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INTRODUCTION

The effectiveness factor is widely used to account for the interaction between pore
diffusion and reactions on pore walls in porous catalytic pellets and solid fuel particles.  The
effectiveness factor is defined as the ratio of the reaction rate actually observed to the reaction
rate calculated if the surface reactant concentration persisted throughout the interior of the
particle, i.e., no reactant concentration gradient within the particle.  The reaction rate in a particle
can therefore be conveniently expressed by its rate under surface conditions multiplied by the
effectiveness factor.  

The generalized steady-state equation in a spherical particle (a catalytic pellet or a solid
fuel particle) may be expressed as:
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dr2 +
2

r

dC
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−

′ ′ ′ r 

De

= 0 (1)

where ′ ′ ′ r  is the intrinsic reaction rate per unit particle volume in mol/cm3/sec (as a function of
C), De is the effective diffusivity, C is the local oxygen concentration (as a function of r), and r is
the radial distance from the origin.  The boundary conditions are

C = Cs, at r = rs (2)

and
dC

dr
= 0 , at r = 0 (3)

The intrinsic reaction rate ′ ′ ′ r  can be in different forms.  One way to represent the
intrinsic reaction rate is to use an m-th order rate equation:

′ ′ ′ r = kmC
m

(4)
where km is the kinetic coefficient in (mol/cm3)1-m sec-1, and m is the intrinsic reaction order.
Another way is to use a Langmuir rate equation

′ ′ ′ r =
k1C

1 + KC
=

k0KC

1 + KC
(5)

where k1 and K are two kinetic parameters (the physical meanings of these two parameters
depend on the mechanism leading to this rate equation), and k0 is the ratio of k1 to K.  Note that
the product of K and C is dimensionless.  

The exact analytical solutions for the radial oxygen concentration profile and the
effectiveness factor have been well established when the intrinsic reaction rate is first order.1-3

Assuming that De is constant throughout the particle, the exact analytical solution for the
effectiveness factor for a first order reaction is
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where rs is the radius of the particle, k is the kinetic coefficient in 1/sec, and MT is the Thiele
modulus.  Eq. 6 is referred to in this paper as the first order curve.   

Bischoff4 developed (in Cartesian coordinates) a general modulus for an arbitrary reaction
rate form:

MT =
L ′ ′ ′ r (C)

2
[ D(t) ′ ′ ′ r (t)dt]

− 1

2
0

C s

∫ (8)

where L is the characteristic length of the particle (defined as the volume of the particle/external
surface of the particle), t is a dummy integration variable, ′ ′ ′ r  is the intrinsic reaction rate per
particle volume in any form, and D is the effective diffusivity, which can be a function of oxygen
concentration, but is assumed to be constant in this study for simplicity.  The use of this general
modulus in Cartesian coordinates brought all of the curves for various m-th order rate equations
and the Langmuir rate equation with different values of K into a relatively narrow band (see
Figure 1).  In particular, the general modulus for m-th order rate equations was derived from Eq.
8:

MT = L
(m + 1)

2

kmCs
m −1

De

(9)

 For the Langmuir rate equation in Eq. 5, a general modulus can be derived from Eq. 8:  

MT = L
k1

2De

KCs

1 + KCs

[KCs − ln(1+ KCs)]
− 1

2 (10)

If accuracy is not a major concern, all of the η vs. M T curves in the narrow band can be
approximated by the first order curve, as shown in Figure 1.  The method of approximating the η
vs. MT curve of a non-first order reaction by the first order curve is referred to in this paper as
the first order approximation.  The first order approximation method becomes more and more
accurate as MT approaches zero and infinity.  However, in the intermediate range of MT (0.2 <
M T < 5), the first order approximation method leads to up to -34% error in Cartesian
coordinates, as shown in Figure 1.  Note that in Cartesian coordinates the first order curve is

=
tanh(MT )

MT

(11)

while in spherical coordinates the first order curve is Eq. 6.
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Figure 1. The effectiveness factor curves for first order and zeroth order reactions in Cartesian
Coordinates. For reactions between zeroth order and first order extremes (0 < m < 1
or 0 < KCs < ∞), the curves lie in the narrow band bounded by the first order and the
zeroth order curves.   

RESULTS AND DISCUSSION

The Effective Reaction Order for An Arbitrary Reaction Rate Form
From the intrinsic m-th order rate equation (Eq. 4), it is easy to get

ln( ′ ′ ′ r ) = ln(kmCm ) = ln(km) + mln(C) (12)
From the above equation, it can be seen that if we plot ln(r''') vs. ln(C), we get a straight line, and
the slope of this line is the reaction order m.  Eq. 11 can be re-written as:

m =
d ln[ ′ ′ ′ r in(C)]

d ln(C) (13)

For a reaction described by a Langmuir-Hinshelwood rate equation, there is no reaction
order in an explicit sense.  However, the right-hand side of Eq. 12 can be used as the definition of
an effective reaction order meff for an arbitrary reaction rate form.  

meff =
d ln[ ′ ′ ′ r in(C)]

d ln(C)
(14)

We now apply this definition to the Langmuir rate equation.  Substitution of the Langmuir rate
equation into Eq. 14 gives

meff =
d ln(

k1C

1 + KC
)

d ln(C)
=

1

1 + KC
. (15)
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Note that for a Langmuir type reaction the ln(r''') vs. ln(C) curve is not a straight line.  The slope
of the curve (which is meff) is dependent on the local oxygen concentration.  At the surface
oxygen concentration Cs, the effective reaction order is

 meff, s = 1

1 + KCs

        for the Langmuir rate equation (16.L)

Note that for an m-th order rate euqation, the effective reaction order is always equal to m.
Therefore,  

meff , s = m                   for an m-th order rate equation (16.m)

Evaluation of the First Order Approximation in Spherical Coordinates

Since catalytic pellets and porous solid fuel particles can be approximated more or less by
spheres, rather than by semi-infinite flat-slabs, it is of more interest to study the performance of the
first order approximation method in spherical coordinates.  The values of the effectiveness factor
predicted by the first order curve (Eq. 6) using the general moduli in Eqs. 9 and 10 were compared
to the numerical solutions.  It was found that in spherical coordinates, the first order approximation
method predicted the effectiveness factor more accurately than in Cartesian coordinates, with errors
ranging from  -17% to 0% (see Table 1).  In other words, all of the curves for various values of
meff,s were brought into a narrower band in spherical coordinates than the band in Cartesian
coordinates (see Figures 1 and 2).  From Table 1, it can be seen that: 1) as the value of MT gets
away from 0.707 in both directions, the error diminishes rapidly to zero;  2) as meff,s decreases
from unity to zero, the error increases from zero to -17%.
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Figure 2. Effectiveness factor curves for first order and zeroth order reactions in spherical
coordinates.  For reactions described by the Langmuir and m-th order rate equations,
the curves lie in the narrow band bounded by the first order and zeroth order curves.
The dotted line in the band corresponds to m = 0.5 and corresponds approximately to
KCs = 1 (meff,s= 0.5 for both m-th order and Langmuir rate equations).
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Table 1.  The Errors (%) of the First Order Approximation Method Using
the Modulus in Eq. 10

meff,s

MT

1.00 0.75 0.50 0.25 0.00

0.125 -0.019 -0.162 -0.342 -0.583 -0.925

0.25 -0.016 -0.588 -1.282 -2.188 -3.560

0.5 -0.013 -1.639 -3.672 -6.557 -12.375

0.707 -0.076 -2.162 -4.802 -8.618 -16.081

1 -0.215 -2.274 -4.756 -8.000 -12.392

2 -0.491 -1.584 -2.813 -4.277 -6.018

4 -0.679 -1.191 -1.774 -2.472 -3.156

8 -0.933 -1.186 -1.473 -1.821 -2.274

Note: The errors of the first order approximation method using the general
 Thiele modulus in Eq. 9 are almost identical to the values in this table.

Correction Function

It has been shown that in the intermediate range of MT (0.2 < MT < 5), the first order
approximation method leads to up to -17% error.  It is desirable to reduce the error using a
multiplier with the first order curve (Eq. 6).  Two correction functions were constructed to
counter the errors associated with the first order approximation methods for m-th order rate
equations and the Langmuir rate equation, respectively.  By using the effective reaction order
evaluated at the external surface oxygen concentration, these two correction functions can be
unified into

f (MT , meff ,s ) = (1+ 1/ 2
1

2M 2 + 2M 2
)

1

2
(1−m

eff , s
)2

(17)

where meff,s = m for m-th order rate equations, and
meff,s = 1/(1+KCs) for Langmuir rate equations.

The correction function is used as a multiplier before the right-hand-side of Eq. 6:

= f
1

MT

(
1

tanh(3MT )
−

1

3MT

) (18)

Note that this correction function is designed only for correcting the first order approximation in
spherical coordinates, but not in Cartesian coordinates.
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Figure 3. The correction function f  vs. Thiele modulus MT and the effective reaction order at
external surface meff,s.

Accuracy of the corrected first order approximation

Compared to numerical solutions, the corrected first order approximation predicts the
effectiveness factor within 3.0% errors (see Table 2).  After the effectiveness factor is obtained,
the overall reaction rate in a spherical particle can be easily calculated using

′ ′ ′ r obs = kmCs
m

(19)
for a m-th order type reaction, and

′ ′ ′ r obs = k1Cs

1 + KCs
(20)

for a reaction described by the Langmuir rate equation.

CONCLUSIONS

Two correction functions were constructed to improve the accuracy of predicting the
effectiveness factor for the Langmuir and m-th order rate equations, respectively.  By using the
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intrinsic effective reaction order evaluated at surface concentration, these two correction
functions were unified (see Eq. 17).

The first order curve combined with the correction function developed in this study was
able to predict the effectiveness factor for m-th order rate equations and the Langmuir rate
equation within 3% in the whole range of MT (including Zone I, Zone II and especially the
transition zone).   This "corrected first order approximation method" uses explicit analytical
expressions to predict the effectiveness factor, and therefore is particularly suitable for repeated
use in comprehensive computer codes.

Table 2.  The Errors of the Corrected First Order Approximation
Method Using the Proposed Modulus in Eq. 10

       meff,s

MT
1.00 0.75 0.50 0.25 0.00

0.125 -0.019 -0.030 0.163 0.485 1.133

0.25 -0.016 -0.158 0.375 1.354 0.001

0.5 -0.013 -0.729 -0.113 1.208 1.394

0.707 -0.076 -1.161 -0.849 0.128 -1.246

1 -0.215 -1.387 -1.197 0.076 1.374

2 -0.491 -1.178 -1.136 -0.324 0.545

4 -0.679 -1.068 -1.256 -1.243 -1.144

8 -0.933 -1.153 -1.337 -1.494 -1.743

Note: The errors of the corrected first order approximation method using
 the general Thiele modulus in Eq. 9 are almost identical to the values in
 this table.
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