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ABSTRACT 
 
 
 

THE APPLICATION OF OPTIMIZATION AND STOCHASTIC 
 

 METHODS TO ANALYTIC TRANSPORT MODELING 
 
 

Clarissa Hansen 
 

Department of Civil and Environmental Engineering 
 

Master of Science 
 
 
 

 This thesis describes the addition of several new capabilities to ART3D, a three-

dimensional analytic reactive transport groundwater model developed by Dr. T. 

Prabhakar Clement of the University of Western Australia.  In its original form, the 

model was a simple, but useful model built on the Domenico (1987) solution strategy and 

capable of modeling any number of complicated reaction pathways.  As part of this 

project, an interface to GMS (Groundwater Modeling System) was built to allow easier 

data entry and better visualization of the results.  The capability to analyze specific points 

in the model domain (observation points) and compare these to field data was added 

without the need for interpolation because of the analytic nature of the solver.  An 

optimization code, called the PORT library, was also inserted to allow inverse modeling 

in ART3D.  Finally, the model was developed to allow for stochastic simulations and 

threshold analysis assessments of the stochastic output.  To aid ART3D users, a literature 



survey of published first order decay constants for chlorinated ethenes is presented with 

mean and standard deviation values, which can be used in a stochastic simulation. 

 The optimization code was tested with a hypothetical case study whose findings 

are presented here.  All of the additions were then tested on a case study based on the 

Brooklawn site in Baton Rouge, Louisiana.  This site had previously been analyzed by 

Clement, et al. (2002) with BIOCHLOR, a predecessor to ART3D. 

 The hypothetical case study showed that the optimization routine is functional and 

can successfully optimize the parameters when there are sufficient observation points and 

when these points are placed in critical sections of the plumes. 

The Louisiana case study showed that both the optimization routine and the 

stochastic code are functional and useful in the screening model.  The addition of the 

optimization code made the calibration much easier and faster than in BIOCHLOR, 

which does not have internal optimization capabilities.  The stochastic output was very 

useful in showing which areas of the aquifer are at most risk for dangerous contamination 

levels.  
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Chapter 1 – Introduction 

 Reactive transport modeling is a branch of groundwater modeling concerned with 

the mapping of the movements and reactions of chemical species in the saturated zone of 

an aquifer, and in the vadose zone.  This type of modeling must take into account several 

physical and chemical processes acting on the chemical compounds and the groundwater 

system.  For example, advection is the movement of dissolved species through the aquifer 

as they move with the flow of groundwater.  This process can cause an entire plume to 

move from one location to another but does not affect the concentration of the species or 

the size of the plume.  As it moves, another physical process, dispersion, causes the 

dissolved particles of the plume to spread out, consequently affecting a greater volume of 

the aquifer.  This occurs when some particles move at higher or lower velocities than 

others or when some take longer flow paths around soil particles or other obstacles.  

Another physical effect causing changes in the plume is diffusion, the movement of 

solutes from an area of high concentration to one of low concentration.  Diffusion can 

affect a chemical plume even if there is no groundwater flow.  The scattering of 

individual chemical particles in a plume through dispersion and diffusion causes a 

general decrease in concentration throughout the plume while simultaneously yielding an 

increase in the volume of affected aquifer.   
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 Another complicating issue in transport modeling is the fact that more than one 

chemical compound can be present in a source.  In addition, chemical reactions and 

biodegradation cause some chemical species to break down into “daughter products”.  So, 

a useful reactive transport model must track all of the species present and monitor their 

chemical reactions with one another and their surroundings.  A common example of this 

is the reactions of chlorinated compounds.  An initial contamination of a groundwater 

system could be caused by a spill of trichloroethylene (TCE), but biodegradation will 

eventually result in the dechlorination of some of the plume to one of several types of 

dichloroethylene (DCE).  Some of the DCE, in turn will lose an additional chlorine atom 

to form vinyl chloride (VC).  A useful model of such a system would need to track the 

dechlorination of these compounds as well as their movement in the aquifer. 

 Differing dissolution rates also add complexity to a transport simulation.  A 

contaminant’s dissolution rate depends on the chemical characteristics of the groundwater 

and on the surrounding conditions.  A constituent will dissolve until a chemical 

equilibrium between the dissolved and nondissolved portions is reached.  The equilibrium 

concentration can change with variation in pressure and temperature below the surface of 

the earth.  The presence of similar chemical compounds already dissolved in the water 

can also alter the equilibrium concentration. 

 There are also a few processes that result in the slowing of the movement of a 

constituent through an aquifer.  As a plume travels, it often interacts with the aquifer 

material through adsorption, chemisorption or ion exchange.  Adsorption takes place 

when solutes are diffused into the aquifer material and attach to the interior surfaces of 

the material, where they are essentially removed from the main fluid flow.  
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Chemisorption involves a chemical reaction, which causes the solute to be integrated into 

the aquifer material.  Ion exchange occurs when an ion in the water has a greater 

attraction to the aquifer material than an ion already attached to the material.  The 

difference in attraction causes the ions to be exchanged, resulting in a modification of the 

groundwater chemistry.  These processes, which can result in the slowing of the 

movement of a contaminant plume, are often grouped together under the term 

“retardation”. 

 Groundwater transport models are used for several different applications in 

environmental engineering.  They can be used at the early stages of a project to determine 

the size, shape and location of a contaminant plume based on known aquifer conditions 

and source characteristics.  This should be followed up with some subsurface 

investigations to calibrate and confirm the accuracy of the model. Transport models can 

also be used to find the source of a contamination plume or to determine the risk of 

contamination of surface water or wells.  A calibrated transport model can be applied to 

the design of a remediation system by determining the feasibility of a certain remediation 

technique.  Transport models are also practical in exploring the possibility of natural 

attenuation as a remediation option.  In addition, a model can be used to compare several 

different remediation methods by predicting the time and money required and the 

expected level of success for each option. 

Current Modeling Approaches 

 There are two basic approaches to computer groundwater modeling.  Both begin 

with complicated partial differential equations describing the physical and chemical 

changes occurring in the system.  A numerical model solves the equations by discretizing 
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the model domain into a grid or mesh.  An approximate solution is then obtained by 

expressing the governing equations in terms of the local grid or mesh geometry and 

applying either the finite difference or the finite element method.  This results in a 

solution at each of the grid cells or mesh nodes.  The main advantage to this type of 

model is that it can be used to simulate a wide variety of problems with complex domains 

and boundary conditions.  However, the accuracy of the result depends on the density of 

the grid or mesh.  Furthermore, the process of creating the grid or mesh and preparing the 

problem input can be tedious and expensive.  These models can also require extensive 

amounts of time to run.  If the grid or mesh cells are very small compared to the size of 

the problem domain, then the solution is more accurate, but the computation time is 

greatly increased.  With the advent of faster computers, the computation time is 

becoming a less important consideration in smaller scale models. 

 Analytic solution methods begin with the same partial differential equations 

describing the physical and chemical processes in the aquifer, but then, a direct solution 

to the governing equations is found in the form of a system of equations.  This allows for 

an exact solution to the equations at any point in the system without the need to discretize 

the problem domain.  These types of models are usually much more computationally 

efficient than numerical methods, but are generally limited to models with simple 

problem domains and boundary conditions. 

 There are several analytic transport models available today.  Brief descriptions of 

several are listed here.  BIOSCREEN and BIOCHLOR are common analytic transport 

models (USEPA BIOCHLOR, 2002 and, USEPA BIOSCREEN, 2002).  Both are very 

simple screening tools built in a Windows Excel environment.  BIOSCREEN is used to 



 5

model BTEX degradation, while BIOCHLOR is used to model reductive dechlorination 

of ethenes.  Both were developed by Groundwater Services, Inc. (GSI). 

 Another analytic reactive transport model is called Kyspill and was designed and 

written by Dr. Sergio E. Serrano, a professor at the University of Kentucky 

(Hydroscience).  Kyspill is advertised as a fast, easy transport model with simple input.  

It can model point, non-point, stationary or transient sources.  The solution includes a 3-

dimensional dispersion plume in the soil and a 2-dimensional plume in the unconfined 

aquifer below.  It also considers aquifer heterogeneity statistically.  Kspill can include 

reactive and degradable chemical components. 

 RBCA Tier 2 Analyzer is another analytic transport model and claims to be 

simple and fast and to have the ability to incorporate complex geometry and multiple 

boundary conditions (Waterloo, 2000).  The model consists of two main parts.  The 

automatic plume generator uses interpolation to convert field data to a concentration 

plume, which can then be used as the starting point for a biodegradation simulation or to 

evaluate the effectiveness of a pump and treat system.  The second part is a contaminant 

transport model.  It models advective-dispersive transport with a variety of sorption and 

desorption options.  The model can handle single or multiple species, including 

sequential decay or BTEX reactions. 

 Another transport model is called SOLUTRANS (Software Spotlight, 1999 and 

Fitts Geosolutions).  Similar to ART3D, it assumes homogenous material and one-

dimensional flow in the positive x direction.  It also allows for three-dimensional 

dispersion with separate constants for each direction.  Further, SOLUTRANS can model 
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equilibrium sorption or several types of kinetic sorption.  There are four different basic 

shapes that can be used for the source, and irregular shapes or transient sources can be 

modeled through the superposition of several shapes in time and space. 

 An EPA model, HSSM (Hydrocarbon Spill Screening Model) has been developed 

to model the movement of LNAPLs (Light Non-Aqueous-Phase Liquids) from a surface 

spill through the vadose zone to the water table (The Scientific Software Group, HSSM, 

1998).  Because the model assumes homogeneity and ignores some phenomena, it should 

be considered a screening model and is only expected to be accurate within an order of 

magnitude. 

 AT123D (analytic, transport, 1-, 2-, and 3-D), tracks the fate of radioactive, 

chemical or heat pollution in the saturated zone (The Scientific Software Group, 

AT123D, 1998).  The source can be defined as a point, line, area or volume source, with 

instantaneous, continuous, or transient releases.  The model assumes an isotropic, 

horizontal and homogeneous aquifer and considers advection, dispersion, decay, and 

adsorption. 

 Another EPA model, PESTAN (Pesticide Transport), is designed to track the 

movement of organic contaminants through the vadose zone to the water table (The 

Science Software Group, PESTAN, 1998).  Linear isotherm sorption, first order decay 

and dispersion are used to determine the movement of the species through the unsaturated 

zone.  Like many other models described here, PESTAN assumes homogeneous soil 

conditions. 
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 N3DADE (Non-equilibrium, Three-Dimensional Advection-Dispersion Equation) 

assumes homogeneity and steady state, unidirectional groundwater flow (US Salinity 

Laboratory, 1997).  It accounts for advection, dispersion, first-order decay and retardation 

effects. 

 The USGS has developed several transport models, including ANALGWST, a 

suite of programs designed to model solute transport in one, two or three dimensions with 

a variety of boundary conditions (US Geological Survey, 2002).  These programs can 

handle advection, dispersion and first order decay. 

 All of these models share some components in common with ART3D, which 

assumes homogeneity, prismatic aquifer shape, first order decay, linear isotherm 

adsorption and unidirectional groundwater flow in the positive x direction.  ART3D’s 

advantages include the ability to model more complicated reactions and the use of three 

separate dispersion constants for the three Cartesian directions.  The main disadvantage 

in the current release of ART3D is the requirement that all the species have the same 

retardation coefficient.  However, Dr. Clement has overcome this obstacle in a new 

version of ART3D that is in the final stages of development at the time of this printing. 

ART3D 

 This research project involved the addition of several new functionalities to 

ART3D, a three-dimensional analytic reactive transport model designed by Dr. T. 

Prabhakar Clement of the University of Western Australia  

The evolution of ART3D began some years ago when the Air Force Center for 

Environmental Excellence contracted with Groundwater Services, Inc. (GSI) to create a 
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two-dimensional analytic model to simulate BTEX degradation in an aquifer setting.  The 

result was an Excel spreadsheet with several Visual Basic (VB) macros and was called 

BIOSCREEN. 

 The success of BIOSCREEN was followed by the development of BIOCHLOR, a 

similar program used to model the sequential degradation of chlorinated ethenes (PCE 

(perchloroethylene)→TCE→DCE→VC→Ethene).  Dr. Clement (who was working at 

Battelle Pacific Northwest Laboratory at the time) was asked to develop the analytic 

engine to do the calculations. 

 Later, Dr. Clement created his own stand-alone version of BIOCHLOR and called 

it BC3D.  This three-dimensional model is written in FORTRAN and has a simple input 

text file.  The output includes a three-dimensional grid and several two-dimensional 

views of the plume formatted for viewing in GMS (Groundwater Modeling System).  

Another output file is a text file listing the centerline concentrations of each species at 

each grid cell.  This can be easily read into Excel or any other spreadsheet program for 

analysis and display.  Like BIOCHLOR, BC3D can only handle simple sequential 

reactions – normally chlorinated solvents.  The code was also later translated to Visual 

Basic by Dr. Norm Jones of Brigham Young University. 

 Dr. Clement followed up with another version of the program, ART3D, in the 

summer of 2001.  This release allows more complex reaction sequences, such as 

reversible reactions, multiple parent species producing the same daughter product, or 

multiple daughter products resulting from the same parent species.  The additions and 

changes described in this thesis were implemented in this version of ART3D 
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Overview of Research 

This research project involved the implementation of several new capabilities to 

the ART3D model.  These additions included the calculation of exact concentration 

values at observation points, automated parameter estimation, and stochastic simulation 

capabilities.  The project also included a literature review to find first order decay 

constants for the successive dechlorination of PCE, TCE, DCE, VC and ethene.  A 

graphical user interface to the new ART3D code was built in GMS to simplify data entry 

and allow for better visual analysis of the results.  GMS is developed by the 

Environmental Modeling Research Laboratory (EMRL) at Brigham Young University 

(BYU).  The project culminated with an application of the finished code to a hypothetical 

test case and an actual Superfund site.  These case studies served to test the new features 

and demonstrate the value of this new version of ART3D. 

 The additions made to ART3D as part of this project have extended its usefulness 

and simplified its operation.  The addition of observation points allows a user to see 

constituent concentrations at any important area such as at a well or along a riverbank.  

When field data is used, it can be directly compared to exact solutions at that point.  

Through the use of the new parameter estimation capabilities, a user can more easily and 

quickly calibrate the model to field data, thereby producing a more reliable model.  

Stochastic simulations are valuable in determining the statistical reliability of the results 

and in performing statistical risk analyses.  

A literature review of decay constants for chlorinated ethenes is provided to aid 

the user in the determination of a realistic set of decay values for a stochastic simulation 
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and to demonstrate the wide variation in these values and the difficulty in determining 

them with accuracy.    

 This thesis is organized as follows: Chapter 2 is a brief discussion of the theory 

behind the ART3D solution engine.  The discussion is drawn directly from the paper by 

Dr. Clement on the subject (2001).  The third chapter discusses the addition of 

observation points and parameter estimation to the model.  It discusses both the theory 

and the implementation of these new capabilities.  Chapter 4 describes the theory of 

stochastic modeling and its application to and implementation in ART3D.  The literature 

review of decay constants is listed in Chapter 5.  Following the review, a description of 

the design and results of the hypothetical case study is presented along with the 

conclusions drawn from this exercise.  Chapter 7 describes the application of the new 

capabilities of ART3D to a Superfund site in Louisiana.  Because this site had previously 

been used to demonstrate the usefulness of BIOCHLOR, it allowed a nice comparison of 

the results before and after the current project additions were made.  The final 

conclusions are presented in Chapter 8.
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Chapter 2 – Description of ART3D 

 ART3D is a three-dimensional analytic groundwater model applied to multi-

species transport problems.  It can track several types of complex reactions between any 

number of contaminant species.  The reaction types include reversible, parallel, divergent 

and converging reactions in addition to sequential reactions handled by BC3D.  These 

reaction types are shown below in Figure 1 through Figure 5.  A sequential reaction 

(Figure 1) is a simple reaction involving one parent species and one daughter product.  

The reaction proceeds in only one direction. 

 
Figure 1: A sequential reaction of a single parent species (P) 
producing a single daughter product (D). 

A reversible reaction (Figure 2) also includes only one parent species and one 

daughter product, but the reaction can proceed in either direction until an equilibrium 

point is reached. 
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Figure 2: A reversible reaction between a parent specie (P) and 
a daughter product (D). 

In a parallel reaction (Figure 3), two reactions occur simultaneously in the same 

system and can be unaffected by each other. 

 
Figure 3: Parallel reactions between parent species (P) and 
daughter products (D). 

A divergent reaction (Figure 4) occurs when a single parent specie produces more 

than one daughter product. 
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Figure 4: A divergent reaction between a single parent specie 
(P) and multiple daughter products (D). 

In a convergent reaction (Figure 5), a single daughter product may be produced 

from the decay of two separate parent species. 

 
Figure 5: A convergent reaction between multiple parent 
species (P) and a single daughter product (D). 

 Many complex systems involve a combination of these reaction types.  ART3D is 

designed to easily manage any of these reactions. 

 ART3D is a simple model that assumes a one-dimensional flow field and constant 

(homogenous) hydraulic and transport properties.  All reactions are assumed to be first 
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order.  The main drawback to this version of ART3D is the requirement that all of the 

retardation coefficients be the same. 

 A key advantage of ART3D is its simplicity.  Often, the modeling objectives and 

the project budget prohibit the use of a more expensive numerical simulation.  The data 

needed to run a basic ART3D model is minimal and uncomplicated.  The time and money 

saved by the simplicity of input, creation and analysis make ART3D a good choice for a 

low budget, preliminary, or screening study. 

 To allow for the new additions to the code, the input file format was altered.  

Some of the data from the original file format is included, although in a different form 

and a great deal of new information has been added to the file.  The data included in the 

new file format is summarized in Table 1.  A more detailed description of each element 

of the file is found in Appendix A. 

Table 1: Summary of the data included in the ART3D input file. 
Information similar 

to the original 

ART3D input file: 

Source dimensions, time data, and the number of species are 

included in the input file similarly to the original ART3D input 

file.  The length of each time step is calculated from the total 

simulation time and the number of time steps input by the user.  

These time steps are not for discretization, but to define the times 

at which the solution will be output for post-processing 
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Table 1: Summary of the data included in the ART3D input file. (continued) 
GMS information: This information includes the name of the GMS gridfile, 

observation coverage, the units to be used and the reference time 

information.  Except for the grid file, these lines of the input file 

are not used by ART3D, but are important when a simulation is 

read into GMS.  The gridfile is opened by ART3D to obtain the 

dimensions of the grid and the number of cells in each direction.  

ART3D does not use the grid for discretization, but to determine 

the resolution of the output for post-processing. 

Yield matrix: The original ART3D input file required the user to calculate and 

enter the reaction coefficient matrix, a complicated combination 

of the yield values and the decay constants.  The new file format 

is simpler, in that the user enters the effective yield coefficients in 

matrix form and ART3D uses this information with the decay 

data to calculate the reaction coefficient matrix required by the 

ART3D solver.  

Parameter 

Estimation data: 

Stopping tolerances used by the optimization routine are included 

in the new input file.  These include the maximum number of 

iterations and function calls allowed and the relative and absolute 

function convergence tolerance.  The new file format also 

requires the user to enter bounds on each parameter, which is to 

be optimized.  This data is described in more detail in Chapter 3. 
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Table 1: Summary of the data included in the ART3D input file. (continued) 
Stochastic data: In the new file format, the user must enter the bounds, type of 

distribution and (with a normal distribution) the standard 

deviation for each varied parameter.  The number of stochastic 

simulations to be run is also included.  This data is explained in 

Chapter 4. 

Observation points: The new input file includes information on the location of any 

number of observation points as well as their observed species 

concentrations at any time.  The addition of observation points 

makes it possible for ART3D to compare the computed and 

observed concentration values at each point and to report this 

residual.  To aid in this comparison, a matrix of weighting values 

is included in the input text file.  Weighting values will be 

explained further in Chapter 3. 

 Several different types of files are written out at the end of an ART3D simulation.  

A brief description of each file type is listed below in Table 2. 
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Table 2: Summary of the output files generated by ART3D. 
File type Extension Description 
Data set file *.dat These are binary files listing the species concentration at 

each point in the grid.  A separate file is written out for 

each defined specie.  They are differentiated by the 

addition of the name of  the specie at the end of the 

filename as in example_pce.dat and example_tce.dat.   

Time series 
file 

*.ats This file lists each of the observation points and their 

calculated values at each time step in the simulation.  One 

important use for this file is to plot the change in 

concentration over time for a particular point in the 

simulation 

Output file *.out The output file echoes all of the input information, 

includes a list of the output files and their names, and lists 

the calculated and observed concentration values for each 

observation point at each time step.  The file also shows 

the residual error, weighted residual error and several total 

error calculations.  This file is useful in determining the 

accuracy of the model by comparing it to observed data. 
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Table 2: Summary of the output files generated by ART3D. (continued) 
Centerline 

file 

*.ctr This output file lists the concentrations of each species 

along the top centerline of the grid for each time step.  

This file can be directly opened in Excel or a similar 

spreadsheet program to view the concentration profile at 

different points along the grid. 

Data set 

superfile 

*.dss This file lists each of the data set files (*.dat).  It is used 

by GMS to load the data sets into the project for viewing. 

Stochastic 

super file 

*.sto This file lists each of the data set superfiles associated 

with a single stochastic run.  It is used by GMS to read in 

each of the solutions to the project. 

Parameter 

file 

*.par The parameter file lists the final, optimized values for 

each parameter at the end of a parameter estimation run.  

This file can be read by GMS to load these values to the 

Parameters dialog. 

Iteration 

record file 

*.itr This file contains a list of each of the parameter values 

after each iteration of a parameter estimation simulation. 
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Equations 

The governing equation solved by ART3D is as follows: 
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 where   

i = 1, 2, . . . n, 

  c = the ith species concentration, 

  yi/j = the effective yield factor describing the mass of species i produced  

per mass of species j used,   

  ki = the first order reaction rate for the disappearance of species i, 

  Ri = the retardation coefficient, 

  v = seepage velocity, 

  Dx, Dy, Dz = the dispersion coefficients in each orthogonal direction, and 

  n = the total number of species in the reaction series. 

 This equation can be converted to matrix notation as follows: 
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where K is the reaction coefficient matrix, a combination of the effective yield 

coefficients and the decay coefficients for each species.  The matrix is arranged in the 

following manner: 
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where ya→b is the effective yield factor for the reaction of constituent a going to 

constituent b and ka is the first order destruction rate for constituent a.  For example, the 

following matrix is for the simple sequential reaction, PCE→TCE→DCE→VC 
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 The effective yield coefficient, denoted by y, is the product of the stoichiometric 

yield fraction of the reaction and the ratio of the molecular mass values of the reactants 

and products.  The final units are in mass of product produced / mass of reactant used.  

To meet the law of conservation of mass, the sum of all the yield fractions for a given 

parent compound should equal unity.   
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Solution Technique 

 The main difficulty in solving the matrix equation (2) is that K is cross-coupled, 

except in the special case where K is a diagonal matrix.  In order to solve the equation, K 

must be transformed to a diagonal matrix.  The transformation will also affect the other 

matrices in the equation. 

 The transformation can be accomplished through the use of a matrix S such that 

 and  is a diagonal matrix.  The S matrix can be found using a similarity 

transform.  If S is chosen so that the columns of S are the eigenvectors of K, the resulting 

 will be a diagonal matrix whose diagonal values are the eigenvalues of the original 

matrix K. 

 The solution strategy can be best explained by defining two separate domains for 

all of the matrices in the equation.  The “c” domain is defined as the original domain 

before any transformation takes place.  Premultiplication of all the terms by S-1 

transforms all of the matrices into the “b” domain.  In this domain, the K matrix is 

diagonal and uncoupled.  The solution can then be found through simple matrix 

operations.  Once the equation has been solved, it must be transformed back into the “c” 

domain through postmultiplication by the S matrix. 

 The use of this strategy allows the incorporation of very complicated reaction 

sequences through the definition of the yield matrix.  The new input files for ART3D 

requires that the user enter the effective yield matrix including only the off-diagonal yield 

values (the product of the molecular weight ratios and the stoichiometric yield fractions).  

ART3D then calculates the reaction coefficient matrix by multiplying by a K vector and 



 22

setting the diagonal values.  A full description of this solution strategy can be found in 

Clement (2001).
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Chapter 3 – Automated Parameter Estimation 

 One of the main modifications made to the ART3D code as part of this research 

was the addition of a new option for automated parameter estimation.  In computer 

modeling, the selection of parameter values is challenging, since they are often difficult 

to measure in the field or in the lab.  To get around this problem, many models are 

calibrated to observation data by manually adjusting the input parameters until the output 

matches that observed in the field.  This can be a tedious process, but can be made easier 

through the use of an automated parameter estimation tool, which can compare the 

calculated and observed data and calculate an error value.  It can then adjust the input 

parameter values until the error value drops to a minimum.   

In order to add automated parameter estimation to ART3D, it was necessary to 

add the capability to read observation data and compare that data to the simulated values.  

This makes it possible to compute residual errors for selected species and a global 

weighted error that serves as the objective function to be minimized in the parameter 

estimation process.  As an analytic model, ART3D was especially adaptable to 

computing residuals at observation wells because of its ability to compute concentrations 

at precise locations, instead of having to interpolate these values from surrounding grid 

cells.  At each iteration of the parameter estimation process, the solution is only 
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computed at the observation points, rather than at the grid nodes.  This causes the 

iteration process to be extremely fast. 

Observation Data 

 In any forward run, ART3D calculates the concentrations at each observation 

point and for each time step.  This includes the time steps assigned to the grid and those 

assigned to any of the observation points.  These concentration values can be obtained 

from the output file (*.out) written after an ART3D simulation.  This file lists all of the 

observation points with their observed and calculated values and some statistical 

information to aid in the analysis of the model’s reliability.   

First, the output file lists the residual error and weighted error for each point.  The 

residual error, as shown in equation 3, is a simple difference between the observed and 

calculated data. 

iii ocr −=  (3) 

 where   

ri = residual error for point i, and 

ci = computed value for point i, 

oi = observed value for point i. 

Weighting values can be used to equalize the contribution of different magnitudes 

of residual error on the objective function and are defined in the weighting matrix of the 

ART3D input file.  Their importance is illustrated in the following example.  Suppose the 



 25

observed concentration of specie A was 20 mg/L while the concentration observed for 

specie B at the same point was 2 mg/L.  The calculated value was off by 20% in each 

case, resulting in calculated values of 24 mg/L and 2.4 mg/L, respectively.  Without a 

weighting factor, the error contributed by specie A would be 4 and that contributed by 

specie B would be 0.4.  The optimizer would place higher importance on reducing the 

higher error on specie A, and would pay little attention to specie B.  If, however, specie A 

is assigned a weight value of 0.0693 and specie B receives a weighting value of 0.694, 

the resulting weighted residual values are 0.277 and 0.278, respectively.  In this case, the 

optimizing routine will place equal emphasis on improving both residual values. 

It is suggested that the weighting value be the inverse of the square of the 

standard deviation of each measured value as in equation 4 below.  When running 

ART3D from GMS, the user enters the standard deviation and the weighting value is 

automatically calculated using this equation.  When running ART3D outside of the GMS 

interface, the user must calculate the weighting values and list them in the input file. 

2

1
stdev

weight =  (4)  

The weighted error is the residual error multiplied by the weighting factor 

described above.  
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( )iii rwwr =  (5) 

where  

wri = weighted residual for point i, and 

 wi = weighting value for point i. 

 A set of global error norms are also presented, including total error, mean error, 

mean absolute error and root mean square error for the residual error and weighted 

residual error as shown in the equations below.  In the following equations the number of 

data points refers to the number of observation points multiplied by the number of time 

steps and the number of species. 
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 where  

te = total error or sum, 

  wte = total weighted error, and 

  n = number of data points 
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 where   

me = mean error, and 

  wme = weighted mean error 
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 where  

mae = mean absolute error, and 

  wmea = mean absolute weighted error. 
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 where   

rmse = root mean square error, and 

  wrmse = weighted root mean square error. 

These error norms are useful in determining the accuracy of one model run vs. 

another and in calibrating the model. 

Parameter Estimation 

Once the observation data capabilities were added, an automated parameter 

estimation algorithm was implemented.  There are two ways to include parameter 

estimation in a computer model.  It can be done through the use of an external 

optimization utility, or through the addition of an internal algorithm.  One common 

example of an external parameter estimation utility is PEST, written by John Doherty 

(Doherty, 2000).  PEST is a general purpose optimization utility that takes control of a 

model and systematically adjusts the input parameter values in an attempt to minimize 

the residual between observed and calculated data.  The use of an internal algorithm has 
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the advantage that running the model in inverse mode can be much simpler and the code 

can be more efficient since there is no need to pass data text files between the utility and 

the model.  In ART3D, we opted to use a built-in optimization algorithm in the form of a 

set of optimization subroutines called the PORT library and designed by David M. Gay at 

Bell Laboratories (Gay, 1990).  The use of the PORT library required the writing of a 

subroutine to calculate the objective function. 

In a parameter estimation run, the user enters all of the field observed 

concentrations for each specie at any number of observation points.  The modeler also 

chooses which parameters to optimize, sets their bounds and assigns a starting value for 

each parameter.  The user must also define the stopping points for the routine: the 

maximum number of iterations to run, the maximum number of calls to the objective 

function and the epsilon values, describing the accuracy required in the final results.  All 

of this data is then passed to the PORT library, which calls a subroutine in ART3D to 

calculate the value of the objective function (or weighted residual error) using the user-

defined starting values.  To calculate this error, the objective function routine runs a 

quick forward simulation of ART3D calculating the concentration values at the 

observation points but not at the grid points.  Then it calculates the resulting error as a 

weighted difference between the calculated and observed values.  Equation 10 is used to 

calculate the error: 
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 where  

n = number of observation points, 

  m = number of species, 

  wi,j = weight value for species j at observation point i, 

  cc = the calculated concentration at observation point i, and 

  co = the observed concentration at observation point i. 

 Once the objective function has been computed, its value is passed back to the 

optimization routine.  The routine then changes each of the parameters slightly, one at a 

time, and calls the objective function again.  In this way, the gradient of the objective 

function with respect to each of the parameters can be estimated.  Once the gradient 

values are known, the optimization routine changes all of the parameter values down 

gradient and computes the objective function again.  This continues until, (a) the error 

value returned is less than the absolute function convergence tolerance, (b) the 

improvement in error is less than the relative function convergence tolerance, (c) the 

maximum number of iterations is reached, (d) the maximum number of function 

evaluations is reached, or (e) an error is encountered.  All of these stopping tolerances 

can be defined by the user. 

 If the optimization routine has difficulty obtaining a sufficiently accurate solution, 

there are often several things the user can do to improve the success of the routine.  

Often, changing the  bounds or the starting points on the parameters will result in a better 
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outcome.  The importance of trying a variety of starting points for the parameters is 

illustrated in Figure 6. 

 
Figure 6: The effect of the starting point on the outcome of a parameter estimation run. 

 Figure 6 represents a hypothetical relationship between the total error and one 

parameter value.  The point at the bottom right of the figure is the “global minimum” or 

the parameter value which will minimize the difference between the observed and 

calculated values on observation points.  Sometimes, however, the optimization routine 

will find a local minimum value.  If the point marked “unsuccessful starting point” is 

used as a starting point, the routine will find the gradient at that point and then reduce the 

parameter value to reduce the error value.  When the parameter value reaches the local 

minimum, the gradient will be zero and the routine will stop.  
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 If, however, the point marked as “successful starting point” is used as a starting 

point, the gradient will be calculated and the routine will successively increase the 

parameter value until it converges on “the global minimum” where the gradient is zero.  
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Chapter 4 – Stochastic Simulations 

 A second component of this research was to implement stochastic modeling 

capabilities in the ART3D code using a simple, built-in Monte Carlo approach.  This new 

capability is described in this chapter. 

 In a typical modeling project, a common approach is to select a set of input 

parameters representing the “best estimate” and to present the resulting model solution as 

the most likely answer to the problem being studied.  The problem with this approach is 

that it does not accurately portray the uncertainty in the solution that results from the 

uncertainty inherent in the input values.  It is often very difficult to settle on one “correct” 

value for any parameter.  In addition, ART3D is a very simple model and does not allow 

for regions of different aquifer characteristics.  This means that the modeler must settle 

on an average value for the entire aquifer, which will best duplicate the behavior of the 

real aquifer.  Even aquifers that are considered to be homogenous have pockets and small 

areas with different characteristics from the main aquifer. 

One example of this difficulty is mechanical dispersivity, whose value is sensitive 

to the length of travel.  As a particle travels further and further from its source, the 

probability that it will encounter an obstacle which will cause it to spread away from 

other particles, becomes higher and higher.  These obstacles can include sudden changes 

in porosity or hydraulic conductivity, especially in small pockets.  At a certain distance, 
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the probability ceases to rise and dispersion becomes a constant with respect to travel 

length.  Because the dipsersivity values are so changeable, it is difficult to know which 

coefficient to use in the model. 

 Another difficulty in settling on a single parameter value is that they are usually 

difficult to measure.  Often, field tests (such as pump tests) are used because they give a 

fairly accurate average of the characteristics over a large area.  However, they do not 

account for small areas with different characteristics, which largely affect dispersion.  

Conversely, when lab tests are run on small soil samples, the values can be accurately 

measured for that one point, but that value cannot always be extrapolated over a larger 

area. 

 One approach to dealing with the uncertainty associated with parameter selection 

is the use of stochastic modeling.  This allows the user to enter a range of values for each 

parameter and information on the statistical distribution with respect to the mean value.  

The uncertainty of the parameters, as defined through their standard deviations, can then 

be projected into the model using a stochastic method.  A stochastic simulation in 

ART3D is accomplished by running the model multiple times, each time with a slightly 

different combination of parameter values.  The parameter values are chosen randomly 

based in the statistical distribution data supplied by the user.  Each set of parameter 

values, then can be assumed to be equally probable.  The result of this process is a large 

number of equally possible solutions that can be viewed individually or used in groups to 

determine the probability or risk that a given outcome will occur.  For example, 

stochastic solutions can be used to generate maps illustrating the probability that a given 

threshold concentration will be exceeded at any point in the problem domain.  This 
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allows the user to make some conclusions about the reliability of the model solution and 

the statistical probability of a certain condition. 

The stochastic modeling capability was implemented by allowing the user to 

choose any combination of input parameters to be varied.  For each parameter, the user 

then enters the upper and lower bounds, the mean, the distribution type (linear or 

normal), and in the case of a normal distribution, the standard deviation.  The user also 

selects the number of simulations to be run.  ART3D runs repeatedly with a different set 

of parameter values each time.  The new parameter values for each run are selected 

through the generation of a random number that honors the provided range and 

distribution data.  The selection of these values is discussed below. 

The stochastic modeling code added to ART3D was designed to allow for both 

linear and normal distributions.  For a linear distribution, ART3D uses the 

RANDOM_NUMBER function (in FORTRAN) to find a random number between zero 

and one.  This value is then transformed to the proper range through the following 

equation. 

Min)Randomval)MinMax((Value +−=  (11) 

 In the case of a normal distribution, ART3D chooses two independent random 

numbers using the RANDOM_NUMBER function and converts them to a single 

parameter value within the defined bounds and faithful to the normal distribution data 
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provided by the user.  The parameter is generated using the process and equations 

described in the following flow chart (Figure 7): 

 
Figure 7: Flowchart for choosing a 
random number in a normal distribution.  
(Sun, 1997) 

 The output for a stochastic simulation can be large.  A new set of output files is 

written for each individual run.  They are differentiated by the addition of an underscore 

followed by a sequential number to each filename as stochrun1_pce.dat, 

stochrun1_tce.dat, stochrun2_pce.dat, stochrun2_tce.dat, etc.
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Chapter 5 – Review of Decay Constants 

 Another important part of this research project was an extensive literature search 

to find first order decay rate constants for the dechlorination of chlorinated ethenes (PCE, 

TCE, DCE, VC).  Because ART3D is a simple model, which allows no heterogeneity or 

complicated boundary conditions, it can only be used as a screening model or on a project 

with a small budget.  Those modelers with large budgets or who need high accuracy may 

start with ART3D to get an initial idea of the plume, but will want to use a more intricate 

model such as RT3D.  Modelers on a small budget will not have the means to carry out 

the expensive tests that will be required to determine aquifer characteristics such as 

retardation, dispersion and velocity or species characteristics such as decay rates and 

source concentrations.  With the addition of stochastic capabilities, the modeler can run 

ART3D multiple times with varying parameter values each time to come up with several 

possible plumes.  The difficulty in a stochastic simulation is in the defining of the bounds 

and standard deviation values for each of the parameters.  However, the literature search 

outlined below shows average values and standard deviations for the decay constants 

across all of the journal articles searched.  These values can be directly used in a 

stochastic simulation. 

 The first order decay constants from the literature search are shown in Tables 3-

11.  Each value has a short description explaining the conditions under which the values 
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were observed.  They are arranged with separate tables for each of the chlorinated ethene 

species and, within each table, they are ordered with the smallest values first and the 

largest last.  The values are also separated with one table for anaerobic conditions and 

another for values that are from aerobic conditions or a combination of anaerobic and 

aerobic conditions.  Averages and standard deviations are shown for the anaerobic 

condition values.  Many of the values have been calculated from data presented in the 

paper.  The great variance in the values is obvious even at a quick glance.  Many of the 

higher values come from tests involving the use of bacterial cultures developed 

specifically to dechlorinate these compounds.  Natural conditions in an aquifer will 

seldom match these highly specific lab conditions.   

Table 3: Anaerobic first order decay constants for PCE. 
Parent species Rate constant (day-1) Source Notes 

PCE 0.00031 Clement et al., 1999 lab scale microcosm, 
anaerobic 

PCE 0.00032 Clement et al., 1999 calibrated values, anaerobic 
zone 

PCE 0.0004 Clement et al., 1999 calibrated values, anaerobic 
zone 

PCE 0.0012 Rügge et al., 1999 anaerobic, overall value 

PCE 0.002 

Roberts et al., 1982 
quoted in 

Schaerlaekens et al., 
1999 

sand aquifer, anaerobic 
conditions 

PCE 0.003 

Roberts et al., 1982 
quoted in 

Schaerlaekens et al., 
1999 

sand aquifer, anaerobic 
conditions 

PCE 0.0038 Rügge et al., 1999 anaerobic, maximum value 

PCE 0.0039 - 0.0077 Hardy et al., 1999 anaerobic, reference book 
(calculated from half-life) 

PCE 0.0075 - 0.07 

Bagley and Gosset, 
1990 quoted in 

Schaerlaekens et al., 
1999 

anaerobic conditions, 
sulfate-reducing conditions 

PCE 0.0079 

Bouwer et al., 1981 
quoted in 

Schaerlaekens et al., 
1999 

anaerobic conditions  
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Table 3: Anaerobic first order decay constants for PCE. (continued) 
Parent species Rate constant (day-1) Source Notes 

PCE 0.0008 - 0.0198 Hardy et al., 1999 anaerobic, field study 
(calculated from half life) 

PCE 0.64 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 2 mL/hr), 
anaerobic 

PCE 1.24 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 4 mL/hr), 
anaerobic 

PCE 1.72 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 6 mL/hr), 
anaerobic 

PCE 2.16 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 65.1µM 
and flow rate = 70 mL/hr), 
anaerobic 

PCE 1.78 - 2.56 Carter and Jewell, 
1993 

degraded by anaerobic 
attached-films; value 
calculated from µmax, volatile 
solid concentration and initial 
PCE concentration values 
provided 

PCE 2.42 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 91.2µM 
and flow rate = 70 mL/hr), 
anaerobic 

PCE 1.25 - 4.1 Carter and Jewell, 
1993 

degraded by anaerobic 
attached-films; value 
calculated from µmax, volatile 
solid concentration and initial 
PCE concentration values 
provided 
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Table 3: Anaerobic first order decay constants for PCE. (continued) 
Parent species Rate constant (day-1) Source Notes 

PCE 2.68 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 8 mL/hr), 
anaerobic 

PCE 3.24 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 10 mL/hr), 
anaerobic 

PCE 3.64 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 16 mL/hr), 
anaerobic 

PCE 3.73 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 32.6µM 
and flow rate = 70 mL/hr), 
anaerobic 

PCE 4.0 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 12 mL/hr), 
anaerobic 

PCE 0.0058-8.32 Hardy et al., 1999 recent literature (calculated 
from half-life) 

PCE 4.36 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 25 mL/hr), 
anaerobic 

PCE 4.39 - 5.88 Carter and Jewell, 
1993 

degraded by anaerobic 
attached-films; value 
calculated from µmax, volatile 
solid concentration and initial 
PCE concentration values 
provided 
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Table 3: Anaerobic first order decay constants for PCE. (continued) 
Parent species Rate constant (day-1) Source Notes 

PCE 5.4 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 20 mL/hr), 
anaerobic 

PCE 3.92 - 6.9 Carter and Jewell, 
1993 

degraded by anaerobic 
attached-films; value 
calculated from µmax, volatile 
solid concentration and initial 
PCE concentration values 
provided 

PCE 5.6 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 30 mL/hr), 
anaerobic 

PCE 8.0 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 70 mL/hr), 
anaerobic 

PCE 8.28 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 6.0µM 
and flow rate = 50 mL/hr), 
anaerobic 

PCE 9.14 Fathepure and 
Tiedje, 1994 

degraded by a 
chlorobenzoate-enriched 
biofilm reactor; calculated 
from dechlorination rate with 
PCE concentration = 5.25µM 
and flow rate = 70 mL/hr), 
anaerobic 

Average: 2.2792 
Standard 
Deviation: 2.2612   
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Table 4: Aerobic and transition first order decay constants for PCE. 
Parent species Rate constant (day-1) Source Notes 

PCE 0.0001 Clement et al., 1999 calibrated values, transition 
(aerobic/anaerobic) zone 

PCE 0.00035 - 0.0007 Clement et al., 1999 field estimated 

PCE 0.001705 Gerritse et al., 1995 

degraded by a combination of 
anaerobic dechlorinating and 
aerobic methanotrophic 
enrichment cultures; 
calculated from 
dechloringation rate with PCE 
concentration = 0.2 M 

PCE 0.0021 

Praamstra, 1996 
quoted in 

Schaerlaekens et 
al., 1999 

 

Table 5: Anaerobic first order decay constnats for TCE. 
Parent species Rate constant (day-1) Source Notes 

TCE 0.000067 - 0.000012 Clement et al., 1999 lab scale microcosm, 
anaerobic 

TCE 0.0001 - 0.0003 

Martin and 
Imbrigiotta, 1994 

quoted in 
Schaerlaekens et 

al., 1999 

Microcosm aquifer, anaerobic 
conditions 

TCE 0.0003 Rügge et al., 1999 anaerobic, overall value 

TCE 0.00045 Clement et al., 1999 calibrated values, anaerobic 
zone 

TCE 0.0009 Clement et al., 1999 calibrated values, anaerobic 
zone 

TCE 0.0013 Rügge et al., 1999 anaerobic, maximum value 

TCE 0.001 - 0.003 

Wilson et al, 1994 
quoted in 

Schaerlaekens et 
al., 1999 

in situ aquifer, anaerobic 

TCE 0.0021 Lowry and Reinhard, 
2000 

anaerobic, catalyzed by Pd-
on-γ-Al2O3, in the presence 
of 659 mg/L CO3

2-, pH = 10.9 

TCE 0.0028 Lowry and Reinhard, 
2000 

anaerobic, catalyzed by Pd-
on-γ-Al2O3, in the presence 
of 580 mg/L H2CO3, pH = 4.4 

TCE 0.0033 

Kleopfer et al.,1985 
quoted in 

Schaerlaekens et 
al., 1999 

Microcosm aquifer, anaerobic 
conditions 

TCE 0.0037 Lowry and Reinhard, 
2000 

anaerobic, catalyzed by Pd-
on-γ-Al2O3, in the presence 
of 1003 mg/L Cl-, pH = 9.6 

TCE 0.005 Lowry and Reinhard, 
2000 

anaerobic, catalyzed by Pd-
on-γ-Al2O3, in the presence 
of 660 mg/L HCO3

-, pH = 8.6 
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Table 5: Anaerobic first order decay constants for TCE. (continued) 
Parent species Rate constant (day-1) Source Notes 

TCE 0.0056 Lowry and Reinhard, 
2000 

anaerobic, catalyzed by Pd-
on-γ-Al2O3, in de-ionized 
water 

TCE 0.0039 - 0.0077 Hardy et al., 1999 anaerobic, reference book 
(calculated from half-life) 

TCE 0.006 

Bouwer et al., 1981 
quoted in 

Schaerlaekens et 
al., 1999 

Anaerobic conditions 

TCE 0.0062 

Barrio-Lage et al., 
1987 quoted in 

Schaerlaekens et 
al., 1999 

Microcosm, loamy sand, 
sulfate reducing 

TCE 0.0076 Lowry and Reinhard, 
2000 

anaerobic, catalyzed by Pd-
on-γ-Al2O3, in the presence 
of 690 mg/L SO4

2-, pH = 6.1 - 
5.0 

TCE 0.008 

Wilson et al., 1996 
quoted in 

Schaerlaekens et 
al., 1999 

Microcosm, silt/clay/sand, 
anaerobic conditions 

TCE 0.0009 - 0.0198 Hardy et al., 1999 anaerobic, recent literature 
(calculated from half-life) 

TCE 0.0039 - 0.099 Hardy et al., 1999 anaerobic, field study 
(calculated from half life) 

TCE 0.1 Anderson and 
McCarty, 1994 by methanotrophic biofilms 

TCE 0.424 Lowry and Reinhard, 
2000 

anaerobic, catalyzed by Pd-
on-γ-Al2O3, in the presence 
of 0.4 mg/L HS-, pH = 8.1 

Average 0.0294 
Standard 
Deviation 0.0910  

Table 6: Aerobic and transition first order decay constants for TCE. 
Parent species Rate constant (day-1) Source Notes 

TCE 0.000004 Clement et al., 1999 calibrated values, transition 
(aerobic/anaerobic) zone 

TCE 0.00001 Clement et al., 1999 calibrated values, aerobic 
zone 

TCE 0.0001125 Clement et al., 1999 calibrated values, transition 
(aerobic/anaerobic) zone 

TCE 0.00015 - 0.00054 Clement et al., 1999 field estimated 

TCE 0.004 

Poulsen et al., 1996 
quoted in 

Schaerlaekens et 
al., 1999 

In situ, no addition 



 44

Table 7: Anaerobic first order decay constants for DCE. 
Parent species Rate constant (day-1) Source Notes 

DCE 0.0000062 - 
0.0000014 Clement et al., 1999 lab scale microcosm, 

anaerobic 

DCE 0.00065 Clement et al., 1999 calibrated values, anaerobic 
zone 

DCE 0.000845 Clement et al., 1999 calibrated values, anaerobic 
zone 

DCE 0.0017 

Wilson et al., 1994 
quoted in 

Schaerlaekens et 
al., 1999 

In situ, aquifer, anaerobic 
conditions 

DCE 0.0014 - 0.002 

Wilson et al., 1994 
quoted in 

Schaerlaekens et 
al., 1999 

In situ, aquifer, anaerobic 
conditions 

DCE 0.001 - 0.0026 

Wilson et al., 1994 
quoted in 

Schaerlaekens et 
al., 1999 

In situ, aquifer, anaerobic 
conditions 

DCE 0.004 
Barrio-Lage et al. 

quoted in 
Schaerlaekens et al. 

Microcosm sediment, 
anaerobic conditions 

DCE 0.0052 

Barrio-Lage et al., 
1986 quoted in 

Schaerlaekens et 
al., 1999 

Microcosm sediment, 
anaerobic conditions 

DCE 0.006 

Barrio-Lage et al., 
1986 quoted in 

Schaerlaekens et 
al., 1999 

Microcosm sediment, 
anaerobic conditions 

DCE 0.007 Schaerlaekens et 
al., 1999 

Microcosm sediment, 
anaerobic conditions 

DCE 0.0084 

Wilson et al., 1996 
quoted in 

Schaerlaekens et 
al., 1999 

Alluvial silt/clay/sand, 
anaerobic conditions 

DCE 0.0058 - 0.0231 Hardy et al., 1999 reference book (calculated 
from half-life) 

DCE 0.033 Hardy et al., 1999 anaerobic, field study 
(calculated from half life) 

DCE 0.0006 - 0.231 Hardy et al., 1999 anaerobic, recent literature 
(calculated from half-life) 

Average: 0.0143 
Standard 
Deviation: 0.0304  

Table 8: Aerobic and transition first order decay constants for DCE. 
Parent species Rate constant (day-1) Source Notes 

DCE 0.0001625 Clement et al., 1999 calibrated values, transition 
(aerobic/anaerobic) zone 

DCE 0.00044 - 0.00064 Clement et al., 1999 field estimated 
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Table 8: Aerobic and transition first order decay constants for DCE. (continued) 
Parent species Rate constant (day-1) Source Notes 

DCE 0.0016 Clement et al., 1999 calibrated values, transition 
(aerobic/anaerobic) zone 

DCE 0.004 Clement et al., 1999 calibrated values, aerobic 
zone 

Table 9: Anaerobic first order decay constants for VC. 
Parent species Rate constant (day-1) Source Notes 

VC 0.0005 - 0.002 

Wilson et al., 1994 
quoted in 

Schaerlaekens et 
al., 1999 

In situ, aquifer, anaerobic 
conditions 

VC 0.004 Clement et al., 1999 calibrated values, anaerobic 
zone 

VC 0.011 - 0.0037 Clement et al., 1999 lab scale microcosm, 
anaerobic 

VC 0.008 Clement et al., 1999 calibrated values, anaerobic 
zone 

Average: 0.0052 
Standard 
Deviation: 0.0031  

Table 10: Aerobic and transition first order decay constants for VC. 
Parent species Rate constant (day-1) Source Notes 

VC 0.0008 Clement et al., 1999 calibrated values, transition 
(aerobic/anaerobic) zone 

VC 0.00082 Clement et al., 1999 field estimated 

VC 0.001 Clement et al., 1999 calibrated values, transition 
(aerobic/anaerobic) zone 

VC 0.002 Clement et al., 1999 calibrated values, aerobic 
zone 

Table 11: Summary of anaerobic first order decay constants for 
chlorinated ethenes. 
  PCE TCE DCE VC 
Minimum Value: 3.10E-04 6.70E-05 6.20E-06 5.00E-04
Maximum Value: 9.14 0.424 0.231 0.008 
Average Value: 2.2792 0.0294 0.0143 0.0052 
Standard Deviation: 2.2612 0.0910 0.0304 0.0031 
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 As mentioned above, many of the cited articles involve tests on specific bacteria, 

which have been specifically engineered to make them proficient at dechlorinating the 

chlorinated ethenes.  These types of tests sometimes result in unnaturally high decay 

rates, which would not normally be found naturally at contamination sites.  In the values 

presented for PCE, there is a distinct difference between these types of tests and those run 

with in situ conditions and microbes.  It is useful to re-evaluate the PCE values without 

including these high values.  Table 12 shows the summary for PCE without including 

these unnaturally high values. 

Table 12: Adjusted analysis of 
anaerobic first order decay rates 
for PCE. 
  PCE 
Minimum Value: 3.10E-04 
Maximum Value: 0.07
Average Value: 0.00384
Standard Deviation: 0.00348
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Chapter 6 – Hypothetical Application 

A series of tests were performed with a hypothetical model in order to validate the 

parameter estimation subroutines added to the ART3D code.  These tests also served to 

determine how well the ART3D code operates under an optimization environment and to 

gain insight into the inverse modeling process when applied to an analytic transport 

model. 

 The testing process began by defining the model solution that would serve as the 

benchmark or “field observations” for the inverse model.  A normal forward run was 

randomly designed.  The simulation had four species defined: c1, c2, c3, and c4.   For 

simplicity, the reaction was constrained to be sequential and only one time step was 

considered.  Table 13 shows the parameters used in this simulation.  Because this is a 

theoretical simulation, no units are included 

Table 13: Parameters for benchmark simulation. 
Grid length, x direction: 40 Retardation coefficient: 0.8 
Grid length, y direction: 10 Velocity 0.5 
Grid length, z direction: 4 Dispersion, x direction: 0.08 
Number of grid cells, x dir.: 40 Dispersion, y direction: 0.009 
Number of grid cells, y dir.: 10 Dispersion, z direction: 0.0 
Number of grid cells, z dir.: 1 Decay coefficient, c1: 0.075 
Source dimension, y direction: 4 Decay coefficient, c2: 0.05 
Source dimension, z direction: 4 Decay coefficient, c3: 0.02 
Simulation time: 50 Decay coefficient, c4: 0.045 
Yield coefficients:  Source concentration, c1: 100.0 
 c1  c2: 0.75 Source concentration, c2: 0.0 
 c2  c3: 0.5 Source concentration, c3: 0.0 
 c3  c4: 0.8 Source concentration, c4: 0.0 
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 Once the parameters had been chosen, a group of observation points was added to 

the project and the simulation was run in forward mode.  As part of the output, ART3D 

provided the concentrations of each of the species at each observation point.  ART3D 

also provided four data sets showing the concentration values at each grid point.  This 

solution was used as the benchmark and the concentration values at the observation 

points were used as the observed values in the subsequent model runs in inverse mode.  

For simplicity’s sake, only five of the parameters were designated as “unknown”: the four 

decay coefficients and the dispersion value in the x direction.  Multiple tests were 

conducted with different numbers of observation points and with different geometries. 

 There were several objectives of this case study.  The first was to test the PORT 

library and find out if it could return the parameter values from the benchmark solution 

when the starting values were changed.  Another purpose was to determine how many 

observation points are needed to obtain an accurate result from the optimization routine.  

Further, several different geometries of points were to be tested to learn about the optimal 

arrangement of data points. 

The rule of thumb normally used in parameter estimation is that there must be no 

more unknowns than there are observation points.  Using the rule of thumb, five 

observation points should be required to obtain a good result since there are five values 

being optimized.  It was expected that the difference between the optimized solution and 

the benchmark solution would be highest if there was only one observation point in the 

simulation.  That error was expected to gradually shrink as more observation points were 

added to the simulation, reaching an acceptably low value when there were five points.  It 

was also anticipated that, although the error might continue to decrease as the number of 
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observation points increased beyond five, there might be some oscillation caused by the 

optimization routine. 

 However, during the running of these tests, we realized that since each 

observation point has four known values, each concentration value represents an 

independent observation.  Thus, one point with four concentration values can be used to 

solve for four unknown parameters.  As a result, we were able to achieve an excellent 

match for the parameter values even with only one or two observation points. 

 With regard to determining the best layout for the observation points, we 

concluded that this model and this type of hypothetical case study were not adaptable to 

this kind of analysis.  With a model as simple as ART3D, it is usually best to have all of 

the observation points along the centerline of the plume since the flow is one dimensional 

and the aquifer is assumed to be homogenous.  Because neither the vertical nor transverse 

dispersion were allowed to vary and because the source dimension in the z direction was 

the same as the depth of the grid, points off of the centerline did not add significant 

accuracy to the optimization.  These difficulties were compounded by the fact that the 

hypothetical case study was based on a previous benchmark ART3D simulation.  In a real 

scenario, the true plume will probably not exactly follow the mathematical equations 

used to run ART3D.  Even more importantly, the requirement of homogeneity and 

averaging of several of the parameters over the entire area makes it very unlikely that 

even with the best parameter values, the model could exactly predict the plume size, 

location and concentration in a real modeling situation.  In this case, where the optimized 

parameters exactly predicted the benchmark plumes, the optimization was very easily 
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obtained.  The difference between the optimized solutions and the benchmark solutions 

were not significantly large in any of the inverse simulations. 

In the end, the results shown here are from one geometric arrangement of the 

points (shown in Figure 8).  The points were spaced two units apart.  The test began with 

only one point near the center of the important portion of the plumes.  The next test was 

run with three points: the same point used in the first test, plus two extra points two units 

away in each direction.  The testing continued until there were eleven points.  Figure 8 

shows the points for the tests with one, five, seven and eleven points.  According to this 

pattern, tests were run with three and nine points also. 

 Figure 8 also shows the output plumes from the benchmark simulation.  It allows 

the reader to see that most of the points were well within the plume boundaries.  It also 

nicely illustrates the output from a simple solution with each plume being placed slightly 

further from the source.  (As with all ART3D simulations, the source is placed at the left 

end of the grid, and at the midpoint between the side boundaries.  The groundwater flow 

is assumed to be from left to right.) 
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Figure 8: The first arrangement of points is illustrated here with the four 
species plumes.  (Simulations were also run with three points and with nine 
points according to this pattern.) 
 

 The ranges for the parameters were set at 20% below and above the benchmark 

simulation value for that parameter.  As explained in Chapter 3, the starting point can be 

very important in the accuracy of the final result of a parameter estimation run.  To allow 

for this, five different starting values were randomly chosen for each unknown parameter.  

Table 14 below shows the five variables, their ranges and the five random start values. 
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Table 14: Parameter ranges and starting values.  (Starting value colors correspond to Figures 9 
through 11.) 
Variable Minimum Maximum Starting Values 

        
Alpha-x 0.064 0.096 0.069 0.082 0.067 0.074 0.072 

k_c1 0.06 0.09 0.074 0.072 0.072 0.074 0.079 
k_c2 0.04 0.06 0.046 0.041 0.052 0.057 0.043 
k_c3 0.016 0.024 0.016 0.020 0.016 0.019 0.020 
k_c4 0.036 0.054 0.052 0.050 0.038 0.044 0.044 

 

 When the tests were run, the error values turned out to be extremely small in all 

cases.  The results from the first point arrangement is shown and described below: 

 The error between the optimized solution and the benchmark solution was 

determined in three different ways.  First, the error in the calculation of the observation 

point concentrations was gathered from the output (*.out) file.  Under normal 

circumstances, this would be the only error analysis available to a modeler.  The graph in 

Figure 9 shows the mean absolute residual error averaged across all the observation 

points.  Each bar color represents a different starting point as described in Table 14.  Each 

group of bars represents the error obtained using a different number of observation points 

according to the geometry in Figure 8. 
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Figure 9: A comparison of the error at the observation points for hypothetical case study.  Each 
colored bar represents a different starting point as shown in Table 14.  Each set of five bars 
represents the five tests run with each set of observation points. 
 

 The second method of determining the success of the PORT library was to 

compare the benchmark parameters (the goal of the optimizer) with the optimized 

parameter values determined from an inverse ART3D run.  The percent error was 

calculated by dividing the difference between the two values by the benchmark value and 

multiplying by 100.  The errors found on the same simulations are summarized in Figure 

10.  As before, each different color bar represents a different randomly selected starting 

point.  Each group of bars represents the test run with a different number of observation 

points. 
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Figure 10: A comparison of the error in the parameters returned by the optimization code for 
hypothetical case study.  Each colored bar represents a different starting point as shown in Table 14.  
Each set of five bars represents the five tests run with each set of observation points. 
 

 The third error calculation was made on the grid as a whole.  This calculation was 

made by comparing the grid data sets from the benchmark simulation and the optimized 

data sets.  Using the Data Calculator in GMS, four new data sets were created by taking 

the absolute value of the difference between the benchmark data sets and the “optimized” 

data sets for each specie.  To make this calculation, GMS takes the absolute value of the 

difference of each grid point in the two data sets and returns a new grid whose scalar 

values at each grid point are equal to that difference.  The Data Set Info dialog then 

allows access to statistical information on the new data set, including the mean value.  To 

calculate the total error across all the species, the four mean values (one for each specie) 

were averaged.  These averages are presented in the graph below, again with a different 

color bar representing a different starting point, and each group of bars representing a 

different number of observation points. 
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Figure 11: A comparison of the error in the grid data sets returned by the optimization code for 
hypothetical case study.  Each colored bar represents a different starting point as shown in Table 14.  
Each set of five bars represents the five tests run with each set of observation points. 
 

 Although this hypothetical testing did not yield purposeful results describing the 

optimum number of points or geometry needed to obtain a good optimized set of values, 

some interesting conclusions can be drawn from the data obtained.  Although the general 

trend in the graphs seems to show that more points can yield better accuracy, it is 

interesting that that is not necessarily true for a given starting point.  For example, in 

Figure 11, the cyan bar yielded the best results for a simulation with one observation 

point, the purple bar for three points, the yellow bar for five points, and so on.  This 

shows that there is not one starting point that is best in all cases and the user should try 

several starting points within the specified range to be sure the best result is obtained. 

 Another interesting observation is that the parameter error and observation point 

error, while showing a general trend of lower error with more points, show a lot of 

oscillation and noise and actually do not have a significant increase in accuracy with the 

increase in the number of points.  The grid error graph, however, does show a nice 
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downward trend with less noise and oscillation.  One reason for this is that the increased 

number of points with this geometry results in the points covering a larger portion of the 

grid and the major portions of all the plumes.  This means there can be greater overall 

accuracy in the grid data sets without an accompanying increased precision in the 

observation point values.  The lesson is that observation points should be scattered over 

the entire plume area and not concentrated in a single area.  

 The final conclusion from this hypothetical case study is that the observation 

point error does not closely mirror the grid or parameter error plots.  In the case of a real 

groundwater study, the only error value available to the user for analysis, is the error 

associated with the observation point.  But, sometimes a low observation point error 

occurs when there is a high grid error, making it difficult to know which calibration is 

actually the most accurate.  This challenge makes a strong case for the use of stochastic 

modeling to show statistical results rather than one “best guess” result.  Because there is 

no perfect way to know when or if the model exactly shows the true nature of the aquifer 

characteristics and contaminant flow, it is best to run several simulations with equally 

likely parameters and consider a range of possibilities as the result. 

 It should be noted that, regardless of how the errors were computed, they were 

extremely small for all inverse model runs using the hypothetical model.  As mentioned 

above, this is due to the face that this is a comparison of the optimized values from an 

analytic model with a previous solution of the same analytic model.  The errors are so 

small that most of the solutions may be considered “exact”.  This is encouraging, as it 

shows that the optimization routine works favorably on this type of model.
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Chapter 7 – Case Study 

 As a final assessment of the capabilities of ART3D, the code was tested by 

applying it to a case study involving a real contaminated site.  A Superfund site in Baton 

Rouge, Louisiana was selected for the analysis.  The area was a waste dumping site for 

the Petro-Processors, Inc., Brooklawn Site and had been contaminated with various 

hazardous wastes, including several types of chlorinated solvents.  This site is the basis of 

a paper illustrating the use of BIOCHLOR as one of the steps in the US EPA Monitored 

Natural Attenuation Screening Protocol for chlorinated solvents (Clement, et al 2002).  

The fact that the site had already been modeled using BIOCHLOR, made it a good choice 

for a case study since ART3D evolved from BIOCHLOR.  The comparison of the two 

models allows an investigation of the usefulness of improvements made in ART3D. 

Data Collection 

 Most of the data for the case study came from Dr. Clement’s paper and included 

aquifer characteristics, the known source species and their characteristics as well as basic 

information used to run BIOCHLOR.  Although not included in the paper, Dr. Clement 

provided field concentration data obtained from four wells at the site.  The ART3D 

model was designed using the same conceptual model presented in the BIOCHLOR 

paper.  However, some minor changes were made to the model design. 
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 One of the main difficulties with BIOCHLOR, which has been eliminated by 

ART3D, was the requirement that reactions be sequential.  BIOCHLOR cannot handle 

complex, convergent or divergent reactions.  The main contaminants at the Brooklawn 

site were chlorinated ethenes and chlorinated ethanes.  (The chlorinated ethanes include 

Tetrachlorethane - TeCA, Trichloroethane - TCA, dichloroethane - DCA, and 

chloroethane - CA.)  The graphic below describes the reactions that occur with these 

species and shows that there are several complex pathways that can be taken, few of 

which can be modeled as simply sequential.   

 
Figure 12: Possible pathways for anaerobic decay of chlorinated 
ethenes and ethanes. 
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 In order to model this site using BIOCHLOR, the ethane and ethene corridors had 

to be analyzed separately and then the contribution of the ethane line to the ethene line 

was approximated and a third simulation was run of the ethane line.  This resulted in a 

rough approximation that fairly closely matched the field data.  Using ART3D, however, 

both corridors were modeled simultaneously and some of the approximation became 

unnecessary. 

 Some simplifications to the BIOCHLOR model were carried over into the 

ART3D model.  As in Clement’s paper (2002), all three DCE isomers were combined 

together.  Also, the degradation to ethene or ethane was not included in the model 

because of a lack of data.   

 The conceptual model was used in Clement et al. (2002) to determine the size and 

dimensions of the grid, the time variables and the source dimensions.  These values are 

summarized in Table 15 below. 

Table 15: Model simulation time, regional dimensions and source 
dimensions. 
Property Value 
Source dimension, y direction 1000 ft 
Source dimension, z direction 45 ft 
Total simulation time 25 years, or 9125 days 
Model depth 45 ft 
Model width 2000 ft 

 The BIOCHLOR model length was set at 5000 ft, the distance to the Mississippi 

River.  In the ART3D model, this was shortened to 600 feet, except when the 200-year 

plume was calculated, when the length was extended to 1200 feet.  An even larger grid 
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was used to look at the long-term placement of the vinyl chloride plume.  This was 

sufficient to show the main section of the plume, but resulted in faster calculations than 

the larger grid.   

 Data describing the characteristics of the aquifer and the chemical species were 

also obtained from the Clement et al. (2002) paper.  Because separate BIOCHLOR 

simulations were run with ethane and ethene corridors, two retardation values were used.  

They were averages of values derived for each constituent.  Because ART3D can only 

take one retardation coefficient, the value shown below is an average of the two 

presented in the BIOCHLOR paper. 

Table 16: Aquifer and constituent parameter 
values from the BIOCHLOR model. 
Property Value 
Retardation coefficient 3.0 
Velocity 0.05 ft/d 
Longitudinal dispersivity 50 ft 
Dispersivity ratio, αy/αx 0.1 
Dispersivity ratio, αz/αx 0.01 
Decay constant, TeCA 0.014 d-1 

Decay constant, TCA 0.013 d-1 

Decay constant, DCA 0.001 d-1 

Decay constant, CA 0.014 d-1 

Decay constant, PCE 0.005 d-1 

Decay constant, TCE 0.005 d-1 

Decay constant, DCE 0.005 d-1 

Decay constant, VC 0.0006 d-1 

 In the original BIOCHLOR simulation, the source concentrations were calculated 

in two ways.  First, they were measured from samples taken at the location of the 

contamination source and then, they were calculated from a solubility analysis.  The 
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direct measurement was done with equipment whose detection limit was set at 25 mg/L.  

Table 17 lists these values: 

Table 17: Source concentration values. 

Specie Measured 
value (mg/L) 

Calculated 
value (mg/L) 

TeCA 57 52 
TCA 337 210 
DCA 600 184 
CA <25 0.0 

PCE <25 3.5 
TCE <25 6.2 
DCE <25 0.8 
VC <25 1.0 

 Clement (2002) also provided the yield constants for each of the possible decay 

pathways in units of moles/moles.  Using these values and the molecular weight of each 

specie, the yield values were calculated in g/g.  These values are shown below: 

Table 18: Yield constants used in both the BIOCHLOR 
simulation and the ART3D simulation. 

Reaction Yield constant 
(mole/mole) 

Yield constant 
(g/g) 

PCE  TCE 1.0 0.792 
TCE  DCE 1.0 0.738 
DCE  VC 1.0 0.645 

TeCA  TCA 0.35 0.278 
TeCA  TCE 0.02 0.016 
TeCA  DCE 0.63 0.364 
TCA  DCA 0.2 0.148 
TCA  VC 0.8 0.375 
DCA  CA 0.7 0.456 
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 The last part of the data used in the ART3D simulation was the observation point 

data.  At four points in the plume, boreholes were used to determine the concentration of 

some of the constituents.  Although the exact locations of each point are not given, all 

were within the source dimension and it is a good approximation to assume (as was done 

in the BIOCHLOR model) that they were on the centerline of the plume.  The field data 

and point locations are given in Table 19. 

Table 19: Field observation data. 
Point  1 2 3 4 

Distance from 
source (ft): 150 300 400 500 

Constituent Concentration (mg/L) 
TeCA No Data 0.01 No Data 0.007 
TCA No Data 0.02 No Data 0.02 
DCA 0.01 No Data 0.1 0.3 
CA No Data No Data No Data No Data 

PCE 0.05 0.02 No Data No Data 
TCE 0.04 No Data No Data No Data 
DCE 0.013 No Data 0.5 0.02 
VC 37 No Data 12 3.5 

Forward Run and Inverse Runs 

 The first simulation run on the data presented in the previous section was a 

normal forward run.  This run gave an idea of the general locations and concentrations of 

the plumes.  It quickly became obvious that the observation points were placed too far 

from the source of the contamination.  They were far from the measurable part of the 

plumes, near the edge.  At these locations, they could not pick up the significant section 

of the plumes.  This made parameter estimation difficult. 
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 Once the forward run had been completed, a series of inverse runs using the 

PORT library were completed.  Table 19 shows that there are 16 known values of 

concentration.  From the hypothetical case study described in the previous chapter, it is 

apparent that the optimization algorithm can only solve for 16 of the parameters in order 

to prevent an under-constrained equation.  Because there are no observation values for 

chloroethane, there is no purpose in solving for its source concentration, since that value 

will have no effect on the value of the objective function.  In addition, the simulation was 

not set to solve for the source concentration for vinyl chloride, the two dispersivity ratios 

or the velocity.  Occasionally during the calibration of the model, these values were 

varied by hand in an effort to improve the correlation between the model output and the 

field data.  Also, while the PORT library did not solve for the dispersivity ratios, the 

transverse and vertical dispersivity values did change whenever the longitudinal 

dispersivity value changed.  In this way, the solver could optimize all three values 

without adding extra degrees of freedom. 

 The observed concentration values were used to determine a standard deviation 

and a weighting value to be applied to each specie measured in the observation boreholes.  

This standard deviation was used as described in Chapter 3 to determine the weighting 

value used in the calculation of the objective function.  The standard deviation for each 

specie was assumed to be 20% of the average measurement of that specie across those 

wells that detected it.  Table 20 shows the standard deviation used for each chemical 

constituent and the weight values.  These same weight values were applied to every 

measurement of a specie, regardless of the location of the point. 
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Table 20: Standard deviation and weight values 
applied to each chemical specie. 

Constituent Standard 
Deviation Weight 

TeCA 0.0004 6.25×106 

TCA 0.0001 1.00×108 

DCA 0.007 2.04×104 

PCE 0.002 2.50×105 

TCE 0.002 2.50×105 

DCE 0.009 1.23×105 

VC 0.893 1.25 

 The calibration was achieved by repeatedly running inverse simulations with 

different randomly selected starting points.  Later, the automatic optimization was 

combined with hand calibration as random starting values were replaced with starting 

values specifically chosen in an effort to better match the field data.  After setting some 

of the starting values to numbers that were expected to give a better match, the 

optimization routine was used to polish the hand calibration. 

During the calibration, it quickly became obvious that it was quite easy to match 

up the concentration values measured at the two points closest to the source(1 & 2), but it 

was harder to get the model results at the two further points (3 & 4), to match the field 

data.  The model consistently output values several orders of magnitude smaller than the 

field observed values at these more distant points.  This can be explained, as the microbes 

near the source should be better adapted to break down the chlorinated compounds since 

they have been exposed to the contaminants at higher concentrations and for a longer 

period of time.  Those microbes located 400 or 500 feet from the source, where the 

concentration is smaller and where the plume has arrived relatively recently have not had 

as much time to adapt to the contaminated environment.  Thus, a single decay constant 
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for each specie is not sufficient since the microbes in some areas break down the 

chemicals faster than those in other areas.  The differing decay constants can also be 

caused by differences in the availability of carbon, oxygen or other necessary elements. 

 To deal with this problem, three separate calibrations were prepared.  The first 

was done with the above weight values as described previously; a second calibration was 

made with high weight values applied to the two closest points; and a third with high 

weight values on the two farthest points.  These standard deviations and weight values 

are shown in Table 21.  The low standard deviations (for calculating a high weight) were 

half of those presented in Table 20, while the high values were double that originally 

calculated.  

The plots in Figure 13 show the centerline concentrations for each calibration of 

the plumes plotted with the observed data.   

Table 21: Adjusted weight values for second and third calibrations. 

High Weight Points Low Weight Points 
Constituent Standard 

Deviation Weight Standard 
Deviation Weight 

TeCA 0.0002 2.50×107 0.0008 1.56×106 

TCA 0.00005 4.00×108 0.0002 2.50×107 

DCA 0.0035 8.16×104 0.014 5.10×103 

PCE 0.001 1.00×106 0.004 6.25×104 

TCE 0.001 1.00×106 0.004 6.25×104 

DCE 0.0045 4.94×104 0.018 3.09×103 

VC 0.4465 5.02 1.786 0.31 
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Figure 13: The centerline plots for each of the three calibrations at t=25 years, plotted against the 
observed data 
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 The plots in Figure 13 show that computed concentration values do not differ very 

much from one calibration to the next.  If the y-axis scale were smaller, some variation in 

the values would be seen, but it is very insignificant at such low values.  The main 

differences between the calibrations occur in the first 100 feet from the source.  

Observation data in this area would greatly help the accuracy of the model.  This shows 

the importance of obtaining field data in the significant areas of the plumes, not near the 

edges as has been done here. 

The only plot in Figure 13 with significant variation between the three 

calibrations is the vinyl chloride (VC) plot.  This plot seems to show that either the equal 

weighting calibration or the calibration with high weights on points 3 and 4 could be 

chosen as the best calibration.  An analysis of the parameters returned by the PORT 

library (Table 22) shows that the parameters for the equal weighting calibration are the 

most likely.  The third calibration requires extremely low source concentrations and 

decay constants, which are not likely, considering the measured values presented above.  

Thus, the first calibration, with equal weighting on all the points, will be used in the rest 

of this analysis. 

Table 22: Optimized parameter values for each of the three calibrations. 
Parameter Calibration 1 

(Equal weighting) 
Calibration 2 
(High weight on 
the closest points) 

Calibration 3 
(High weight on 
the furthest points) 

Retardation 2.24 1.5 1.50 
Velocity (ft/day) 0.072 0.05 0.05 
Dispersivity (x) (ft) 10.00 30.9 99.67 
Dispersivity (y) (ft) 1.00 3.09 9.967 
Dispersivity (z) (ft) 0.10 0.309 0.9967 
k TeCA (day-1) 0.0028 0.0030 0.0004 
k TCA (day-1) 0.031 0.0025 0.0005 
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Table 22: Optimized parameter values for each of the three calibrations. (continued) 
Parameter Calibration 1 

(Equal weighting) 
Calibration 2 
(High weight on 
the closest points) 

Calibration 3 
(High weight on 
the furthest points) 

k DCA (day-1) 0.0031 0.010 0.0002 
k CA (day-1) 0.014 0.019 0.000011 
k PCE (day-1) 0.0034 0.0037 0.010 
k TCE (day-1) 0.0076 0.0080 0.0005 
k DCE (day-1) 0.012 0.015 0.005 
k VC (day-1) 0.0001 0.0001 0.00001 
Co TeCA (mg/L) 93.19 47.31 0.013 
Co TCA (mg/L) 100.0 55.26 0.027 
Co DCA (mg/L) 50.0 107.39 0.0001 
Co CA (mg/L) 0.0 0.0 0.0 
Co PCE (mg/L) 9.39 10.72 0.058 
Co TCE (mg/L) 8.23 16.86 0.0015 
Co DCE (mg/L) 11.12 20.44 0.004 
Co VC (mg/L) 0.0 0.0 0.0 

Determination of the Effect of Natural Attenuation 

 The purpose of the original BIOCHLOR paper was to determine if natural 

attenuation was occurring and if it could be relied on to clean up the spill before the 

contaminants reached the Mississippi River, about 5000 feet from the source location.  

This was done by running the BIOCHLOR simulation twice more using the same 

parameters, but disregarding decay in one simulation, and disregarding decay and 

sorption in the other.  In this way, the effect of natural attenuation on the plume could be 

discerned.  The same process was followed here by running normal forward simulations 

with the optimized parameters.  Sorption was disregarded by setting the retardation 

constant to one; decay was ignored by setting each of the decay constants to zero.  All 

other parameters were left at their optimized values.  The results are displayed in Figure 

14.  Both chloroethane (CA) and vinyl chloride (VC) show concentrations of zero when 
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there is no decay.  This is because their source concentrations were optimized at 0.0 mg/L 

and without decay, none of the other species can react to form either CA or VC. 

 
Figure 14: The effects of sorption and decay on the model output at t = 25 years. 
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 The plots in Figure 14 show that natural attenuation is occurring in the aquifer.  

The observed data closely coincides to the lines including decay and sorption, but is far 

from those not including decay and sorption.  Even accounting for model errors, it is 

unlikely that the calculations without decay or sorption could ever be similar to the field 

data. 

The plots in Figure 14 also show that, even without natural attenuation, after 25 

years of movement, the plumes would only have moved 1000 feet from the source.  

There are another 4000 feet to go before the Mississippi River is encountered.  That could 

take another 100 years at this rate.  The risk of contaminating the river is even lower 

when decay and sorption are included. 

Determination of Steady State Plume 

 Another objective of the original BIOCHLOR simulation was to determine when 

and where the plumes would reach steady state.  To repeat this analysis, ART3D was run 

with a simulation time length of 200 years and with a time step every 25 years.  The plots 

below show the resulting centerline plots after 25, 50 and 200 years with and without 

natural attenuation.  For those simulations without natural attenuation, both retardation 

and decay were ignored by setting the decay constants to zero and the retardation factor 

to one.  As in the previous plots, CA and VC without natural attenuation are displayed as 

flat lines at zero since their initial source concentrations are zero.   
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Figure 15: Centerline plots with and without natural attenuation (NA) after 25, 50 and 200 years, 
shown with field data 

 In the plots above (Figure 15), all species except vinyl chloride have reached a 

steady state by 25 years from the start of the simulation when natural attenuation is 
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considered.  This is revealed by the fact that the natural attenuation lines are equivalent 

for each of the three time steps.  In the vinyl chloride plot, the three time steps do not 

coincide with each other and the plume continues moving towards the Mississippi River 

after 200 years.   

 Without natural attenuation, the plume moves steadily away from the source with 

no reduction in concentration.  The good match between the natural attenuation plots and 

the field data, however, shows that this is not a serious concern since the concentration 

levels of the field data indicate that attenuation is occurring. 

 The VC plot is shown again in Figure 16 with an extended grid and time period to 

show the time and location of the steady state plume. 
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Figure 16: Movement of the vinyl chloride plume through 500 years with 
natural attenuation 
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 Figure 16 indicates that the VC plume will reach steady state at about 300 years 

from the time of the initial contamination.  It also shows that this plume will reach 

undetectable levels about 1500 feet before reaching the Mississippi River. 

Stochastic Simulation 

 The addition of stochastic capabilities to ART3D allows this analysis of the 

Brooklawn site to go beyond that available in a BIOCHLOR simulation.  In the stochastic 

simulation, selected parameters were assigned distribution data and ART3D ran a number 

of simulations, each time with different randomly chosen parameters.  For this 

simulation, the ranges and distribution of the four ethene decay values (PCE, TCE, DCE, 

VC) were chosen based on the literature search described in Chapter 5.  The calculated 

mean values, minimum values, maximum values and standard deviations were entered 

into ART3D as listed in Tables 11 and 12.  The PCE values used were those calculated 

without using the high values from tests involving specially developed bacteria (Table 

12).  All other parameters, except for the two dispersion ratios and the chlorinated ethane 

(CA) source concentration were allowed to vary with a normal distribution selected to 

cover the range of acceptable values.  These statistical values are shown below in Table 

23.  All other input parameters such as the yield coefficient matrix remained the same as 

in the previous simulations.  The simulation time length was set at 25 years, to allow an 

analysis of current conditions, although the same procedure could be used to predict the 

future. 
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Table 23: Varied parameters in the stochastic simulation. 
Parameter Mean value Maximum 

value 
Minimum 
value 

Standard 
deviation 

Retardation 1.75 1.0 6.5 2.0 
Velocity 0.072 0.0 0.1 0.03 
Longitudinal dispersivity 11.18 0.0 50 12.0 
TeCA decay constant 0.0029 0.0001 0.05 0.02 
TCA decay constant 0.0032 0.0001 0.05 0.02 
DCA decay constant 0.01 0.0001 0.05 0.015 
CA decay constant 0.0048 0.0001 0.05 0.018 
TeCA source concentration 90.17 0.0 100 40.0 
TCA source concentration 100.0 0.0 400.0 100.0 
DCA source concentration 50.0 0.0 700.0 250.0 
PCE source concentration 11.46 0.0 25.0 5.0 
TCE source concentration 0.63 0.0 25.0 9.0 
DCE source concentration 0.002 0.0 25.0 9.0 
VC source concentration 25.0 0.0 25.0 10.0 

 When the data had been entered, ART3D was set to run 100 times.  Each run was 

completed with a new set of randomly chosen values according to the user-defined 

bounds and distributions.  Using GMS, then, the 100 simulations could be used to 

complete a threshold analysis.   

 In a threshold analysis, the user selects a condition whose probability is desired.  

For example, a user might choose to view all locations where the PCE concentration is 

greater than 0.005 mg/L.  GMS will run through all of the grid cells and data sets and 

compute the percentage of data sets that have a value greater than 0.005 mg/L at each 

point in the grid.  The output from a threshold analysis is a data set showing percentages 

at every grid cell.  This is the percentage of the data sets where the condition was true.  If 

enough simulations are included in the analysis and if the parameter bounds and 

distributions have been well chosen, these percentages can represent the percent 

likelihood of the condition being true, based on the uncertainty of the input parameters. 
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 For the threshold analysis of the Brooklawn site case study, the thresholds were 

chosen to be the US EPA’s Maximum Contaminant Level (MCL) obtained from the EPA 

website (USEPA, Current Drinking Water Standards, 2002).  Values were not available 

for TeCA or CA, because these contaminants are more commonly air pollutants.  

Because the model was simplified by combining the three DCE isomers, three separate 

threshold analyses were run on the combined data set from the ART3D model.  Each 

scenario is conservative since the concentration of a given isomer will be less than the 

total concentration of all three.  Table 24 lists these contaminant levels. 

Table 24: EPA Maximum 
Contaminant Level (MCL) for water 
pollutants at the Brooklawn site. 
Contaminant MCL (mg/L) 
TCA 0.005 
DCA 0.005 
PCE 0.005 
TCE 0.005 
1,1-DCE 0.007 
cis 1,2-DCE 0.07 
trans 1,2-DCE 0.1 
VC 0.002 

Figures 17 through 24 show these threshold analysis outputs.  The scales are in 

decimal percentages; the red sections are where 100% of the simulations showed that the 

MCL was exceeded, while the blue sections are where none of the simulations exceeded 

the MCL value.  The figures only show the first 600 feet of the grid. 
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Figure 17: Threshold analysis result for TCA.  MCL = 0.005 mg/L.  Grid length is 600 ft. 

 
Figure 18: Threshold analysis result for DCA; MCL = 0.005 mg/L.  Grid length is 600 ft. 
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Figure 19: Threshold analysis result for PCE; MCL = 0.005 mg/L.  Grid length is 600 ft. 

 
Figure 20: Threshold analysis result for TCE; MCL = 0.005 mg/L.  Grid length is 600 ft. 
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Figure 21: Threshold analysis result for 1,1-DCE; MCL = 0.007 mg/L.  Grid length is 600 ft. 

 
Figure 22: Threshold analysis result for cis 1,2-DCE; MCL = 0.07 mg/L.  Grid length is 600 ft. 
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Figure 23: Threshold analysis result for trans 1,2-DCE; MCL = 0.1 mg/L.  Grid length is 600 ft. 

 
Figure 24: Threshold analysis result for VC; MCL = 0.002 mg/L.  Grid length is 600 ft. 

 Obviously the most important threat from this analysis is the vinyl chloride 

concentration.  All of the random simulations showed VC concentration values above the 
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MCL near the source and a good portion of the simulations show high concentrations 

continuing out 400 or 500 feet from the source.  Because the VC plume will not reach 

equilibrium for a few hundred years, this plume will likely get worse before natural 

attenuation is able to reduce the concentrations.  It will grow longer and its concentration 

will increase as other chlorinated compounds reduce to VC.  Clearly, this contaminant is 

the most dangerous one in the plume and the one that should be most heavily considered 

in the design of remediation efforts. 

 Most of the other plumes are only likely to be a problem in the first 100 or 200 

feet from the source.  After this point, the percentages drop lower and the chance that the 

contamination exceeds EPA limits is small.  Analysis of DCE is difficult due to the three 

separate isomers, but it seems that DCE may not be a big problem.  The percentages for 

each of the isomers is low even close to the source, and the model output is for a 

combination of all three isomers, so these percentages would be even lower if the model 

accounted for the three separate types of DCE. 

 The stochastic simulation shows where drinking water could be contaminated.  

Any drinking water wells in the high probability regions will need to be tested for 

contamination.  The advantage of this simulation over the previous forward simulations is 

that it does not output only a single result.  Because it accepts the possibility of error in 

the parameter values, it prevents the information from being treated as absolute truth and 

allows policy-makers to make better decisions about the contamination at the site.



 81

Chapter 8 – Conclusions 

 The main objectives of this project were accomplished successfully.  The 

interface to GMS makes data input and results visualization much easier.  The extra 

capabilities have made modeling easier, less time consuming, and therefore, less 

expensive.  They have also extended the application of the model by providing more 

options for analysis. 

Parameter Estimation 

The parameter estimation engine successfully optimizes the parameters to yield an 

accurate output, closely matching the observed data when observation wells are well 

placed in time and space and when the model assumptions are accurate for the site.  The 

success of the PORT library is increased when the number of observed concentration 

values (not necessarily observation points) exceeds the number of parameters being 

solved for.  

The main difficulty in parameter estimation in ART3D is that the basic model 

assumptions are not always accurate for a given site.  The requirement that all retardation 

values be the same and the inability to model any type of heterogeneity are its main 

drawbacks and hinder the accuracy of the optimized parameters. 

It is important that the observations be placed in the main section of the plume to 

obtain the best optimized results.  The Brooklawn site case study involved observation 



 82

points that were near the edges of the plumes.  This made optimization very difficult and 

highly objective.  A better way to handle a project would be to initially run a simple 

forward run with approximate parameters to determine the likely location of each plume 

and then place the boreholes or wells in the main sections of those plumes where the data 

will be above the detection limit and so the model can be calibrated to the more 

significant sections of the plume. 

Stochastic Capabilities 

 The stochastic simulation option, when coupled with a threshold analysis is a 

useful addition to the ART3D code since it allows a statistical analysis of a number of 

equally likely results.  The difficulty and expense in accurately defining a set value to any 

of the parameters makes a strong case for the definition of a range of values and the use 

of stochastic methods to show the parameter uncertainty in the results. 

 The literature review of first order decay constants for chlorinated ethenes, while 

helpful in the other two modes of ART3D, is especially valuable in the definition of 

distribution data for a stochastic run.  It helps obtain practical results without the expense 

of carefully analyzing the aquifer and specie characteristics.   

In the Brooklawn site case study, the threshold analysis helped determine which 

species were most likely to exceed EPA requirements for drinking water and where this 

excess would most likely occur.
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Appendix A – ART3D Input File Format 

 The ART3D input file should have the extension *.art and should be arranged in 

card format according to the example in Figure 25.  This example is for a normal forward 

run.  With a parameter estimation or stochastic simulation, some minor changes are made 

to the file.  These changes and all of the cards are explained in detail in the table below 

the sample file. 

 

Figure 25: ART3D sample input text file 

ART3D 
GRIDFILE "bestanswer.3dg" 
OBSCOV "obs" 
SOURCE 1000 45 
NUMSPEC 8 
SPECNAMES "TeCA" "TCA" "DCA" "CA" "PCE" "TCE" "DCE" "VC"  
YIELD 
0 0 0 0 0 0 0 0  
0.278 0 0 0 0 0 0 0  
0 0.148 0 0 0 0 0 0  
0 0 0.456 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0.016 0 0 0 0.792 0 0 0  
0.364 0 0 0 0 0.738 0 0  
0 0.375 0 0 0 0 0.645 0  
TIME 9125 1 
UNITS "ft" "d" "mg" "lb" "mg/l" 
REFTIME d 0 1900 1 1 0 0 0 
SIMTYPE 0 
PARAM retard 1.75 
PARAM velocity 0.072 
PARAM alphax 11.18 
PARAM alphayratio 0.1 
PARAM alphazratio 0.01 
PARAM kTeCA 0.0029 
PARAM kTCA 0.0032 
PARAM kDCA 0.01 
PARAM kCA 0.0048 
PARAM kPCE 0.0036 
PARAM kTCE 0.0081 
PARAM kDCE 0.05
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Figure 25: ART3D sample input text file (continued). 

Table 25: ART3D input file card format. 
Card Arguments Meaning 
ART3D None Defines the file type 
GRIDFILE “name.3dg” – name 

of 3D grid file 
Tells ART3D which file to look in to find 
the size and dimensions of the grid and the 
number of cells.  This must be a mesh-
centered grid. 

OBSCOV “name” - name of 
observation coverage 
holding the 
observation points 

Used only by GMS – tells GMS where to 
look for the observation points used in the 
ART3D simulation. 

SOURCE ysourcedimension, 
zsourcedimension 

Defines the size of the source.  The source 
will always be at the left (x = 0) edge of the 
grid, centered in the y direction, and at the 
top of the grid in the z direction. 

NUMSPEC number Tells ART3D how many species to expect. 
SPECNAMES “name1”, “name2”, . 

. . “namen” 
Lists the species names in the order they 
will be considered in the yield matrix, 
weight matrix, parameters list and OBS 
cards.  The number of names listed must be 
equal to the number defined in the 
NUMSPEC card. 

PARAM kVC 0.0006 
PARAM cTeCA 90.17 
PARAM cTCA 100 
PARAM cDCA 50 
PARAM cCA 0 
PARAM cPCE 11.46 
PARAM cTCE 0.63 
PARAM cDCE 0.002 
PARAM cVC 25 
NOBS 4  
WEIGHT 
6250000.0 1000000.0 20408.2 62500.0 250000.0 250000.0 12345.7 1.25  
6250000.0 1000000.0 20408.2 62500.0 250000.0 250000.0 12345.7 1.25 
6250000.0 1000000.0 20408.2 62500.0 250000.0 250000.0 12345.7 1.25 
6250000.0 1000000.0 20408.2 62500.0 250000.0 250000.0 12345.7 1.25  
OBS 4 point_4 500.0 1000.0 45.0 1  
9125.0 0.007 0.02 0.3 -999 -999 -999 0.02 3.5  
OBS 3 point_3 400.0 1000.0 45.0 1  
9125.0 -999 -999 0.1 -999 -999 -999 0.5 12.0  
OBS 2 point_2 300.0 1000.0 45.0 1  
9125.0 0.01 0.02 –999 –999 0.02 –999 –999 -999  
OBS 1 point_1 150.0 1000.0 45.0 1  
9125.0 –999  -999  0.01 –999  0.05 0.04 0.013 37.0 



 91

Table 25: ART3D input file card format. (continued) 
Card Arguments Meaning 
YIELD The yield matrix 

begins on the 
following line with 
one row and one 
column for each 
specie. 

The columns and rows are ordered as the 
species were ordered in the SPECNAMES 
card.  See the Equations section of Chapter 
2 for a description of the yield matrix.  The 
effective yield value should be placed in 
the column associated with the product and 
the row associated with the reactant for 
each possible reaction.  If the species 
names are ordered with parent species 
always coming before their daughter 
products, there should be no values above 
the diagonal.  There should never be any 
values on the diagonal (nothing reacts to 
form itself). 

TIME Totaltime 
numtimesteps 

The first argument tells ART3D the total 
simulation time; the second indicates the 
number of time steps at which solutions 
should be reported.  The actual time step 
lengths are calculated by dividing the first 
by the second; all time steps are equal in 
length. 

UNITS “length units” “time 
units” “mass units” 
“force units” 
“concentration units” 

This card is read only by GMS.  The only 
important units for an ART3D simulation 
are the length, time and concentration units.

REFTIME time units (Boolean 
for the use of reftime) 
refyear refmonth 
refday refhour 
refminute refsecond 

This card is read only by GMS.  Reference 
times cannot be used in ART3D.  If the 
user defines a reference time and chooses 
reference from the combo box in the 
Output Control Dialog, results can be 
output with a date and time instead of a 
length of time from the beginning of the 
simulation. 

SIMTYPE 0 for forward run, 1 
for parameter 
estimation run, 2 for 
stochastic run 

Defines run type. 

STOCH Number of stochastic 
runs 

This card only appears in a stochastic 
simulation and defines the number of 
independent solutions which will be 
calculated using random parameter values 

NUMITER Number of iterations 
before PORT library 
stops 

This card only appears in a parameter 
estimation simulation. 



 92

Table 25: ART3D input file card format. (continued) 
Card Arguments Meaning 
NUMFUNCALLS Number of calls to 

the objective function 
before the PORT 
library stops 

This card only appears in a parameter 
estimation simulation. 

EPSA Absolute function 
convergence 
tolerance for PORT 
library 

This card only appears in a parameter 
estimation simulation.  If the objective 
function returns a value smaller than this 
tolerance, the optimizer will stop. 

EPSR Relative function 
convergence 
tolerance for PORT 
library 

This card only appears in a parameter 
estimation simulation.  If the difference 
between the current objective function 
value and the optimized value are less than 
the product of this tolerance and the current 
objective function value, the optimizer will 
stop. 

Value In a forward run, only the parameter value 
is listed. 

Value Min Max 
Solve(0/1) 

In a parameter estimation run, the start 
value, and the lower and upper bounds are 
listed, followed by a one if the value is to 
be optimized or zero if not.  If the final 
value is a zero, the lower and upper bounds 
values are not important and can be any 
value.  There must be four values in the list 
regardless. 

PARAM retard 
PARAM velocity 
PARAM alphax 
PARAM 
alphayratio 
PARAM 
alphazratio 
PARAM k_ . . . 
(decay constant) 
PARAM Co_ . . . 
(source 
concentration) 
 
(the ‘. . .’ 
following  ‘k_’ and 
‘Co_’ represent the 
name of the specie.  
A ‘k_’ line and a 
‘Co_’ line must be 
provided for every 
defined specie.) 

Value Min Max 
Vary(0/1) 
Distribution type(0/1) 
Standard Deviation 

In a stochastic simulation, the mean value, 
and the lower and upper bounds are listed, 
followed by a one if the parameter is to be 
varied, or a zero if not.  This is followed by 
a zero for a normal distribution or a one for 
a linear distribution and finally, the 
standard deviation.  If the parameter is not 
to be varied, only the initial mean value is 
important; if the distribution type is linear, 
the standard deviation is not important.  
There must be six values in the list 
regardless. 

NOBS Number of 
observation points 

This represents the number of observation 
points in the simulation.  If this value is 
zero, the rest of the lines are omitted. 
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Table 25: ART3D input file card format. (continued) 
Card Arguments Meaning 
WEIGHT The weighting matrix 

follows on the next 
lines.  The matrix 
must be included 
regardless of the 
simulation type, 
unless there are no 
observation points 

The weighting matrix has a row for each 
observation point (in the order listed below 
in the OBS card) and a column for each 
specie (in the order listed in the 
SPECNAMES card).  In a forward run or 
stochastic simulation, these weighting 
values are applied to the residuals and 
presented in the output file (*.out).  In a 
parameter estimation simulation, the 
weighting values are used in the calculation 
of the objective function.  When running 
ART3D from inside GMS, these values are 
automatically calculated from the standard 
deviation values entered in the Observation 
Point dialog.  However, they can be 
changed by hand if desired by editing the 
*.art file. 

OBS id name xvalue 
yvalue zvalue 
numtimes 

The id and the name should be unique to 
the point.  The xvalue, yvalue and zvalue 
are relative values measured from the 
bottom left hand corner of the x-y grid and 
measured up from the bottom layer in the z 
direction.  The numtimes value represents 
the number of times that the observation 
data are sampled.  Any number of time 
points can be included and they do not 
have to coincide with the grid time steps 
defined above.  The number of time points 
must be equal to the number of lines of 
data included under each OBS card. 

 time value_species1 
value_species2 . . . 

The number of measurement lines included 
after each OBS line should be equivalent to 
the numtimes value defined in the OBS 
line.  The values should be ordered exactly 
as in the SPECNAMES line above.  If the 
value for a particular specie is not known 
or was not measured, enter “-999”.  If the 
exact concentration is required at a certain 
point and time, but measurements were not 
made, enter –999 for all the values and the 
output file (*out) will show these values.  
As explained above, the times listed here 
do not have to correspond to the grid time 
steps defined in the TIME card above. 
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All parameters on a given line should be separated by spaces only (not commas or 

semi-colons).  In general, the order of the cards is not important, but the user is urged to 

keep the order shown above.  In some cases, the order becomes very important.  For 

example, the NUMSPEC card must be read before the SPECNAMES, YIELD, WEIGHT 

or OBS card so that ART3D knows how many values to expect.  When running ART3D 

inside GMS, this file is automatically written out.  However, an understanding of the 

input file format is useful in case changes are to be made or if ART3D is to be run alone.



 95

Appendix B – GMS Interface 

 Running ART3D from inside the GMS environment makes data input much 

easier and allows a better visualization of the results.  The sections below present the 

GMS interface and explain the procedure for defining and running an ART3D simulation 

from GMS.  Users unfamiliar with GMS are urged to familiarize themselves with the 

Map and 3D Grid modules first. 

Step 1: Building the Grid 

 The first step in building an ART3D simulation is to create a grid in GMS by 

entering the Grid module and selecting Grid|Create Grid.  The grid can be any length 

and have any number of cells in the x, and z directions, however, there must be an even 

number of cells in the y direction and all cells must be the same size, so the Bias must be 

set at 1.0.  In the Orientation/Type drop-down menu, the FACT/ART3D option must be 

selected to create a mesh-centered grid.  Because ART3D is a fast, analytic model, the 

size and density of the grid do not greatly affect the time required to compute a forward 

run or a parameter estimation simulation, but if the grid is large or dense, a threshold 

analysis can take several minutes. 

Step 2: Defining the Species 

 Once the grid has been created, the ART3D simulation should be initialized by 

choosing ART3D|New Simulation.  This resets the parameters to default values and 
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allows access to the previously dimmed ART3D menu items.  With the simulation 

initialized, the species can be defined and named by choosing ART3D|Define Species.  

This brings up the dialog shown in Figure 26. 

 
Figure 26: ART3D Define Species dialog 

The New button should be selected once for each desired specie and its name 

should be typed into the spreadsheet.  A specie can be deleted by highlighting its name in 

the spreadsheet and selecting the Delete button.  The text at the bottom of the dialog 

keeps a running total of the number of species.  It is suggested that the species be listed in 

order with parent species always above all of their daughter products.  In the case of 

reversible reactions, however, this is not possible. 

Step 3: Defining Observation Data 

 Observation data is not required unless a parameter estimation simulation is to be 

run.  However, even if there is no observation data available, points can be defined in 

areas where a plot of computed concentration values is desired. 
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 Observation data must be entered in the Map module using an observation 

coverage.  In the Map module, a new coverage can be created by right clicking on the 

Map Coverages folder in the Data Tree, and choosing New Coverage.  The coverage type 

can then be set by right clicking on the new coverage and choosing Properties.  The 

combo box titled Type should be set at Observation.  The name of the coverage can also 

be defined by right clicking on the new coverage in the Data Tree and choosing Rename. 

 Once the observation coverage has been defined, the points can be added using 

the Create Point Tool in the Map module.  Double clicking on one of these points, or 

selecting one and choosing Feature Objects|Attributes will bring up the Observation 

Coverage Attributes dialog shown in Figure 27. 

 
Figure 27: Observation Coverage Attributes dialog 
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 The Observation Coverage Attributes dialog is also where the measurements must 

be defined.  If the species have already been defined in the 3D Grid module, then the 

measurements can easily be linked to these species in the top spreadsheet of the dialog.  

The New button should be selected once for each specie name and the model (ART3D) 

and the appropriate data sets should be selected for each measurement.  This spreadsheet 

also has a column for naming the measurement and for choosing to make the 

measurements transient.  All of the measurements in Figure 27 have been selected to 

have transient data. 

 The bottom spreadsheet can be used to name the points, define their color and set 

them as observation points.  Here, the x, y, and z coordinates can be defined or adjusted.  

The user also should define the confidence interval and percentage or the standard 

deviation.  The standard deviation will be used in determining the weight value for each 

solution value as explained in Chapter 3.  Setting the confidence interval and percentage 

will automatically adjust the standard deviation. 

 The measurements that are selected to have transient data must have a time series 

associated with them.  The time series can be added by selecting the Options button in the 

Time Series column.  The dialog which opens up is shown below in Figure 28.  The 

Import button can be used to import time step data from another file, or the data can be 

entered by hand to the chart on the left.  The plot field will show the time series visually 

as it is created. 
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Figure 28: Adding a timeseries to an observation point 

 If the measurement has not been marked as transient, the Time Series button 

shown in Figure 27 will be replaced by a spreadsheet cell where a single value can be 

entered.  Because ART3D is always transient, this value will be applied to the final grid 

time step. 

Step 4: Run Options and Output Control 

 Once the observation data has been defined, the user must return to the 3D Grid 

module to enter the rest of the data.  The first set of data to be entered is found in the 

dialog which appears on selection of ART3D|Run Options.  This dialog is shown in 

Figure 29. 
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Figure 29: ART3D Run Options dialog 

On the left half of the dialog, the user should choose the type of simulation to run.  

If the parameter estimation option is selected, the edit fields for defining four stopping 

conditions for the PORT library become available.  These four values include the 

maximum number of iterations, the maximum number of function calls, the absolute 

function convergence tolerance and the relative function convergence tolerance.  These 

values are described in Chapter 3. 

If the stochastic option is selected, the stopping conditions edit fields are dimmed 

and the edit field for choosing the number of stochastic simulations becomes available. 

The right half of the dialog includes a list of all observation coverages in memory.  

The one containing the observation data for the ART3D simulation should be selected.  

Only one coverage can be selected at a time, so it is important that all ART3D 
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observation data be placed in the same coverage.  If no coverage is checked, no 

observation data will be calculated by ART3D. 

In the bottom right corner of the dialog, the user inputs the source dimensions to 

be used.  The source is assumed to be at the left (x = 0) side of the grid, centered in the y 

direction and at the top of the grid in the z direction. 

The units for the simulation can be defined by using the dialog which appears on 

selection of the Units button in Figure 29 

The Output Control dialog, shown in Figure 30, allows the user to enter data 

associated with the output time steps and is accessed by choosing the Output Control 

command from the ART3D menu. 

 
Figure 30: ART3D Output Control dialog 

 In the example in Figure 30, the user has selected a total simulation time of 1000 

days with 20 time steps.  This means that ART3D will calculate the grid solution every 

50 days up to the total simulation time.  The concentration values at the observation 
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points will also be calculated at each of these times and at all times at which observed 

data is provided by the user.  The grid solution will not be calculated to correspond with 

the observed value time steps. 

 Also in the Output Control dialog, the user can select either relative time display 

or date/time display in the combo box titled Display.  In the case of a relative time 

display, all times will be shown as the amount of time passed since the beginning of the 

simulation.  If the Date/Time option is selected, the user must select a reference time, or 

the date and time at which the simulation began.  Then all times will be displayed as 

dates and times (for example, “March 18, 2002 15:00:00”). 

Step 5: Entering the Effective Yield Matrix 

 The yield values are entered in matrix form in the dialog which is displayed upon 

selection of ART3D|Yield Coefficients.  This dialog is shown in Figure 31. 

 
Figure 31: ART3D Effective Yield Matrix dialog 
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 This matrix has one column and one row for each defined specie.  Each effective 

yield coefficient should be placed in the cell corresponding to the column of the parent 

specie and the row of the daughter specie.  If the species have been defined in order with 

the parent species always above their daughter products, all values will be below the 

diagonal in the yield matrix.  The units of each value should be mass of product / mass of 

reactant.  The diagonal values have been dimmed since no specie will react to form itself. 

 The effective yield coefficient is the product of the stoichiometric yield fraction 

and the ratio of the molecular weights of the two species.  This is not the same yield 

matrix required by the original ART3D input file.  When using this new input file format, 

the matrix will be automatically manipulated inside ART3D to create the matrix required 

in ART3D.  This method saves the user some calculations. 

Step 6: Entering the Aquifer and Specie Parameters 

 The rest of the parameters required for an ART3D simulation are entered in the 

Parameters dialog, accessed by choosing ART3D|Parameters.  This dialog is slightly 

different depending on the type of simulation selected in the Run Options dialog.  In the 

case of a forward run, the dialog looks as shown in Figure 32 and is fairly self-

explanatory. 
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Figure 32: ART3D Parameters dialog for a forward run 

 If the parameter estimation mode has been selected, the Parameters dialog 

appears as in Figure 33. 
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Figure 33: Parameters dialog for a parameter estimation run 

 In the above example, the user has selected the first ten parameters to be solved 

for by the optimization routine.  Each of those ten parameters has been given a start 

value, which will be used in the first iteration, and a minimum and maximum value.  The 

optimization routine will not allow the parameters to change beyond the bounds set in 

this dialog.  The five parameters that are not to be optimized, only have a start value.  

This value is used in every iteration and does not change. 

 After the simulation has been run, the user can enter this dialog again and choose 

the Import Parameters button and GMS will fill in the start values with the optimized 

values from the PORT library. 
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 In the case of a stochastic simulation, the Parameters dialog will appear as in 

Figure 34. 

 
Figure 34: ART3D Parameters dialog for stochastic simulation 

 Here, the user has chosen ten parameters to be varied.  Two will have normal 

distributions and the rest will have linear distributions.  All values which have not been 

selected for variance will be set at the mean value in every simulation.  For parameters 

with a normal distribution, a standard deviation has also been defined. 

Step 7: Running the Model 

 When all of the data has been entered, the user should choose File|Save to save 

out the ART3D input file.  Once this file has been saved, the selection of ART3D|Run 
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Simulation will call the ART3D code and pass it the input file.  A dialog will come up in 

GMS to track the progress of the simulation.  This dialog is slightly different depending 

on the type of simulation. 

 For a forward simulation, the dialog consists of a single window which lists 

output information from the model.  If an error occurs, its description will be listed in this 

window.  When the simulation has finished, the text, “Simulation completed 

successfully” will appear in the window and the Abort button will change to a Close 

button.  This dialog is shown in Figure 35 after the completion of the simulation. 

 
Figure 35: ART3D output window for a forward simulation 

 In a parameter estimation simulation, the output window shows a little more 

information.  The dialog, shown in Figure 36, includes a plot of the error versus iteration.  

This plot updates after every iteration and helps visualize the success of the PORT 

library.  In the middle of the dialog, there is a spreadsheet showing the values of each 

parameter and the error after each iteration.  Like the plot window, it is updated after each 
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iteration, to show the progress of the optimization.  A copy and paste command can 

easily transfer this data to a spreadsheet program where it can be plotted.  The bottom 

message window displays any errors as well as the final error value, the total number of 

objective function evaluations and the reason for stopping the optimization routine.  In 

the example shown in Figure 36, the routine stopped because it reached the absolute 

function convergence tolerance.  If the user wishes to continue the optimization, this 

tolerance value will need to be reduced in the Run Options dialog. 

 After the PORT library stops, ART3D is run one more time, this time with the 

optimized values.  Both grid and observation point solutions are calculated. 
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Figure 36: ART3D output window for a parameter estimation simulation 

 Finally, if a stochastic simulation is being run, the output window will appear as 

in Figure 37 with a spreadsheet and a text window.  The spreadsheet lists the random 

values used in each simulation and is updated after every simulation.  As before, the text 
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window displays error messages and tells the user when the simulations have finished.  

The bar in the center of the dialog moves across the screen as the simulations progress. 

 
Figure 37: ART3D output window for a stochastic simulation 

Step 8: Reading the Solution 

 After the model has finished and the output window has been closed, the user can 

view the solutions by choosing ART3D|Read Solution.  In a forward run, a single 
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solution, consisting of several data sets will be read into memory and listed in the Data 

Tree at the right of the GMS window.  After a parameter estimation run, the solution 

from the optimized parameter values is read in similarly.  These solutions can be viewed 

by clicking on them in the data tree window.  Display options such as contours and 

orientation can be changed as described in GMS documentation 

After a stochastic simulation, all of the solutions will be read in and grouped in a 

single folder.  Any single solution may be viewed individually and solutions can be 

moved to other folders or deleted as desired using the Data Tree.  A risk analysis can be 

run on a folder containing any number of solutions.  This analysis can be initiated by 

right clicking on the folder holding the solutions and selecting Risk Analysis.  In the first 

window, ART3D should be chosen from the text window, and the Probabilistic Threshold 

Analysis should be selected below the window.  In the next dialog, the user can select any 

of the species, a comparison type and a threshold value.  A name can also be assigned to 

the analysis.  When the Finish button is selected, GMS will go through all the solutions in 

the selected folder and find the percentage of these solutions that meet the criteria entered 

in the dialog.  If more than one comparison has been specified, it will find the spatial 

distribution of the probability of satisfying all criteria.  When the process is finished, a 

new data set will be available in the data tree.  This data set will show the percent 

probability of the entered criteria being true in each grid cell.  Again, the reader is 

directed to GMS documentation for information on post-processing. 

 


