve for v,

$$\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x} = -(a + 2cx)$$

$$Expression\ for\ v: \quad v = \int \frac{\partial v}{\partial y} dy = -\int a dy - \int 2cxdy + f(x)$$

Note that we must add an arbitrary function of x rather than a simple constant of integration since this is a partial integration with respect to y. v is a function of both x and y. The result of the integration is

$$Expression\ for\ v: \quad v = -ay - 2cxy + f(x) \quad (4)$$

Discussion
We verify by plugging Eqs. 1 and 4 into Eq. 2,

$$Volumetric\ strain\ rate:\ \frac{1}{V} \frac{DV}{Dt} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial w}{\partial z} = a + 2cx - a - 2cx = 0 \quad (5)$$

Since the volumetric strain rate is zero for any function $f(x)$, Eqs. 1 and 4 represent an incompressible flow field.
Solution

We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.

Assumptions

1. The flow is steady.
2. The flow is incompressible.
3. The flow is two-dimensional in the x-y plane.

Analysis

The velocity components are given by

\[
\text{Velocity components, 2-D Poiseuille flow: } u = \frac{1}{2\mu} \frac{dP}{dx}(y^2 - hy), \quad v = 0 \tag{1}
\]

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity,

\[
\zeta_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0 - \frac{1}{2\mu} \frac{dP}{dx}(2y-h) = -\frac{1}{2\mu} \frac{dP}{dx}(2y-h) \tag{2}
\]

Since vorticity is non-zero, **this flow is rotational**. Furthermore, in the lower half of the flow ($y < h/2$) the vorticity is negative (note that dP/dx is negative). Thus, particles rotate in the clockwise direction in the lower half of the flow. Similarly, particles rotate in the counterclockwise direction in the upper half of the flow.

Discussion

The vorticity varies linearly across the channel.

4-100

Solution

For the given velocity field for 2-D Poiseuille flow, we are to calculate the two-dimensional linear strain rates and the shear strain rate.

Assumptions

1. The flow is steady.
2. The flow is incompressible.
3. The flow is two-dimensional in the x-y plane.

Analysis

The linear strain rates in the x direction and in the y direction are

\[
\varepsilon_{xx} = \frac{\partial u}{\partial x} = 0, \quad \varepsilon_{yy} = \frac{\partial v}{\partial y} = 0 \tag{1}
\]

The shear strain rate in the x-y plane is

\[
\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \frac{1}{2} \left(\frac{1}{2\mu} \frac{dP}{dx}(2y-h) + 0 \right) = \frac{1}{4\mu} \frac{dP}{dx}(2y-h) \tag{2}
\]

Fluid particles in this flow have non-zero shear strain rate.

Discussion

Since the linear strain rates are zero, fluid particles deform (shear), but do not *stretch* in either the horizontal or vertical directions.
Solution For the 2-D Poiseuille flow velocity field we are to form the 2-D strain rate tensor and determine if the \(x \) and \(y \) axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the \(x-y \) plane.

Analysis The two-dimensional strain rate tensor, \(\varepsilon_{ij} \), in the \(x-y \) plane,

\[
\varepsilon_{ij} = \begin{pmatrix}
\varepsilon_{xx} & \varepsilon_{xy} \\
\varepsilon_{yx} & \varepsilon_{yy}
\end{pmatrix}
\]

(1)

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,

\[
\varepsilon_{ij} = \begin{pmatrix}
0 & \frac{1}{4\mu} \frac{dP}{dx} (2y - h) \\
\frac{1}{4\mu} \frac{dP}{dx} (2y - h) & 0
\end{pmatrix}
\]

(2)

Note that by symmetry \(\varepsilon_{xy} = \varepsilon_{yx} \). If the \(x \) and \(y \) axes were principal axes, the diagonals of \(\varepsilon_{ij} \) would be non-zero, and the off-diagonals would be zero. Here we have the opposite case, so the \(x \) and \(y \) axes are not principal axes.

Discussion The principal axes can be calculated using tensor algebra.

Solution For a given velocity field we are to plot several pathlines for fluid particles released from various locations and over a specified time period.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the \(x-y \) plane.

Properties For water at 40°C, \(\mu = 6.53 \times 10^{-4} \text{ kg/m} \cdot \text{s} \).

Analysis Since the flow is steady, pathlines, streamlines, and streaklines are all straight horizontal lines. We simply need to integrate velocity component \(u \) with respect to time over the specified time period. The horizontal velocity component is

\[
u = \frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy)
\]

(1)

We integrate as follows:

\[
x = x_{\text{start}} + \int_{t_{\text{start}}}^{t_{\text{end}}} udT = 0 + \int_{0}^{10 \text{s}} \left(\frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy) \right) dt \\
x = \left(\frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy) \right) (10 \text{ s})
\]

(2)

We substitute the given values of \(y \) and the values of \(\mu \) and \(dP/dx \) into Eq. 2 to calculate the ending \(x \) position of each pathline. We plot the pathlines in Fig. 1.

Discussion Streaklines introduced at the same locations and developed over the same time period would look identical to the pathlines of Fig. 1.
Solution
For a given velocity field we are to plot several streaklines at a given time for dye released from various locations over a specified time period.

Assumptions
1. The flow is steady.
2. The flow is incompressible.
3. The flow is two-dimensional in the x-y plane.

Properties
For water at 40°C, \(\mu = 6.53 \times 10^{-4} \text{ kg/m·s} \).

Analysis
Since the flow is steady, pathlines, streamlines, and streaklines are all straight horizontal lines. We simply need to integrate velocity component \(u \) with respect to time over the specified time period. The horizontal velocity component is

\[
 u = \frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy) \tag{1}
\]

We integrate as follows to obtain the final \(x \) location of the first dye particle released:

\[
x = x_{\text{start}} + \int_{x_{\text{start}}}^{x_{\text{end}}} u \, dt = 0 + \int_0^{10 \text{ s}} \left(\frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy) \right) \, dt \]

\[
x = \frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy) \times (10 \text{ s}) \tag{2}
\]

We substitute the given values of \(y \) and the values of \(\mu \) and \(dP/dx \) into Eq. 2 to calculate the ending \(x \) position of the first released dye particle of each streakline. The last released dye particle is at \(x = x_{\text{start}} = 0 \), because it hasn’t had a chance to go anywhere. We connect the beginning and ending points to plot the streaklines (Fig. 1).

Discussion
These streaklines are introduced at the same locations and are developed over the same time period as the pathlines of the previous problem. They are identical since the flow is steady.
Solution

For a given velocity field we are to plot several streaklines at a given time for dye released from various locations over a specified time period.

Assumptions

1. The flow is steady. 2. The flow is incompressible. 3. The flow is two-dimensional in the x-y plane.

Properties

For water at 40°C, \(\mu = 6.53 \times 10^{-4} \text{ kg/m·s} \).

Analysis

Since the flow is steady, pathlines, streamlines, and streaklines are all straight horizontal lines. The horizontal velocity component is

\[
 u = \frac{1}{2 \mu} \frac{dP}{dx} (y^2 - hy) \tag{1}
\]

In the previous problem we generated streaklines at \(t = 10 \text{ s} \). Imagine the dye at the source being suddenly cut off at that time, but the streaklines are observed 2 seconds later, at \(t = 12 \text{ s} \). The dye streaks will not stretch any further, but will simply move at the same horizontal speed for 2 more seconds. At each \(y \) location, the \(x \) locations of the first and last dye particle are thus

\[
 \text{first dye particle of streakline: } x = \frac{1}{2 \mu} \frac{dP}{dx} (y^2 - hy) (12 \text{ s}) \tag{2}
\]

and

\[
 \text{last dye particle of streakline: } x = \frac{1}{2 \mu} \frac{dP}{dx} (y^2 - hy) (2 \text{ s}) \tag{3}
\]

We substitute the given values of \(y \) and the values of \(\mu \) and \(dP/dx \) into Eqs. 2 and 3 to calculate the ending and beginning \(x \) positions of the first released dye particle and the last released dye particle of each streakline. We connect the beginning and ending points to plot the streaklines (Fig. 1).

Discussion

Both the left and right ends of each dye streak have moved by the same amount compared to those of the previous problem.

Solution

For a given velocity field we are to compare streaklines at two different times and comment about linear strain rate in the \(x \) direction.

Assumptions

1. The flow is steady. 2. The flow is incompressible. 3. The flow is two-dimensional in the x-y plane.

Properties

For water at 40°C, \(\mu = 6.53 \times 10^{-4} \text{ kg/m·s} \).

Analysis

Comparing the results of the previous two problems we see that the streaklines have not stretched at all – they have simply convected downstream. Thus, based on the fundamental definition of linear strain rate, it is zero:

\[
 \text{Linear strain rate in the } x \text{ direction: } \epsilon_{xx} = 0 \tag{1}
\]

Discussion

Our result agrees with that of Problem 4-83.
Solution

For a given velocity field we are to plot several timelines at a specified time. The timelines are created by hydrogen bubbles released from a vertical wire at \(x = 0 \).

Assumptions

1. The flow is steady.
2. The flow is incompressible.
3. The flow is two-dimensional in the \(x-y \) plane.

Properties

For water at 40°C, \(\mu = 6.53 \times 10^{-4} \) kg/m·s.

Analysis

Since the flow is steady, pathlines, streamlines, and streaklines are all straight horizontal lines, but timelines are completely different from any of the others. To simulate a timeline, we integrate velocity component \(u \) with respect to time over the specified time period from \(t = 0 \) to \(t = t_{\text{end}} \). We introduce the bubbles at \(x = 0 \) and at many values of \(y \) (we used 50 in our simulation). By connecting these \(x \) locations with a line, we simulate a timeline. The horizontal velocity component is

\[
 u = \frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy)
\]

(1)

We integrate as follows to find the \(x \) position on the timeline at \(t_{\text{end}} \):

\[
x = x_{\text{start}} + \int_{t_{\text{start}}}^{t_{\text{end}}} u \, dt = 0 + \int_{0}^{t_{\text{end}}} \left(\frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy) \right) \, dt
\]

\[
\rightarrow x = \frac{1}{2\mu} \frac{dP}{dx} (y^2 - hy) t_{\text{end}}
\]

We substitute the values of \(y \) and the values of \(\mu \) and \(dP/dx \) into the above equation to calculate the ending \(x \) position of each point in the timeline. We repeat for the five values of \(t_{\text{end}} \). We plot the timelines in Fig. 1.

Discussion

Each timeline has the exact shape of the velocity profile.
Solution

For a given velocity field we are to calculate the normal acceleration of a particle.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the x-y plane.

Analysis

The streamlines for a two-dimensional flow are governed by \(\frac{dy}{dx} = \frac{v}{u} \). Therefore

\[
\frac{dy}{dx} = \frac{-2kxy}{k(x^2 - y^2)} = \frac{-2xy}{x^2 - y^2}
\]

or

\[
2xydx + (x^2 - y^2)dy = 0.
\]

This is a 2nd order homogenous differential equation. To solve this ODE we set \(y = px \), where \(p = p(x) \).

Differentiating we get

\[
\frac{dy}{dx} = \frac{dp}{dx} x + p
\]

The differential equation is then

\[
2xy + (x^2 - y^2) \frac{dy}{dx} = 0
\]

or

\[
2xp + (x^2 - p^2x^2) \left(\frac{dp}{dx} x + p \right) = 0
\]

or

\[
\frac{2p}{1 - p^2} + \frac{dp}{dx} x + p = 0, \quad \frac{dp}{dx} + \frac{3p - p^3}{1 - p^2} = 0
\]

Rearranging the DE we get

\[
\frac{1 - p^2}{3p - p^3} dp + \frac{dx}{x} = 0
\]

Since

\[
\frac{1 - p^2}{3p - p^3} = \frac{p^2 - 1}{p(p^2 - 3)} = \frac{A}{p} + \frac{Bp + C}{p^2 - 3}
\]

\[
p^2 - 1 = Ap^2 - 3A + Bp^2 + Cp,
\]

or

\[
A + B = 1, \quad C = 0
\]

\[
A = \frac{1}{3}, \quad B = \frac{2}{3}
\]

Therefore the differential equation becomes,

\[
\left(\frac{1}{3p} + \frac{1}{3} \cdot \frac{2p}{p^2 - 3} \right) dp + \frac{dx}{x} = 0
\]

Integrating both sides of the equation, we get

\[
\frac{1}{3} \ln p + \frac{1}{3} \ln(p^2 - 3) + \ln x = C_1
\]

or
\[
\ln p + \ln(p^2 - 3) + \ln x^3 = \ln C_2 \\
\ln(p(p^2 - 3)x^3) = \ln C_2 ,
\]

Recalling that
\[
y = px \quad \text{or} \quad p = \frac{y}{x} \\
y^3 - 3x^2y = C_2
\]
is the streamline function. For the given point \((x,y) = (1,2)\)
\[
C_2 = 2^3 - 3 \times 1^2 \times 2 = 8 - 6 = 2
\]
Therefore the streamline passing through position \((1,2)\) is
\[
y^3 - 3x^2y = 2 \\
3y^2y' + 3(2xy + x^2y') = 0 \quad \text{\((x,y) = (1,2)\)}
\]
\[
3 \times 2^2 y' + 3(2 \times 1 \times 2 + 1^2 y') = 0
\]
\[
12y' + 12 + 3y' = 0 \quad , \quad 15y' = -12
\]
\[
y' = -\frac{12}{15} = -\frac{4}{5} = -0.8
\]

Differentiating one more time, we get
\[
3(2yy'y'' + y^2y''') + 3(2y + 2xy' + 2xy' + x^2y') = 0
\]
For the given point \((x,y) = (1,2)\)
\[
2 \times 2 \left(-\frac{4}{5} \right)^2 + 2^2 y'' + 2 \times 2 + 2 \times \left(-\frac{4}{5} \right) + 2 \times \left(-\frac{4}{5} \right) + 1^2 y'' = 0
\]
\[
2.56 + 4y'' + 4 - 1 \times 6 \times 2 + y'' = 0
\]
\[
5y'' = -3.36 \quad , \quad y'' = -0.672
\]
Since
\[
R = \frac{(1 + y^2)^{3/2}}{|y'|} = \frac{[1 + (-0.8)^2]^{3/2}}{|-0.672|} = 3.125
\]
At the given position
\[
u = k(x^2 - y^2) = k(1^2 - 2^2) = -3k
\]
\[
v = -2kxy = -2k(1 \times 2) = -4k
\]
The absolute velocity of the particle at that point
\[
v^2 = u^2 + v^2 = (-3k)^2 + (-4k)^2 = 25k^2
\]
Normal acceleration is then
\[
a_n = \frac{v^2}{R} = \frac{25k^2}{3.125} = 8k^2
Solution

For a given velocity field we are to determine whether the flow is steady and calculate the velocity and acceleration of a particle.

Assumptions

1. The flow is incompressible.
2. The flow is three-dimensional in the x-y-z plane.

Analysis

The components of the velocity field are

\[u = 5x^2, \quad v = -20xy, \quad w = 100t \]

For the steady flow of an incompressible fluid:

\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial w}{\partial z} = 0
\]

\[
\frac{\partial u}{\partial x} = 10x, \quad \frac{\partial u}{\partial y} = -20x, \quad \frac{\partial u}{\partial z} = 0,
\]

Therefore

\[10x - 20x + 0 \neq 0 \]

and the flow is unsteady flow. For point \(P(1, 2, 3) \) the velocity components are

\[u = 5 - l^2 = 5, v = -20(2 \times 1) = -40 \]

\[w = 100 \times 0.2 = 20 \]

and therefore

\[\vec{V}_{P(1, 2, 3)} = 5\hat{i} - 40\hat{j} + 20\hat{k} \]

The components of the acceleration

\[a_x = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{\partial u}{\partial t} \]

\[= 5x^2 \cdot 10x + 20xy(-20x) + 100t \times 0 + 0 \]

\[a_x = 50x^3 + 400x^2y, \text{ at point } P, \]

\[a_x = 50x^3 + 400x^2y, \text{ at point } P \]

\[P(1, 2, 3) \rightarrow a_x = 850 \]

\[a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{\partial v}{\partial t} \]

\[u = 5x^2, v = -20xy, w = 100t \]

\[a_y = 5x^2(-20y) - (20xy)x(-20x) + 100t \times 0 + 0 \]

\[= -100x^2y + 400x^2y = 300x^2y \]

at point \(P(1, 2, 3) \),

\[a_y = 300x^2 = 600 \]

\[a_z = u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} + \frac{\partial w}{\partial t} \]

\[= 5x^2 \times 0 + (-20xy) \times 0 + 100t \times 0 + 100 = 100 \]

Therefore the acceleration at \(P(1, 2, 3) \) when \(t = 0.2 \) s

\[
\vec{a} = 850\hat{i} + 600\hat{j} + 60\hat{k}
\]
Chapter 4 Fluid Kinematics

4-109
Solution We are to determine if the flow is rotational, and if so calculate the \(\theta \)-component of vorticity.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the \(x \) axis.

Analysis The velocity components are given by

\[
u = \frac{1}{4\mu} \frac{dP}{dx} \left(r^2 - R^2 \right) \quad u_r = 0 \quad u_\theta = 0
\]

If the vorticity is non-zero, the flow is rotational. So, we calculate the \(\theta \)-component of vorticity,

\[
\zeta_\theta = \frac{\partial u_r}{\partial \theta} - \frac{\partial u_\theta}{\partial r} = 0 - \frac{1}{4\mu} \frac{dP}{dx} \cdot 2r = -\frac{r}{2\mu} \frac{dP}{dx}
\]

Since the vorticity is non-zero, this flow is rotational. The vorticity is positive since \(dP/dx \) is negative. In this coordinate system, positive vorticity is counterclockwise with respect to the positive \(\theta \) direction. This agrees with our intuition since in the top half of the flow, \(\theta \) points out of the page, and the rotation is counterclockwise. Similarly, in the bottom half of the flow, \(\theta \) points into the page, and the rotation is clockwise.

Discussion The vorticity varies linearly across the pipe from zero at the centerline to a maximum at the pipe wall.

4-110
Solution For the given velocity field for axisymmetric Poiseuille flow, we are to calculate the linear strain rates and the shear strain rate.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the \(x \) axis.

Analysis The linear strain rates in the \(x \) direction and in the \(r \) direction are

\[
\varepsilon_{xx} = \frac{\partial u}{\partial x} = 0 \quad \varepsilon_{rr} = \frac{\partial u_r}{\partial r} = 0
\]

Thus there is no linear strain rate in either the \(x \) or the \(r \) direction. The shear strain rate in the \(x-r \) plane is

\[
\varepsilon_{sr} = \frac{1}{2} \left(\frac{\partial u_r}{\partial x} + \frac{\partial u}{\partial r} \right) = \frac{1}{2} \left(0 + \frac{1}{4\mu} \frac{dP}{dx} \cdot 2r \right) = \frac{r dP}{4\mu dx}
\]

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal or radial directions.
Chapter 4 Fluid Kinematics

Solution For the axisymmetric Poiseuille flow velocity field we are to form the axisymmetric strain rate tensor and determine if the \(x \) and \(r \) axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the \(x \) axis.

Analysis The axisymmetric strain rate tensor, \(\varepsilon_{ij} \), is

\[
\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{rr} & \varepsilon_{rx} \\ \varepsilon_{rx} & \varepsilon_{xx} \end{pmatrix}
\]

(1)

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,

\[
\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{rr} & \varepsilon_{rx} \\ \varepsilon_{rx} & \varepsilon_{xx} \end{pmatrix} = \begin{pmatrix} 0 & \frac{r}{4\mu} \frac{dP}{dx} \\ \frac{r}{4\mu} \frac{dP}{dx} & 0 \end{pmatrix}
\]

(2)

Note that by symmetry \(\varepsilon_{rx} = \varepsilon_{xr} \). If the \(x \) and \(r \) axes were principal axes, the diagonals of \(\varepsilon_{ij} \) would be non-zero, and the off-diagonals would be zero. Here we have the opposite case, so the \(x \) and \(r \) axes are **not** principal axes.

Discussion The principal axes can be calculated using tensor algebra.

Solution We are to determine the location of stagnation point(s) in a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the \(x-y \) plane.

Analysis The velocity components are

\[u = -\frac{V}{\pi L} \frac{x^2 + y^2 - b^2}{x^4 + 2x^2y^2 + 2x^2b^2 + y^4 - 2y^2b^2 + b^4} \]
(1)

and

\[v = -\frac{V}{\pi L} \frac{x^2 + y^2 + b^2}{x^4 + 2x^2y^2 + 2x^2b^2 + y^4 - 2y^2b^2 + b^4} \]
(2)

Both \(u \) and \(v \) must be zero at a stagnation point. From Eq. 1, \(u \) can be zero only when \(x = 0 \). From Eq. 2, \(v \) can be zero either when \(y = 0 \) or when \(x^2 + y^2 - b^2 = 0 \). Combining the former with the result from Eq. 1, we see that there are **two stagnation points** at \((x,y) = (0,0)\), i.e. at the origin.

Stagnation point: \(u = 0 \) and \(v = 0 \) at \((x,y) = (0,0)\) \((3) \)

Combining the latter with the result from Eq. 1, there appears to be another stagnation point at \((x,y) = (0,b)\). However, at that location, Eq. 2 becomes

\[v = -\frac{Vb}{\pi L} \frac{x^4 + 2x^2y^2 + 2x^2b^2 + y^4 - 2y^2b^2 + b^4}{x^4 - 2b^2x^2 + b^4} = 0 \]
(4)

This point turns out to be a singularity point in the flow. Thus, the location \((0,b)\) is **not** a stagnation point after all.

Discussion There is only one stagnation point in this flow, and it is at the origin.
Chapter 4 Fluid Kinematics

4-113

Solution

We are to draw a velocity vector plot for a given velocity field.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the \(x-y\) plane.

Analysis

We generate an array of \(x\) and \(y\) values in the given range and calculate \(u\) and \(v\) from Eqs. 1 and 2 respectively at each location. We choose an appropriate scale factor for the vectors and then draw arrows to form the velocity vector plot (Fig. 1).

FIGURE 1

Velocity vector plot for the vacuum cleaner; the scale factor for the velocity vectors is shown on the legend. \(x\) and \(y\) values are in meters. The vacuum cleaner inlet is at the point \(x = 0, y = 0.02\) m.

It is clear from the velocity vector plot how the air gets sucked into the vacuum cleaner from all directions. We also see that there is no flow through the floor.

Discussion

We discuss this problem in more detail in Chap. 10.

4-114

Solution

We are to calculate the speed of air along the floor due to a vacuum cleaner, and find the location of maximum speed.

Assumptions

1. The flow is steady.
2. The flow is two-dimensional in the \(x-y\) plane.

Analysis

At the floor, \(y = 0\). Setting \(y = 0\) in Eq. 2 of Problem 4-93 shows that \(v = 0\), as expected – no flow through the floor. Setting \(y = 0\) in Eq. 1 of Problem 4-93 results in the speed along the floor,

\[
\text{Speed on the floor:} \quad u = \frac{-V_x}{\pi L} \frac{x^2 + b^2}{x^2 + 2x^2b^2 + b^4} = \frac{-V_x}{\pi L} \frac{x^2 + b^2}{(x^2 + b^2)^2} = \frac{-V_x}{\pi L \left(x^2 + b^2\right)} \tag{1}
\]

We find the maximum speed be differentiating Eq. 1 and setting the result to zero,

\[
\text{Maximum speed on the floor:} \quad \frac{du}{dx} = \frac{-V}{\pi L} \left[\frac{-2x^2}{(x^2 + b^2)^2} + \frac{1}{x^2 + b^2} \right] = 0 \tag{2}
\]

After some algebraic manipulation, we find that Eq. 2 has solutions at \(x = b\) and \(x = -b\). It is at \(x = b\) and \(x = -b\) where we expect the best performance. At the origin, directly below the vacuum cleaner inlet, the flow is stagnant. Thus, despite our intuition, the vacuum cleaner will work poorly directly below the inlet.

Discussion

Try some experiments at home to verify these results!
For a given expression for \(u \), we are to find an expression for \(v \) such that the flow field is incompressible.

Assumptions
1. The flow is steady.
2. The flow is two-dimensional in the \(x-y \) plane.

Analysis
The \(x \)-component of velocity is given as

\[
\text{\(x \)-component of velocity:} \quad u = ax + by + cx^2 - dxy
\]

(1)

In order for the flow field to be incompressible, the volumetric strain rate must be zero,

\[
\text{Volumetric strain rate:} \quad \frac{1}{V} \frac{DV}{Dt} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial f}{\partial z} = 0
\]

(2)

This gives us a necessary condition for \(v \),

\[
\text{Necessary condition for} \ v: \quad \frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}
\]

(3)

We substitute Eq. 1 into Eq. 3 and integrate to solve for \(v \),

\[
\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x} = -(a + 2cx - dy)
\]

Expression for \(v \):

\[
v = \int \frac{\partial v}{\partial y} \, dy = \int (2cx \, dy) + \int dy \, f(x)
\]

Note that we must add an arbitrary function of \(x \) rather than a simple constant of integration since this is a partial integration with respect to \(y \). \(v \) is a function of both \(x \) and \(y \). The result of the integration is

\[
\text{Expression for} \ v: \quad v = -ay - 2cxy + a \frac{y^2}{2} + f(x)
\]

(4)

Discussion
We verify by plugging Eqs. 1 and 4 into Eq. 2,

\[
\text{Volumetric strain rate:} \quad \frac{1}{V} \frac{DV}{Dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = a + 2cx - dy - a - 2cx + dy = 0
\]

(5)

Since the volumetric strain rate is zero for any function \(f(x) \), Eqs. 1 and 4 represent an incompressible flow field.
Chapter 4 Fluid Kinematics

4-116 Solution For a given velocity field we are to determine if the flow is rotational or irrotational.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the \(r\)-\(\theta\) plane.

Analysis The velocity components for flow over a circular cylinder of radius \(r\) are

\[
\begin{align*}
 u_r &= V \cos \theta \left(1 - \frac{a^2}{r^2}\right) \\
 u_\theta &= -V \sin \theta \left(1 + \frac{a^2}{r^2}\right)
\end{align*}
\]

(1)

Since the flow is assumed to be two-dimensional in the \(r\)-\(\theta\) plane, the only non-zero component of vorticity is in the \(z\) direction. In cylindrical coordinates,

\[
\zeta_z = \frac{1}{r} \left(\frac{\partial}{\partial r} \left(-V \sin \theta \left(r + \frac{a^2}{r}\right)\right) + V \sin \theta \left(1 - \frac{a^2}{r^2}\right) \right)
\]

(2)

We plug in the velocity components of Eq. 1 into Eq. 2 to solve for \(\zeta_z\),

\[
\begin{align*}
\zeta_z &= \frac{1}{r} \left(\frac{\partial}{\partial r} \left(-V \sin \theta \left(r + \frac{a^2}{r}\right)\right) + V \sin \theta \left(1 - \frac{a^2}{r^2}\right) \right) = \frac{1}{r} \left[-V \sin \theta + V \frac{a^2}{r^3} \sin \theta + V \sin \theta - V \frac{a^2}{r^3} \sin \theta \right] = 0
\end{align*}
\]

(3)

Hence, since the vorticity is everywhere zero, this flow is irrotational.

Discussion Fluid particles distort as they flow around the cylinder, but their net rotation is zero.

4-117 Solution For a given velocity field we are to find the location of the stagnation point.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the \(r\)-\(\theta\) plane.

Analysis The stagnation point occurs when both components of velocity are zero. We set \(u_r = 0\) and \(u_\theta = 0\) in Eq. 1 of the previous problem,

\[
\begin{align*}
 u_r &= V \cos \theta \left(1 - \frac{a^2}{r^2}\right) = 0 \quad \text{Either } \cos \theta = 0 \text{ or } r^2 = a^2 \\
 u_\theta &= -V \sin \theta \left(1 + \frac{a^2}{r^2}\right) = 0 \quad \text{Either } \sin \theta = 0 \text{ or } r^2 = -a^2
\end{align*}
\]

(1)

The second part of the \(u_\theta\) condition in Eq. 1 is obviously impossible since cylinder radius \(a\) is a real number. Thus \(\sin \theta = 0\), which means that \(\theta = 0^\circ\) or \(180^\circ\). We are restricted to the left half of the flow \((x < 0)\); therefore we choose \(\theta = 180^\circ\). Now we look at the \(u_r\) condition in Eq. 1. At \(\theta = 180^\circ\), \(\cos \theta = -1\), and thus we conclude that \(r\) must equal \(a\). Summarizing,

Stagnation point:

\[
\begin{align*}
 r &= a \\
 \theta &= -180^\circ
\end{align*}
\]

(2)

Or, in Cartesian coordinates,

Stagnation point:

\[
\begin{align*}
 x &= -a \\
 y &= 0
\end{align*}
\]

(3)

The stagnation point is located at the nose of the cylinder (Fig. 1).

Discussion This result agrees with our intuition, since the fluid must divert around the cylinder at the nose.
Solution For a given stream function we are to generate an equation for streamlines, and then plot several streamlines in the upstream half of the flow field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane.

Analysis
(a) The stream function is
\[\psi = V \sin \theta \left(r - \frac{a^2}{r} \right) \]
(1)

First we multiply both sides of Eq. 1 by \(r \), and then solve the quadratic equation for \(r \) using the quadratic rule. This gives us an equation for \(r \) as a function of \(\theta \), with \(\psi, a, \) and \(V \) as parameters,

\[r = \frac{\psi \pm \sqrt{\psi^2 + 4a^2V^2 \sin^2 \theta}}{2V \sin \theta} \]
(2)

(b) For the particular case in which \(V = 1.00 \text{ m/s} \) and cylinder radius \(a = 10.0 \text{ cm} \), we choose various values of \(\psi \) in Eq. 2, and plot streamlines in the upstream half of the flow (Fig. 1). Each value of \(\psi \) corresponds to a unique streamline.

Discussion The stream function is discussed in greater detail in Chap. 9.

Solution For a given velocity field we are to calculate the linear strain rates \(\varepsilon_r \) and \(\varepsilon_{\theta\theta} \) in the r-θ plane.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane.

Analysis We substitute the equation of Problem 4-97 into that of Problem 4-91,

\[\varepsilon_r = \frac{\partial u_r}{\partial r} = 2V \cos \theta \frac{a^2}{r^3} \]
(1)

and

\[\varepsilon_{\theta\theta} = \frac{1}{r} \left(\frac{\partial u_\theta}{\partial \theta} + u_r \right) = \frac{1}{r} \left[-V \cos \theta \left(1 + \frac{a^2}{r^2} \right) + V \cos \theta \left(1 - \frac{a^2}{r^2} \right) \right] = -2V \cos \theta \frac{a^2}{r^3} \]
(2)

The linear strain rates are non-zero, implying that fluid line segments do stretch (or shrink) as they move about in the flow field.

Discussion The linear strain rates decrease rapidly with distance from the cylinder.
Solution
We are to discuss whether the flow field of the previous problem is incompressible or compressible.

Assumptions
1 The flow is steady.
2 The flow is two-dimensional in the \(r-\theta \) plane.

Analysis
For two-dimensional flow we know that a flow is incompressible if its volumetric strain rate is zero. In that case,

\[
\text{Volumetric strain rate, incompressible 2-D flow in the x-y plane:} \quad \frac{1}{V} \frac{\partial V}{\partial t} = \varepsilon_{xx} + \varepsilon_{yy} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (1)
\]

We can extend Eq. 1 to cylindrical coordinates by writing

\[
\text{Volumetric strain rate, incompressible 2-D flow in the r-\theta plane:} \quad \frac{1}{V} \frac{\partial V}{\partial t} = \varepsilon_{rr} + \varepsilon_{\theta\theta} = \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial}{\partial \theta} \left[u + u_r\right] = 0 \quad (2)
\]

Plugging in the results of the previous problem we see that

\[
\text{Volumetric strain rate for flow over a circular cylinder:} \quad \frac{1}{V} \frac{\partial V}{\partial t} = 2V \cos \theta \frac{a^2}{r^3} - 2V \cos \theta \frac{a^2}{r^3} = 0 \quad (3)
\]

Since the volumetric strain rate is zero everywhere, the flow is incompressible.

Discussion
In Chap. 9 we show that Eq. 2 can be obtained from the differential equation for conservation of mass.

4-121
Solution
For a given velocity field we are to calculate the shear strain rate \(\varepsilon_{r\theta} \).

Assumptions
1 The flow is steady.
2 The flow is two-dimensional in the \(r-\theta \) plane.

Analysis
We substitute the equation of Problem 4-97 into that of Problem 4-91,

\[
\varepsilon_{r\theta} = \frac{1}{2} \left[\frac{\partial}{\partial r} \left(u_r\right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left[u_r\right] \right] \\
= \frac{1}{2} \left[\frac{\partial}{\partial r} \left(-V \sin \theta \frac{a^2}{r^3} - V \sin \theta \frac{a^2}{r^3} \right) + \frac{1}{r} \left(-V \sin \theta \left(1 - \frac{a^2}{r^2}\right)\right) \right] \\
= \frac{1}{2} V \sin \theta \left[\frac{1}{r} + 3 \frac{a^2}{r^3} - \frac{1}{r} + \frac{a^2}{r^3} \right] = 2V \sin \theta \frac{a^2}{r^3}
\]

which reduces to

\[
\varepsilon_{r\theta} = 2V \sin \theta \frac{a^2}{r^3} \quad (2)
\]

The shear strain rate is non-zero, implying that fluid line segments do deform with shear as they move about in the flow field.

Discussion
The shear strain rate decreases rapidly (as \(r^3 \)) with distance from the cylinder.
A steady, incompressible, two-dimensional velocity field is given by
\[\vec{V} = (u, v) = (2.5 - 1.6x) \hat{i} + (0.7 + 1.6y) \hat{j} \]
where the \(x \)- and \(y \)-coordinates are in meters and the magnitude of velocity is in m/s. The values of \(x \) and \(y \) at the stagnation point, respectively, are

(a) 0.9375 m, 0.375 m
(b) 1.563 m, -0.4375 m
(c) 2.5 m, 0.7 m
(d) 0.731 m, 1.236 m
(e) -1.6 m, 0.8 m

Answer (b) 1.563 m, -0.4375 m

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

\[u = 2.5 - 1.6 \times x \]
\[v = 0.7 + 1.6 \times y \]
\[u = 0 \]
\[v = 0 \]

4-123

Water is flowing in a 3-cm-diameter garden hose at a rate of 30 L/min. A 20-cm nozzle is attached to the hose which decreases the diameter to 1.2 cm. The magnitude of the acceleration of a fluid particle moving down the centerline of the nozzle is

(a) 9.81 m/s²
(b) 14.5 m/s²
(c) 25.4 m/s²
(d) 39.1 m/s²
(e) 47.6 m/s²

Answer (e) 47.6 m/s²

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

\[D_1 = 0.03 \text{ [m]} \]
\[V_{\text{dot}} = 30 \text{ [L/min]} \times \text{Convert(L/min, m}^3/\text{s)} \]
\[\text{DELTAx} = 0.20 \text{ [m]} \]
\[D_2 = 0.012 \text{ [m]} \]
\[A_1 = \pi \times D_1^2 / 4 \]
\[A_2 = \pi \times D_2^2 / 4 \]
\[u_{\text{inlet}} = V_{\text{dot}} / A_1 \]
\[u_{\text{outlet}} = V_{\text{dot}} / A_2 \]
\[a_x = (u_{\text{outlet}}^2 - u_{\text{inlet}}^2) / (2 \times \text{DELTAx}) \]
A steady, incompressible, two-dimensional velocity field is given by

\[\vec{V} = (u, v) = (2.5 - 1.6x)\hat{i} + (0.7 + 1.6y)\hat{j} \]

where the \(x\)- and \(y\)-coordinates are in meters and the magnitude of velocity is in m/s. The \(x\)-component of the acceleration vector \(a_x\) is

\[\begin{align*}
(a) & \quad 0.8y \\
(b) & \quad -1.6x \\
(c) & \quad 2.5x - 1.6 \\
(d) & \quad 2.56x - 4 \\
(e) & \quad 2.56x + 0.8y
\end{align*} \]

Answer (d) \(2.56x - 4\)

\[
\begin{align*}
& u = 2.5 - 1.6x \\
& v = 0.7 + 1.6y \\
& a_x = u(du/dx) + v(du/dy) = (2.5 - 1.6x)(-1.6) \\
& a_x = 4 + 2.56x
\end{align*} \]

A steady, incompressible, two-dimensional velocity field is given by

\[\vec{V} = (u, v) = (2.5 - 1.6x)\hat{i} + (0.7 + 1.6y)\hat{j} \]

where the \(x\)- and \(y\)-coordinates are in meters and the magnitude of velocity is in m/s. The \(x\)- and \(y\)-component of material acceleration \(a_x\) and \(a_y\) at the point \((x = 1\text{ m}, y = 1\text{ m})\), respectively, in m/s\(^2\), are

\[\begin{align*}
(a) & \quad -1.44, 3.68 \\
(b) & \quad -1.6, 1.5 \\
(c) & \quad 3.1, -1.32 \\
(d) & \quad 2.56, -4 \\
(e) & \quad -0.8, 1.6
\end{align*} \]

Answer (a) \(-1.44, 3.68\)

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

\[
\begin{align*}
& u = 2.5 - 1.6x \\
& v = 0.7 + 1.6y \\
& x = 1 \\
& y = 1 \\
& a_x = (2.5 - 1.6x)\times(-1.6) \quad "a_x = u(du/dx) + v(du/dy)" \\
& a_y = (0.7 + 1.6y)\times(1.6) \quad "a_y = u(dv/dx) + v(dv/dy)"
\end{align*} \]
A steady, incompressible, two-dimensional velocity field is given by

\[\vec{V} = (u, v) = (0.65 + 1.7x)\hat{i} + (1.3 - 1.7y)\hat{j} \]

where the \(x\)- and \(y\)-coordinates are in meters and the magnitude of velocity is in m/s. The \(y\)-component of the acceleration vector \(a_y\) is

\[a_y = u(\frac{dv}{dx}) + v(\frac{dv}{dy}) \]

Answer (c) 2.89\(y\) – 2.21

Solution

Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

\[u = 0.65 + 1.7x \]
\[v = 1.3 - 1.7y \]
\[a_x = u(\frac{dv}{dx}) + v(\frac{dv}{dy}) \]
\[a_y = (1.3 - 1.7y)(-1.7) \]

A steady, incompressible, two-dimensional velocity field is given by

\[\vec{V} = (u, v) = (0.65 + 1.7x)\hat{i} + (1.3 - 1.7y)\hat{j} \]

where the \(x\)- and \(y\)-coordinates are in meters and the magnitude of velocity is in m/s. The \(x\)- and \(y\)-component of material acceleration \(a_x\) and \(a_y\) at the point \((x = 0\ m, y = 0\ m)\), respectively, in m/s\(^2\), are

\[(a) 0.37, -1.85 \quad (b) -1.7, 1.7 \quad (c) 1.105, -2.21 \quad (d) 1.7, -1.7 \quad (e) 0.65, 1.3 \]

Answer (c) 1.105, -2.21

Solution

Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

\[u = 0.65 + 1.7x \]
\[v = 1.3 - 1.7y \]
\[x = 0 \]
\[y = 0 \]
\[a_x = (0.65 + 1.7x)*1.7 \] "a_x=u(\frac{du}{dx})+v(\frac{du}{dy})"
\[a_y = (1.3 - 1.7y)*(-1.7) \] "a_y=u(\frac{dv}{dx})+v(\frac{dv}{dy})"
A steady, incompressible, two-dimensional velocity field is given by
\[
\vec{V} = (u, v) = (0.65 + 1.7x)i + (1.3 - 1.7y)j
\]
where the \(x \)- and \(y \)-coordinates are in meters and the magnitude of velocity is in m/s. The \(x \)- and \(y \)-component of velocity \(u \) and \(v \) at the point \((x = 1 \text{ m}, y = 2 \text{ m})\), respectively, in m/s, are

\[
\begin{align*}
(a) & \quad 0.54, -2.31 \\
(b) & \quad -1.9, 0.75 \\
(c) & \quad 0.598, -2.21 \\
(d) & \quad 2.35, -2.1 \\
(e) & \quad 0.65, 1.3
\end{align*}
\]

Answer (d) 2.35, –2.1

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

\[
\begin{align*}
u & = 0.65 + 1.7x \\
v & = 1.3 - 1.7y \\
x & = 1 \\
y & = 2
\end{align*}
\]

4-129
The actual path traveled by an individual fluid particle over some period is called a

\[
\begin{align*}
(a) & \quad \text{Pathline} \\
(b) & \quad \text{Streamtube} \\
(c) & \quad \text{Streamline} \\
(d) & \quad \text{Streakline} \\
(e) & \quad \text{Timeline}
\end{align*}
\]

Answer (a) Pathline

4-130
The locus of fluid particles that have passed sequentially through a prescribed point in the flow is called a

\[
\begin{align*}
(a) & \quad \text{Pathline} \\
(b) & \quad \text{Streamtube} \\
(c) & \quad \text{Streamline} \\
(d) & \quad \text{Streakline} \\
(e) & \quad \text{Timeline}
\end{align*}
\]

Answer (d) Streakline

4-131
A curve that is everywhere tangent to the instantaneous local velocity vector is called a

\[
\begin{align*}
(a) & \quad \text{Pathline} \\
(b) & \quad \text{Streamtube} \\
(c) & \quad \text{Streamline} \\
(d) & \quad \text{Streakline} \\
(e) & \quad \text{Timeline}
\end{align*}
\]

Answer (c) Streamline
4-132
An array of arrows indicating the magnitude and direction of a vector property at an instant in time is called a

(a) Profiler plot (b) Vector plot (c) Contour plot (d) Velocity plot (e) Time plot

Answer (b) Vector plot

4-133
The CFD stands for

(a) Compressible fluid dynamics (b) Compressed flow domain (c) Circular flow dynamics

(d) Convective fluid dynamics (e) Computational fluid dynamics

Answer (e) Computational fluid dynamics

4-134
Which one is not a fundamental type of motion or deformation an element may undergo in fluid mechanics?

(a) Rotation (b) Converging (c) Translation (d) Linear strain (e) Shear strain

Answer (b) Converging

4-135
A steady, incompressible, two-dimensional velocity field is given by

\[\vec{V} = (u, v) = (2.5 - 1.6x) \hat{i} + (0.7 + 1.6y) \hat{j} \]

where the \(x \)- and \(y \)-coordinates are in meters and the magnitude of velocity is in m/s. The linear strain rate in the \(x \)-direction in s\(^{-1} \) is

(a) \(-1.6\) (b) \(0.8\) (c) \(1.6\) (d) \(2.5\) (e) \(-0.875\)

Answer (a) \(-1.6\)

\[u=2.5-1.6x \]
\[v=0.7+1.6y \]
\[\varepsilon_{xx} = du/dx = -1.6 \]
4-136
A steady, incompressible, two-dimensional velocity field is given by
\[\vec{V} = (u, v) = (2.5 - 1.6x) \hat{i} + (0.7 + 1.6y) \hat{j} \]
where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The shear strain rate in s\(^{-1}\) is

(a) \(-1.6\) (b) \(1.6\) (c) \(2.5\) (d) \(0.7\) (e) \(0\)

Answer (e) 0

"u=2.5-1.6x
v=0.7+1.6y
\varepsilon_{xy}=1/2(du/dy+dv/dx)=1/2(0+0)=0"

4-137
A steady, two-dimensional velocity field is given by
\[\vec{V} = (u, v) = (2.5 - 1.6x) \hat{i} + (0.7 + 0.8y) \hat{j} \]
where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The volumetric strain rate in s\(^{-1}\) is

(a) \(0\) (b) \(3.2\) (c) \(-0.8\) (d) \(0.8\) (e) \(-1.6\)

Answer (c) \(-0.8\)

"u=2.5-1.6x
v=0.7+0.8y
\varepsilon_{xx}+\varepsilon_{yy}
\varepsilon_{xx}=du/dx=-1.6
\varepsilon_{yy}=dv/dy=0.8
\text{Volumetric strain rate } = -1.6 + 0.8 = -0.8"

4-138
If the vorticity in a region of the flow is zero, the flow is

(a) Motionless (b) Incompressible (c) Compressible (d) Irrotational (e) Rotational

Answer (d) Irrotational

4-139
The angular velocity of a fluid particle is 20 rad/s. The vorticity of this fluid particle is

(a) 20 rad/s (b) 40 rad/s (c) 80 rad/s (d) 10 rad/s (e) 5 rad/s

Answer (b) 40 rad/s
4-140

A steady, incompressible, two-dimensional velocity field is given by

\[\vec{V} = (u, v) = (0.75 + 1.2x) \hat{i} + (2.25 - 1.2y) \hat{j} \]

where the \(x \)- and \(y \)-coordinates are in meters and the magnitude of velocity is in m/s. The vorticity of this flow is

\[(a) \ 0 \quad (b) \ 1.2y \hat{k} \quad (c) \ -1.2y \hat{k} \quad (d) \ y \hat{k} \quad (e) \ -1.2xy \hat{k} \]

Answer (a) 0

"u=0.75+1.2x
v=2.25-1.2y
zeta=(dv/dx-du/dy)k=(0-0)k=0"

4-141

A steady, incompressible, two-dimensional velocity field is given by

\[\vec{V} = (u, v) = (2xy + 1) \hat{i} + (-y^2 - 0.6) \hat{j} \]

where the \(x \)- and \(y \)-coordinates are in meters and the magnitude of velocity is in m/s. The angular velocity of this flow is

\[(a) \ 0 \quad (b) \ -2y \hat{k} \quad (c) \ 2y \hat{k} \quad (d) \ -2x \hat{k} \quad (e) \ -x \hat{k} \]

Answer (e) \(-x \hat{k}\)

"u=2xy+1
v=-y^2-0.6
zeta=(dv/dx-du/dy)k=(0-2x)k=-2x
omega=zeta/2=-x"

4-142

A cart is moving at a constant absolute velocity \(\vec{V}_{\text{cart}} = 5 \text{ km/h} \) to the right. A high-speed jet of water at an absolute velocity of \(\vec{V}_{\text{jet}} = 15 \text{ km/h} \) to the right strikes the back of the car. The relative velocity of the water is

\[(a) \ 0 \text{ km/h} \quad (b) \ 5 \text{ km/h} \quad (c) \ 10 \text{ km/h} \quad (d) \ 15 \text{ km/h} \quad (e) \ 20 \text{ km/h} \]

Answer (c) 10 km/h

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

\[V_{\text{cart}}=5 \text{ [km/h]} \]
\[V_{\text{jet}}=15 \text{ [km/h]} \]
\[V_-=V_{\text{jet}}-V_{\text{cart}} \]