Chemical Engineering 273
Chemical Process Principles (Material and Energy Balances)
MWF 10:00 am, 256 CB
Winter 2015

PROFESSOR
Thomas H. Fletcher
350E CB, 422-6236 (tom_fletcher@byu.edu)

OFFICE HOURS
I have not scheduled formal office hours. Please call, email, or come by to see me. My schedule is posted outside my door.

TEACHING ASSISTANTS
NAME: Kaitlyn Scheib Daniel Barfuss Junho Park
EMAIL: kaitlyn.scheib@gmail.com barfussd@gmail.com jnho.park@gmail.com
Cell 269-605-3051
OFFICE: 206 CB 206 CB 206 CB
HOURS: 3-5 pm W 3-4 pm T Th 8-9 am MWF
(tentative)

PREREQUISITES
Chem 106; or Chem 112; Ch En 170 or equivalent or concurrent enrollment; Ch En 263 or equivalent (or permission); Math 113 or concurrent enrollment.

REQUIRED TEXT

Note: We will be using the student workbook: R.M. Felder, R.W. Rousseau, and G.S. Huvard, Student Workbook, 2005 (this comes with the textbook). If you did not buy this, you can photocopy select pages from a fellow student (make a friend)!

CLASS WEBSITE
http://www.et.byu.edu/~tom/classes/273/273.html
(assignments, homework hints, and current grades will be posted here)

ADDITIONAL SOURCES
Felder and Rousseau CD (with book), Interactive Chemical Process Principles
R.L. Rowley, ChEn 273 Learning Resource Center
http://www.et.byu.edu/~rowley/ChEn273/index.html

COURSE OBJECTIVES
A. Obtain a feel for what Chemical Engineers do
B. Learn about basic chemical process units
C. Learn to analyze and solve material balance problems
D. Learn to analyze and solve energy balance problems
E. Learn to analyze more complex balance problems involving coupling of material and energy balances for multiple units

GRADES
Grades will be determined from a composite score of all graded materials, consisting of: three exams, homework problems, a case study project and the comprehensive final exam. Weights used to determine the final score will be:

1. Homework problems, Quizzes, In-Class Activities 20%
2. Case study 10%
3. Three midterm exams 45%
4. Final Exam 25%

DEAN’S LECTURES
All ChEn 273 students are required to attend two Dean’s Lectures or equivalent during winter semester. Alternate seminars are graduate student seminars, SWE speakers, or other approved outside speakers. Notify the TAs when you have attended each lecture. The tentative dates for the Dean’s Lectures are Feb. 5 and March 5. This will be worth ½ grade (A- vs. A). Please mark your calendars.
BYU DRESS CODE

All students attending ChE 273 are expected to fully support and adhere to all elements of the BYU dress codes. The codes will be enforced in the classroom. This includes the requirement that shorts and skirts be knee length or longer, and that men shave. Please do not embarrass the instructors, TA’s, or yourself by dressing inappropriately; your integrity is on display.

BYU HONOR CODE

All students in ChE 273 are expected to adhere to all elements of the BYU honor code. Each student is expected to submit for credit only that work of which he/she is the sole author (except for the case study). Students are encouraged to work in groups to discuss problems and possible solution ideas, but each student's work must represent his/her own thinking, labor, and understanding. The following are examples (but by no means an exhaustive list) of Honor Code violations:

- Copying another student’s work or an unauthorized answer key and submitting that copied material for credit as one's own work
- **Using any materials, either homework problems or exams, from previous years**
 - Relying on the thinking and efforts of another person as a major guide in doing one's own homework without substantial effort to contribute one's own thought, labor, or understanding
 - Sharing electronic copies of homework (Mathcad files, Excel spreadsheets); please turn in separate sheets with original work
 - Obtaining unauthorized information during an examination, such as from the examination paper of another student or from unauthorized written material
 - Using false information to obtain undeserved permission or credit or to avoid a deserved penalty.

UNIVERSITY MISSION

The following is quoted from the General Catalog. "The mission of Brigham Young University - founded, supported, and guided by The Church of Jesus Christ of Latter-day Saints - is to assist individuals in their quest for perfection and eternal life. That assistance should provide a period of intensive learning in a stimulating setting where a commitment to excellence is expected and the full realization of human potential is pursued. To succeed in this mission the university must provide an environment enlightened by living prophets and sustained by those moral virtues which characterize the life and teachings of the Son of God."

SEXUAL HARASSMENT

BYU's policy against sexual harassment protects both employees of the University as well as students. Under Title IX of the Education Amendments of 1972, students who encounter sexual harassment from other students are protected. If you encounter unlawful sexual harassment or gender based discrimination, please talk to your professor; contact EEO office (422-5895); or contact the Honor Code Office (422-2847).

STUDENTS WITH DISABILITIES

BYU is committed to providing a working and learning atmosphere that reasonably accommodates qualified persons with disabilities. If you have any disability, which may impair your ability to complete this course successfully, please contact the Services for Students with Disabilities Office (422-2767). Reasonable academic accommodations are reviewed for all students who have qualified documented disabilities. Services are coordinated with the student and instructor by the SSD office. If you need assistance or if you feel you have been unlawfully discriminated against on the basis of disability, you may seek resolution through established grievance policy and procedures. You should contact the Equal Employment Office at 422-5895, D-282 ASB.
AIChe CODE OF ETHICS

A. Fundamental Principles
 Engineers shall uphold and advance the integrity, honor and dignity of the engineering profession by:
 1. Using their knowledge and skill for the enhancement of human welfare;
 2. Being honest and impartial and serving the engineering profession with fidelity;
 3. Striving to increase the competence and prestige of the engineering profession.

B. Fundamental Canons
 1. Engineers shall hold paramount the safety, health, and welfare of the public in the performance of their professional duties.
 2. Engineers shall perform services only in areas of their competence.
 3. Engineers shall issue public statements only in an objective and truthful manner.
 4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees, and shall avoid conflicts of interest.
 5. Engineers shall build their professional reputations on the merits of their own service.
 6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity, and dignity of the engineering profession.
 7. Engineers shall continue their professional development throughout their careers and shall provide opportunities for the professional development of those engineers under their supervision.

1 Adopted by Council, August 16, 1980; based on ECPD Code of Honor, October 5, 1977.
I. CLASS MECHANICS

A. Homework Problems
Homework is an essential, integral part of this course because problem solving skills are obtained only by solving problems (lots of problems!). This is your major! Do all the homework! Do not assume that you have learned the material just because you can follow the instructor's solutions. Starting from scratch on a problem is a higher level of understanding than simply understanding how someone else worked the problem.

Homework rules:
1. Homework problems are due at the beginning of class. Please don’t be late to class because you are finishing homework.
2. Homework may be turned in until the next exam without excuse for up to 50% credit. You may look at the answer key in the ChE office for guidance on late homework. Dr. Fletcher will excuse late homework on a case-by-case basis. Please work the homework early to avoid lateness due to computer crashes.
3. Answer keys will be posted on the Learning Suite after class.
4. You may discuss with others how to begin working problems (in fact this is encouraged), but you must work the problem entirely yourself to hand in for credit. You may not share computer files for homework problems until the case study.
5. Homework should be written on one side only of 8.5" x 11" paper. Neatness is essential in developing good problem solving techniques. Points may be taken off for sloppiness.
6. Use of Mathcad will not be permitted on some assignments and encouraged on others. This will be made clear on the class schedule.

B. Standard Homework Format
1. Organize work carefully and logically. Write legibly and neatly.
2. Carry units all the way through to the final answer. Units should appear on all numbers.
3. Carry algebraic expressions analytically as far as possible before substituting numbers.
4. Underline, box or otherwise mark results and answers.
5. Label your first page with a heading containing ChE 273, your name, assignment number, date and page. Subsequent pages should contain at least the page number and your name or initials.
6. Write on only one side of the paper (engineering paper is preferred).
7. Before turning in your assignment, staple all sheets together in upper left-hand corner. The TAs have requested that you do not fold the assignments.

C. Computer Problems
The computer is a valuable tool in this class and you should use spreadsheets, graphics packages, and programming languages. You should become conversant in MATHCAD and EXCEL, since they will be great tools for you in this class and throughout the chemical engineering curriculum. It is expected that you already know how to use MATHCAD and EXCEL because you should have taken ChEn 263. If you are a transfer student and are not familiar with MATHCAD, the teaching assistants will be glad to help you get started. Several problems assigned will require use of MATHCAD. You are free to use EXCEL on any of the other problems as you see fit; some restrictions apply on MATHCAD.

D. Exams
Unless otherwise specified, the three exams will be in the testing center given on the days shown on the attached schedule. Some of the exams will be closed book to see if you know the material.

E. Final Exam
The final exam for the course will be given on Tuesday, 7:00 to 10:00 am in the regular classroom. It will be a comprehensive, open-book final. All students must take the final exam to pass the course. Finals will not be given at any other time.
F. Reading Assignments
You are expected to keep up with the reading assignments on your own initiative. Assignments for each
day of the entire course are listed on the attached schedule. You should read the assigned material before
class. We will not remind you in class to do the reading. That does not mean it is not important. Generally,
poor performance on exams is a result of not doing the reading. Quizzes will be given occasionally on the
reading material at the beginning of class.

G. Case Study
Midway through the course the class will be divided into groups of 4-5 students. Your group will be
assigned a case study to work on as a group. The case study involves balances on a process involving
multiple chemical process units and is a good capstone problem for the course. Your group will interact
with a consultant, either with me or with one of the TA's. I will introduce the case study and talk about the
process in general, but then your groups will need to be self-motivated to meet regularly to discuss the
problems and prepare a design for the project.

On the last day of class, you are to turn in the following items for grading of the case study:
(a) A completed case study report from your group showing the overall design of the process with
appropriate stream tables, etc., and answers to questions. This should be done neatly and
professionally. Only one report should be turned in for each group.
(b) Each individual should turn in a single page table that provides his/her confidential evaluation of
the contribution of each group member.

An overall score will be assigned to each group's case study. Additional points will be added or subtracted
depending on any clear evidence from the contribution evaluations that particular individuals made
extraordinary or sub-standard contributions. Thus, individual scores may vary slightly within any one
group.

H. TA Help Session
During the first week of class, we will schedule hours that the TA's will be available. You are encouraged to
come by during those hours and seek help on problem assignments.
II. PROBLEM SOLVING PROCEDURES

Have you ever been trying to solve a problem (not necessarily a chemical engineering problem) and become totally lost in the middle of it, not really knowing where you’ve been or possibly not even remembering what it was that you were trying to solve for in the first place. CHE 273 is a problem solving course and learning to attack a problem in an organized fashion is an important step in an engineer’s education. To avoid the onset of panic caused when you get lost in the middle of a problem and to provide you with a generalized decision making scheme, I have outlined below the typical sort of procedures that I might use in attacking a problem. While I don't require you to memorize this procedure, I do expect that you will consistently set your problems up in the general fashion described below. You should begin to use this approach immediately in this class. As this approach becomes second nature to you, your problem solving capabilities will be greatly enlarged and (importantly) you will be able to attack material and energy balance problems with a great deal of self confidence.

General Problem Solving Approach

A. DEFINE
1. Draw a sketch of the problem.
2. Label the sketch with flows and composition for each steam.
3. Put all known values of compositions and flows on the sketch.
4. Select a basis of calculation.
5. List the unknown stream quantities with symbols.
6. Identify exactly what you are being asked to calculate.

B. EXPLORE
1. Select the system boundaries.
2. Determine the degrees of freedom and the number of equations to be solved.
3. Obtain the necessary data and physical properties.
4. Identify possible attacks.
 i. Use equations with fewest unknowns first.
 ii. Use tie-components if appropriate.
 iii. The overall balance should generally be used.
 iv. Relocate the basis if necessary.
 v. For multiple units, start with the unit which has the lowest degree of freedom.
5. Write down independent balance equations for the chosen attack.

C. SOLVE
1. Solve simultaneous equations.
2. Scale-up from the chosen basis.

D. CHECK
1. Check your answers by direct substitution.

III. Competencies.
This course will help students should accomplish the competency expectations listed on the next page.

Level 3 competencies: Fundamental concepts that all chemical engineers should know. The Level 3 Competency exam must be taken and passed during the senior year of chemical engineering as a graduation requirement. This exam includes a total of twenty-four Level 3 competencies, including the Level 3 competencies from this class.

Level 2 competencies: Important concepts that will be taught. Measurements of student learning will include homework and exam questions. These often include more complex material.

Level 1 competencies: Students are exposed to the material, but there is no minimum performance expectation.

You will be asked at the end of the course to evaluate how competent you feel with the expectations listed on the next page.
<table>
<thead>
<tr>
<th>Level</th>
<th>Usage</th>
<th>Competency Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>P</td>
<td>Students will demonstrate an ability to solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Students will be able to use basic engineering units in both SI and AES systems in solving problems, and be able to convert between unit systems both by hand and with an equation solver.</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Students will be able to solve steady-state, overall, material and energy balances for systems which include one or more of the following: recycle, multiple units, chemical reactions.</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Students will understand the phase behavior of pure substances in relationship to the variables T, P, and density (including vapor pressure, critical point, freezing line, triple point, etc.).</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Students will be able to use the mechanical energy balance equation to solve fluid flow problems both with and without friction.</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Students will be introduced to the first law of thermodynamics for closed and open systems.</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>Students will be able to solve numerical and symbolic problems using advanced math software (e.g. Mathcad).</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>Students will exhibit critical and creative thinking skills for analysis and evaluation of problems and cause-effect relationship.</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>Students will be able to obtain and evaluate appropriate input information/data from databases, handbooks, correlations, experiments, literature, etc.</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>Students will be introduced to the notions of rationalizing units, making order of magnitude estimates, assessing reasonableness of solutions, and selecting appropriate levels of solution sophistication.</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>Students will be introduced to how safety considerations are incorporated into engineering problem solving.</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>Students will be introduced to how environmental considerations are incorporated into engineering problem solving.</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>Students will practice good teamwork principles.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will learn about chemical processes, units, and corresponding equipment.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be able to set up and solve simple transient material balances.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be able to use a degree-of-freedom approach to assist in the solution of material and energy balances.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be able to read mixture phase diagrams (solid solubility, liquid-liquid, VLE) and construct mass balances from them using the lever rule, tie lines, etc.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be able to solve simple fluid statics problems (e.g., manometers, fluid head, etc.).</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be able to apply Raoult’s law to solve VLE problems including bubble point, dew point, and flash calculations.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be introduced to the concepts of heat capacity, latent heat, heat of reaction, heat of combustion, and heat of formation.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be introduced to process variables (e.g., P, T, flow rate, conc.) and their measurement.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will be able to use a problem solving strategy to define and solve engineering problems.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Students will demonstrate experience working together in teams.</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>Students will be introduced to calculations involving work in turbines, compressors, and pumps.</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>Students will be introduced to the AIChE code of ethics.</td>
</tr>
</tbody>
</table>

I=Introductory, M=Main place where material is presented, P=Programmatic material, R=Review